Combining household survey data, key informant interviews, and hedonic modelling to understand housing demand in a dynamically shifting market

Prof. Dawn Cassandra Parker

## SCHOOL OF PLANNING



WATERLOO ENVIRONMENT

environment.uwaterloo.ca

WATERLOO INSTITUTE for COMPLEXITY & INNOVATION DEVS Francophones, 1 May 2018, Corsica

Co-authors: Yu Huang, Robert Babin, Xinyue Pi, Jinny Tran, Xiongbing Jin, Jennifer Dean

Social Sciences and Humanities Research Council of Canada Conseil de recherches en sciences humaines du Canada



### Why are land markets important?

- On the investment side, huge role in the financial system —look no farther than the 2009 housing crisis and Great Recession
- On the individual side:
  - Often the most significant asset/investment for home owners
  - "Lifestyle" contributions from house/neighbourhood strongly linked to identity
- On the market side, they influence:
  - Income and racial segregation
  - Tiebot sorting, public good provision (education), politics



## Land markets: Regional and global scale influences

- Housing market crash and global financial crisis
- Rising gas prices and fall of residential land values in lowaccessibility areas
- Global trends towards urban migration and urbanization
- Biofuel initiatives, rising agricultural commodity prices, and agricultural land markets
- "Land Grabs"
- REDD (reducing emissions from deforetation and degradation) and emerging carbon markets



## Why are land markets different?

- Each property is a unique good—extreme case of monopolistic competition
- Few opportunities for repeat transaction -> limited opportunities for learning
- Information on prices is largely private (bids and transaction prices)
- Interaction between markets for a personal good (homeower resident) and investment good
- Highly influenced by demographic shifts/migration
- Limitted competition/innovation in supply
- Highly regulated supply process
   WATERLOO
   ENVIRONMENT

## Why are land market complex?

#### • Heterogeneity:

- Differential resource and preferences
- Differential risk
- Differential knowledge and beliefs
- Interdependencies
  - Credit networks
  - Land markets
  - Transportation/proximity
  - Spatial spillovers (externalities)
- Learning and adaptation
- => Non-linearities, Analytical intractability,

# WATERLOO



## Why Kitchener-Waterloo Region?

- Increasing people and employment
- **High tech hub** with entrepreneurship and knowledge-intensive economy
- A new light rail transit system as a key strategy for urban revitalization and overall economic development strategy
- Housing boom (price volatility), but why?



#### **Research Questions**...

- 1. How can we better interpret the housing market dynamics in Kitchener-Waterloo Region?
- 2. What are the housing demand or preferences among heterogeneous households during the boom?
  - How can we analyze the housing demand?
  - Specifically, how can we build a <u>theoretically-</u> <u>grounded, empirical model</u> to interpret housing <u>demand</u> in this Region?



# Challenges in development of ABMs of land market

- Early models had endogenous prices, but no decentralized transactions
- Price formation processes mimicked Alonzo/Von Thuenen models—allocation parcel to highest profit use, or using numerical price adjustment mechanisms
- Filatova and Parker (various 2008-2010) first to our knowledge to implement decentralized price formation through bilateral transactions
- Challenges for building these models outlined in Parker and Filatova (2008)
- Achievements summarized in Huang et al. (2014)

## WATERLOO



## Major challenge: Empirical WTP/WTA estimation

- Spatial econometric models estimate transaction price only
- WTA/WTP depend on house-hold level factors
- Household information difficult to obtain
- Our theoretical ABMs used budget-constrained utility maximization—but that created a challenge of how to model price expectations
- Seemed to be no ground to empirically estimate utility function parameters



### Approach one: Spatial hedonic regression models

11



#### **Model Overview**

- <u>WA</u>terloo <u>R</u>egional <u>M</u>odel (WARM)
- Vector-based parcel landscape
  - Represents individual households and parcels
  - Practical given data constraints
  - Accurately represents transportation costs and accessibility
- Land market model
- Transportation model



## Hedonic Model (Babin)

- Statistical model to deconstruct property value
- Identifying relationship between intensification related environmental amenities (like open space and transit access) and property prices
  - controls for spatial and aspatial home characteristics

$$ln(Y_i) = \beta_0 + \beta_1 S_i + \beta_2 E_i + \beta_3 N_i + \varepsilon$$

Where:

$$Y_i=$$
 Property value (preferably recorded sales price)

$$S_i = Structural characteristics$$

$$E_i = Environmental characteristics$$

 $N_i =$  Neighbourhood characteristics

## $eta_0=$ Intercept

$$\beta_{1-3} = Estimated coefficients$$

$$\varepsilon =$$
Erroi

#### WATERLOO ENVIRONMENT

### **Modelling Access to Public Open Space**



### Hedonic model highlights

- Model run using data from 2005-2015, to establish pre-LRT baseline
- House characteristics (size, age, parcel size) strongly correlated with values, as expected.
- Neighbourhoods with higher appreciation rates showed higher values
- After 2011, houses inside the CTC sold for around 4.5% more than houses outside
- Walkability showed a premium; more so inside the CTC



#### **Agent-based Model process**



#### Land Market: WTA/WTP

- Seller's willingness to accept (WTA) assessment values
- Buyer's willingness to pay (WTP) transaction values
- Both estimated via spatial econometric regression

$$In(Y_{i}) = \rho W y_{i} + \beta_{0} + \beta_{1} \times S_{i} + \beta_{2} \times N_{i} + \beta_{3} \times E_{i} + u_{i}$$

$$S_{i} = \begin{bmatrix} Living Area_{i} \\ Yard Size_{i} \\ Building Age_{i} \end{bmatrix}$$

$$E_{i} = \begin{bmatrix} In \ CTC_{i} \\ Rate \ of \ Appreciation_{i} \\ Education \ Rate_{i} \\ Population \ Density_{i} \\ Time \ Period_{i} \\ In \ CTC \times Time \ Period_{i} \end{bmatrix}$$

$$E_{i} = \begin{bmatrix} In \ CTC_{i} \\ Rate \ of \ Appreciation_{i} \\ Building \ Age_{i} \end{bmatrix}$$

$$E_{i} = \begin{bmatrix} In \ CTC_{i} \\ Rate \ of \ Appreciation_{i} \\ Building \ Age_{i} \end{bmatrix}$$

$$E_{i} = \begin{bmatrix} In \ CTC_{i} \\ Rate \ of \ Appreciation_{i} \\ Building \ Age_{i} \end{bmatrix}$$

$$E_{i} = \begin{bmatrix} In \ CTC_{i} \\ Rate \ of \ Appreciation_{i} \\ Building \ Age_{i} \end{bmatrix}$$

$$E_{i} = \begin{bmatrix} In \ CTC_{i} \\ Rate \ of \ Appreciation_{i} \\ Building \ Age_{i} \end{bmatrix}$$

$$E_{i} = \begin{bmatrix} In \ CTC_{i} \\ Rate \ of \ Appreciation_{i} \\ Building \ Age_{i} \end{bmatrix}$$

$$E_{i} = \begin{bmatrix} In \ CTC_{i} \\ Building \ Age_{i} \\ Den \ Space \ Access_{i} \\ Sime \ Access_{i} \\ Sime$$

### Land Market: Budget Constraints

- Regulatory limit in Canada: about 32% of income
- higher-income households spend significantly less portion of their income on housing
  - Model settings: generated using normal distributions.
     Mean at 25% for households with income of 40k, and down to 8% for households with income of 250k.
- Income generated using a Gamma distribution based on census data



#### Land Market: Competitive Bidding

- Each buyer can bid on only 1 parcel each step
- Buyers bid on the parcel that provide the highest utility value (currently using WTP as proxy)
- Seller choose the highest bid that is above WTA



## **Transportation Simulation**

- Uses Transportation Tomorrow Survey (TTS) trip diary data
- Supplemented by Original-Destination matrices from Region's transportation model
- Each household has its unique travel schedule, trip destinations, purposes and modes
- Internal shortest route calculation for car travel
- Utilizes OpenTripPlanner to calculate shortest transit route based on route and schedule data



#### **Prototype modelling area**



#### **Prototype screenshot (enlarged)**



#### **Very preliminary results**



# Next steps—household surveys



✓ Interpreting the Housing Market Dynamics in Kitchener-Waterloo from Individual Behaviours



# Survey Research Questions (Xinyue Pi: rental, Yu Huang: buyer/seller)

What is the relationship between different households' resources, values, structure and transportation needs, and urban residential patterns?

How might light rail transit affect housing and rental markets?



## **Survey Structures**

| Homebuyers and sellers survey |                                                |      | Renters survey                                 |
|-------------------------------|------------------------------------------------|------|------------------------------------------------|
|                               |                                                |      |                                                |
| I.                            | Residential and neighbourhood characteristics  | Ι.   | Residential and neighbourhood characteristics  |
| Ш.                            | Home selling/buying experience                 | Π.   | Rental experience                              |
| 111.                          | Location choice preferences                    | III. | Location choice preferences                    |
| IV.                           | Preferences towards LRT                        | IV.  | Preferences towards LRT                        |
| V.                            | Household characteristics and travel behaviour | V.   | Household characteristics and travel behaviour |
|                               |                                                |      |                                                |

# Approach 2: Incorporating household characteristics in regression

27



## Rental hedonic Model Result (n=~150) Household characteristics as ind. vars.

| Category                  | Significant variables             | Effect per<br>unit | Level of significa |  |
|---------------------------|-----------------------------------|--------------------|--------------------|--|
|                           | Student household                 | 10 34%             | nce<br>**          |  |
|                           | Household with children           | -9.12%             | *                  |  |
| Household                 | One-person household              | -8.53%             | **                 |  |
| Vallables                 | Household income (per<br>\$1,000) | 0.12%              | ***                |  |
|                           | Number of bathrooms               | 18.02%             | ***                |  |
| Structural                | Number of bedrooms                | 15.02%             | ***                |  |
| variables                 | High-rise apartment               | 7.83%              | *                  |  |
|                           | Low-rise apartment                | -8.39%             | *                  |  |
| Neighbourhood<br>variable | In CTC                            | 7.48%              | **                 |  |
| Behavioural<br>variable   | Renting a room                    | 12.04%             | *                  |  |
| R-squared                 | 0.85                              |                    |                    |  |

## Approach 3: Demand analysis (Two-stage regressions)

29



#### Situating demand analysis

- Alonso (1964) proposed the bid-rent theory, and pointed out that housing prices and location choices are simultaneously determined by a bidding process
- Rosen (1974)'s first-stage hedonic regression tells nothing about demand heterogeneity; Second-stage hedonic (basically demand analysis) has endogeneity problem
- 3. Demand analysis matters for assessing policy/environmental changes, say the LRT implementation



#### Housing Survey Summary

✓ Survey target: Home Buyers and Sellers from 06/2015 - 04/2017

✓ Survey mails out: 5000 addresses obtained from Canada Post

✓ Survey responses:

| Responses               |     | Total         |     |
|-------------------------|-----|---------------|-----|
| Buyers only             | 269 | Total buyers  | 357 |
| Sellers only            | 61  | Total sellers | 149 |
| Both buyers and sellers | 88  | Response rate | 10% |



#### 2. Housing Demand Analysis - theoretical foundations

- Traditional location choice problem budget constraint, utility maximization (Alonso, 1964)
- Suppose only two characteristics *house size* (S<sub>j</sub>) and *proximity to CBD* (d<sub>j</sub>) compose the house *j*, the optimization problem can be formulated based on the theory.



#### **Briefly, three estimation steps:**

|                          | Step 1 | Estimate implicit prices by hedonic ( $\alpha$ )        |
|--------------------------|--------|---------------------------------------------------------|
| (Bajari &<br>Kahn, 2005) | Step 2 | Calculate expenditures on each characteristic $(\beta)$ |
|                          | Step 3 | Regress the expenditures $(\beta)$ on demographics      |



# The optimization problem based on Alonso bid-rent theory:



#### Solving the optimization problem, we derive,



 A way to "recover" <u>household-level preference</u> parameters in the utility function with a strong theoretical foundation



# Regress the expenditure on demographics to recover heterogeneous housing demand…

• Assume that households with similar demographic characteristics have similar preferences.

$$\begin{split} \beta_i^S &= f(\textbf{Dem}_i)^S + \eta_i^S \\ \beta_i^d &= f(\textbf{Dem}_i)^d + \eta_i^d \end{split}$$

## A vector of demographic characteristics collected from housing survey:

- Highest employment status
- Highest education level
- Household income
- Age of head

- Household type:
  - Couple with children
  - Couple without children
  - Lone parent
  - More persons
  - One person

## WATERLOO


#### Household types by household highest education

#### Household types by household income



#### Household types by household age range





#### Household types by household highest employment status

|                         | Dependent variable:      |      |
|-------------------------|--------------------------|------|
|                         | log(P)                   |      |
| NOT-SINGLE HOUSE        | 0.094 (0.073)            |      |
| SINGLE-DETACHED HOUSE   | 0.282*** (0.077)         |      |
| BDMS                    | 0.077*** (0.019)         |      |
| FBTH                    | 0.123*** (0.021)         |      |
| HBTH                    | 0.057** (0.023)          |      |
| GRAG                    | 0.095*** (0.023)         |      |
| OPARK                   | 0.009 (0.008)            |      |
| BUL_AGE                 | -0.001 (0.001)           |      |
| POP_DENS                | -0.00000 (0.00001)       |      |
| OS_ACES                 | 0.0001 (0.001)           |      |
| OS_ADJ                  | 0.004 (0.034)            |      |
| REG_RD_ADJ              | -0.092** (0.046)         |      |
| DIS LRT                 | -0.00000 (0.00001)       |      |
| DIS_BUS                 | 0.0001** (0.00005)       |      |
| POST_EDU                | 0.006*** (0.001)         |      |
| EMPL_RATE               | -0.004** (0.002)         |      |
| Constant                | 11.864*** (0.164)        |      |
| Observations            | 277                      |      |
| R <sup>2</sup>          | 0.666                    |      |
| Adjusted R <sup>2</sup> | 0.646                    |      |
| Residual Std. Error     | 0.188 (df = 260)         |      |
| F Statistic             | 32.473*** (df = 16; 260) |      |
| Note:                   | *p<0.1 **p<0.05 ***p<    | 0.01 |

#### First-stage hedonic regression results

#### Key points from First-stage hedonic

- Proximity to LRT amenity (not statistically significant)
- Proximity to bus stops disamenity
- Adjacency to regional roads disamenity
- Open space amenity (not statistically significant)
- Neighbourhood post-secondary education rate amenity
- Neighbourhood employment rate disamenity



|                                    | Dependent variable:    |                              |
|------------------------------------|------------------------|------------------------------|
|                                    | Preference for bedroom | Preference for full bathroom |
|                                    | OLS                    | OLS                          |
|                                    | (1)                    | (2)                          |
| Couple with children               | 25,368.060***          | 17,754.490**                 |
| Lone-parent family                 | 1,252.245              | -28,910.870                  |
| More-persons household             | -6,030.757             | -26,173.180                  |
| One-person household               | -9,142.029             | -15,225.960                  |
| Less than 29,999                   | -32,895.700            | -27,346.910                  |
| 30,000-49,999                      | -24,198.010**          | -22,281.470                  |
| 50,000-74,999                      | -21,814.490**          | -25,907.350**                |
| 75,000-99,999                      | -4,828.313             | -6,993.440                   |
| 150,000-249,999                    | 18,065.060**           | 17,090.880*                  |
| 250,000-499,999                    | 105,039.100***         | 143,993.700***               |
| Age                                | 284.995                | 1,736.466***                 |
| Other employment                   | 20,928.760             | 36,185.340*                  |
| Part-time employed                 | 10,609.170             | -2,084.516                   |
| Retired                            | -6,003.822             | -35,255.460*                 |
| Graduate                           | 7,102.596              | 7,067.105                    |
| High school                        | -17,961.080            | -25,241.590*                 |
| Constant                           | 81,174.910***          | 30,781.080**                 |
| Observations                       | 279                    | 279                          |
| R <sup>2</sup>                     | 0.325                  | 0.392                        |
| Adjusted R <sup>2</sup>            | 0.284                  | 0.355                        |
| Residual Std. Error ( $df = 262$ ) | 46,221.790             | 53,386.050                   |
| F Statistic (df = 16; 262)         | 7.885***               | 10.573***                    |
| Note:                              |                        | *p<0.1 **p<0.05 ***p         |

Preference regression results

## **Key points from preference regression (1)**

Couple with children households prefer most for bedrooms, and full-baths

- Older households prefer more for full-bathrooms, but not for bedrooms
- Retired households prefer less for full-baths, compared to the full-time employed households
- Preferences for bedrooms and full-baths increase with

household income



|                                    | Dependent variable:                                |                           |
|------------------------------------|----------------------------------------------------|---------------------------|
|                                    | Preference for half-bathroom Preference for garage |                           |
|                                    | OLS                                                | OLS                       |
|                                    | (1)                                                | (2)                       |
| Couple with children               | 7,657.316***                                       | 12,698.630***             |
| Lone-parent family                 | 10,449.630**                                       | 2,919.234                 |
| More-persons household             | -3,283.114                                         | -16,294.420               |
| One-person household               | -1,529.399                                         | -6,109.171                |
| Less than 29,999                   | 2,402.076                                          | -8,364.114                |
| 30,000-49,999                      | -6,939.626*                                        | -20,382.580**             |
| 50,000-74,999                      | -7,320.011**                                       | -18,635.680***            |
| 75,000-99,999                      | -1,580.410                                         | -6,665.410                |
| 150,000-249,999                    | 8,509.374***                                       | 15,892.420***             |
| 250,000-499,999                    | 20,991.050***                                      | 65,047.020***             |
| Age                                | -34.313                                            | 581.163**                 |
| Other employment                   | 522.853                                            | 17,882.950                |
| Part-time employed                 | 3,793.232                                          | -4,748.108                |
| Retired                            | -2,476.225                                         | -7,735.275                |
| Graduate                           | 827.396                                            | 6,542.320                 |
| High school                        | -4,143.095                                         | -8,506.262                |
| Constant                           | 17,056.950***                                      | 20,814.630**              |
| Observations                       | 279                                                | 279                       |
| R <sup>2</sup>                     | 0.241                                              | 0.323                     |
| Adjusted R <sup>2</sup>            | 0.194                                              | 0.282                     |
| Residual Std. Error ( $df = 262$ ) | 14,891.370                                         | 32,089.010                |
| F Statistic (df = 16; 262)         | 5.194***                                           | 7.825***                  |
| Note:                              |                                                    | *p<0.1 **p<0.05 ***p<0.01 |

#### Preference regression results

45

## Key points from preference regression (2)

- Households with children prefer more for half-baths
- Couple with children households prefer most for garage
- Older households prefer more for garages
- Preferences for half-baths and garages both increase with household income



|                                | Dependent variable:             |                                |
|--------------------------------|---------------------------------|--------------------------------|
|                                | Preference for proximity to LRT | Preference for distance to bus |
|                                | stops                           | stops                          |
|                                | OLS                             | OLS                            |
|                                | (1)                             | (2)                            |
| Couple with children           | -258.236***                     | 10,088.520***                  |
| Lone-parent family             | -204.499                        | 5,432.627                      |
| More-persons household         | -21.677                         | 134.948                        |
| One-person household           | -57.885                         | 3,697.882                      |
| Less than 29,999               | 219.750                         | -8,568.055                     |
| 30,000-49,999                  | 245.999*                        | -9,005.569**                   |
| 50,000-74,999                  | 270.978***                      | -8,500.903***                  |
| 75,000-99,999                  | 19.865                          | -4,486.113                     |
| 150,000-249,999                | -105.442                        | 41.343                         |
| 250,000-499,999                | -1,037.744***                   | 48,293.320***                  |
| Age                            | 0.456                           | -102.882                       |
| Other employment               | -136.897                        | -2,042.904                     |
| Part-time employed             | 53.786                          | 3,372.380                      |
| Retired                        | 61.092                          | 5,224.278                      |
| Graduate                       | -165.495**                      | 27.230                         |
| High school                    | 120.344                         | -4,938.272                     |
| Constant                       | -701.146***                     | 17,023.810***                  |
| Observations                   | 279                             | 279                            |
| <b>R</b> <sup>2</sup>          | 0.287                           | 0.317                          |
| Adjusted R <sup>2</sup>        | 0.243                           | 0.275                          |
| Residual Std. Error (df = 262) | 484.955                         | 16,895.200                     |
| F Statistic (df = 16; 262)     | 6.589***                        | 7.606***                       |
| Note:                          |                                 | *p<0.1 **p<0.05 ***p<0.0       |

#### **Preference regression results**

47

## Key points from preference regression (3)

- Couple without children households prefer most for proximity to <u>LRT stops</u>, i.e., prefer living close to LRT stops
- Couple with children households prefer most for distance to bus stops, i.e., prefer living far from bus stops
- High income households prefer living far from LRT stops and bus stops
- Households with graduate degree prefer to live far from LRT stops



|  |                                  | 8                                                                                                            |                    |
|--|----------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------|
|  |                                  | Dependent vo                                                                                                 | ariable:           |
|  |                                  | Preference for neighbourhood post-<br>secondary education rate Preference for neighbourho<br>employment rate |                    |
|  |                                  | OLS                                                                                                          | OLS                |
|  |                                  | (1)                                                                                                          | (2)                |
|  | Couple with children             | 27,007.750***                                                                                                | -17,348.310***     |
|  | Lone-parent family               | 10,938.270                                                                                                   | -9,950.384         |
|  | More-persons<br>household        | -38,490.620                                                                                                  | 12,387.870         |
|  | One-person<br>household          | -11,766.720                                                                                                  | 3,890.155          |
|  | Less than 29,999                 | -28,647.960                                                                                                  | 24,675.380         |
|  | 30,000-49,999                    | -28,568.440*                                                                                                 | 16,589.090*        |
|  | 50,000-74,999                    | -41,262.140***                                                                                               | 23,224.040***      |
|  | 75,000-99,999                    | -7,495.329                                                                                                   | 519.078            |
|  | 150,000-249,999                  | 25,289.010**                                                                                                 | -15,569.990**      |
|  | 250,000-499,999                  | 185,973.900***                                                                                               | -101,294.300***    |
|  | Age                              | 1,230.977***                                                                                                 | -268.462           |
|  | Other employment                 | 43,453.420**                                                                                                 | -25,950.280**      |
|  | Part-time employed               | 24,695.600                                                                                                   | -16,894.930        |
|  | Retired                          | -9,829.160                                                                                                   | -1,891.157         |
|  | Graduate                         | 8,035.471                                                                                                    | -5,838.001         |
|  | High school                      | -38,440.200**                                                                                                | 19,561.760**       |
|  | Constant                         | 105,677.500***                                                                                               | -88,175.710***     |
|  | Observations                     | 267                                                                                                          | 267                |
|  | $\mathbb{R}^2$                   | 0.403                                                                                                        | 0.366              |
|  | Adjusted R <sup>2</sup>          | 0.365                                                                                                        | 0.326              |
|  | Residual Std. Error $(df = 250)$ | 58,846.210                                                                                                   | 33,941.500         |
|  | F Statistic (df = 16;<br>250)    | 10.569***                                                                                                    | 9.024***           |
|  | Notes                            |                                                                                                              | ****************** |

#### Preference regression results

## Key points from preference regression (4)

- Couple with children households prefer most for neighbourhood education rate; <u>Couple without children prefer more for neighbourhood</u> <u>employment rate</u>
- Higher income and older households prefer more for neighbourhood education rate
- Lower income households prefer more for neighbourhood employment rate
- Households with high-school education prefer less for neighbourhood education rate, but prefer more for neighbourhood employment rate



## Contributions of qualitative research Jinny Tran (developers) Justin Cook and Jennifer Dean (Realtors)

- Context
- Cross-validation
- Future directions



## Factors that affect developers' decision making (Jinny Tran)

- Physical (e.g. land availability, environmental conditions)
- Spatial (e.g. proximity to transit, to employment centres, to commercial areas)
- **Socio-Economi**c (e.g. market demand, growth potential)
- Planning (e.g. approval costs, timing of approval)
- In theory, developers work to maximize profit, while minimizing risk and uncertainty



## **Developer Survey Highlights**

- Conducting surveys with 17 residential developers
- Fairly wide distribution of specializations and built form found; shift towards intensified and mixed use forms-but segmented target markets
- Few developers consider what others are doing when making plans
- Response to LRT generally positive, but more so for infill developers than the other two—some "wait and see" expressed



#### **Realtor interviews/Focus Groups**

#### **Qualitative Approach**

- Deeper understanding of why people are buying in the CTC
- Complementing quantitative research to draw stronger conclusions

#### Why Realtors?

- Key informants with specialized knowledge
- Emotional/cultural interpreters



## **Key Discussion Points**

#### Three broad themes emerged from discussions:

- 1. CTC development and investment
- 2. Resident perception of attractiveness of CTC
- 3. CTC creating connections within region and beyond



#### **Encouraging Investment in Real Estate**

- Understood as stimulating land value uplift
- Investors primarily from within the Region and GTA
- CTC Investment potential more desirable than long term residence



#### "Tech Hub" Development

- Key piece of infrastructure supporting growth
- Connecting residents with emerging employment trends



#### **Regional Image**

- Signifier of Region's status as "the Silicon Valley of the north"
- Symbol of the Region being "world class"
  - Allowed for comparison with many other international centers



"We're seeing investment, local people that are buying in uptown, or downtown **just for investment purposes**. I think the families, the 30 plus demographic, that are now looking for more investment opportunities, they realize [the CTC] is something they can grasp and they realize that's **an up and coming area**."



#### **Lifestyle Choice**

- More attractive to new residents than long term
- CTC is attractive for relative affordability of services and amenities
- Reflected the services and amenities available in other cities



#### **Aging Populations**

- View the CTC as desirable due to amenities
- Lack of affordable/appropriately sized options preventing downsizing



#### Long Term Residents

- Viewed more favourably as construction nears completion
- Few long-term residents show interest in using it
- Compared to Conestoga Parkway (freeway contrversial when built) as likely to be more appreciated/used over time



"Even some of the older demographics, I think they are really looking forward to [the LRT]. They are definitely buying to be close to it, not right on it but somewhat close to it, within a block or two. So it will be really good. I think it will impact [the Region] in a positive way."



#### **Findings: 3. Creating Connections**

#### **Connecting the Region**

- Bringing Kitchener and Waterloo together as a seamless urban environment
- Extension to Cambridge will bring the Region together as a unified whole



#### **Findings: 3. Creating Connections**

#### **Connecting Southern Ontario**

- Seen as a localized connection to Toronto and other near by municipalities
- Increased connectivity with GO/high-speed rail essential next step



#### **Findings: 3. Creating Connections**

"In a real estate perspective, all the **condos**, the **Google** building... the **Zehr** group building; those are only there **because of the LRT**. They're looking at it as it's not just a north and south train, **it's connection** to Barrie, Hamilton, Niagara. All these places are going to have LRT that lead **to these fast trains** that all spine into Toronto. That's what [people are] investing on."



### Implications for modelling

- Clear supply constraints
  - Lack of supply for families in the central transit corridor
  - Lack of strategic behaviour likely to lead again to oversuppy dynamics
  - Actual demand seems poorly understood/anticipated
- Clear evidence of market segmentation
  - "Urban lifestylers" create demand for core properties
  - Locals more likely to see suburban properties
  - Future regression/modelling will respond to this new information



# Relative to other studies, this study ...

- 1) builds on richer, more detailed data <u>through a comprehensive</u> <u>housing survey and realtor interview</u>
- 2) examines the housing market dynamics from <u>individual</u> <u>behaviours</u>
- 3) allows a strong direct connection between our implemented model and Alonzo's classic bid-rent theory models by
  - parameterising the utility function for empirical housing study with strong theoretical foundations
  - <u>recovering heterogeneous housing demand</u> by combining survey data and theoretical methods within 3-Steps
  - explaining varying preferences among heterogeneous households and thus provides more information than a traditional first-stage hedonic model



## Future work …

- 1) Improve current model by
  - using the stated preferences from survey to validate our proposed model
  - building a multi-level hedonic regression with potential more data source
  - using probit models to estimate heterogeneous demand for dichotomous characteristics, such as In CTC, or Large Yard, Single detached house.
- 2) Estimate heterogeneous household WTP for each house given their demographics
- 3) Simulate housing location choices in our Agent-Based land market model: by adding more theoretically-grounded and empirically-validated behaviour rules (especially, utility parameterization and WTP estimation from this study)
- 4) Model and better interpret the housing market dynamics
  WATERLOO
  ENVIRONMENT

|                                          |                          | Estimation steps                                   | Details                                                 |
|------------------------------------------|--------------------------|----------------------------------------------------|---------------------------------------------------------|
| (Bajari &<br>Kahn, 2005)<br>Our proposed | (Bajari &<br>Kahn, 2005) | Step 1                                             | Estimate implicit prices by hedonic $(\alpha)$          |
|                                          |                          | Step 2                                             | Calculate expenditures on each characteristic $(\beta)$ |
|                                          | Step 3                   | Regress the expenditures $(\beta)$ on demographics |                                                         |
| method Step 4                            |                          | tep 4                                              | Estimate the demand curve for each characteristic       |
|                                          | Si                       | tep 5                                              | Estimate WTP for each characteristic                    |
| Step 6                                   |                          | Estimate the total WTP for each house              |                                                         |

#### WTP estimation

ENVIRONMENI

#### Acknowledgements

- Team members:
  - Profs Dawn Parker, and Jennifer Dean, Jeff Casello,
  - Former post-doc Xiongbing Jin
  - Students: Andre Antanaitis, Robert Babin, Justin Cook, Pedram Fard, Yu Huang, Erica Ogden, Xinyue Pi, Veronica Sullivan, Filiz Tamer, Jinny Tran, Kevin Yeung, AJ Wray, Ginny Hang
- Funding Sources:
  - SSHRC Partnership Development Grant (SSHRC # 890-2013-0034) entitled "LIGHT RAIL TRANSIT AND CORE-AREA INTENSIFICATION: Unpacking Causal Relationships
  - SSHRC Insight Grant (SSHRC # 435-2012-1697) entitled "Urban intensification vs. suburban flight: An integrated residential land-use and transportation model to evaluate residential land market form and function
  - China scholarship programme (Yu Huang)



## **Collaborating partners**

- Region of Waterloo
- Cites of Waterloo and Kitchener
- Kitchener-Waterloo Association of Realtors,
- Coldwell Banker Peter Benninger Realty


#### **Student Theses Cited**

- Property size preferences and the value of private and public outdoor spaces amid a shift to high-density residential development: A case study of Kitchener-Waterloo, Ontario (DeFields, 2013) <u>http://hdl.handle.net/10012/7778</u>
- Understanding Accessibility, Analyzing Policy: New Approaches for a New Paradigm (Neudorf, 2014) <u>http://hdl.handle.net/10012/8759</u>
- Developing Up and not Out: Understanding the Barriers to and Opportunities for Reurbanization along Waterloo's Central Transit Corridor (Antanaitis, 2014) <u>http://hdl.handle.net/10012/9022</u>
- The Development of a Household Travel Resource Allocation Model for Kitchener Waterloo (Yeung, 2015) <u>http://hdl.handle.net/10012/9705</u>
- Understanding Developer's Decision Making in the Region of Waterloo (Tran, 2016)
  <a href="https://wspace.uwaterloo.ca/handle/10012/11163">https://wspace.uwaterloo.ca/handle/10012/11163</a>
- Estimating Homebuyer Preferences Under Intensification: Hedonic Modelling of Open Space and Multimodal Transit Amenities Preceding Light Rail in Kitchener-Waterloo (Babin, 2016) <u>http://hdl.handle.net/10012/10936</u>
- Exploring the Rental Housing Market in Kitchener-Waterloo, preceding Light Rail Transit (Pi, in final revisions)

# WATERLOO

## References

- Parker, D., Filatova, T., Huang, Y., Huang, Q. and Jin, X., 2015. The implications of land-market representation for the interpretation of empirical land-use change models. Advancing Metropolitan Modeling. Anas, A. Riverside, CA.
- Sun, S., Parker, D. C., Huang, Q., Filatova, T., Robinson, D., Riolo, R., Hutchinson, M. and Brown, D., 2014. Market Impacts on Land-Use Change: An Agent-Based
- Experiment. Annals of the Association of American Geographers 104 (3), 460-84.
- Parker, D. C., 2014. An economic perspective on agent-based models of land-use and land-cover change. In: Duke, J. and Wu, J. (Eds.), Oxford Handbook of Land Economics, Oxford University Press pp. 402.
- Huang, Q., Parker, D., Filatova, T. and Sun, S., 2014. A Review of Urban Residential Choice Models Using Agent-based Modeling. Environment and Planning B 41 (4), 661 – 89.
- Huang, Q., Parker, D., Sun, S. and Filatova, T., 2013. Effects of agent heterogeneity in the presence of a land-market: a systematic test in an agent-based laboratory. Computers, Environment, and Urban Systems 41, 188-203



### Reference, cont.

- Filatova, T., van der Veen, A. and Parker, D., 2011. The implications of skewed risk perception for a Dutch coastal land market: insights from an agent-based computational economics model Agricultural and Resource Economics Review 40 (3), 405–23.
- Filatova, T., van der Veen, A. and Parker, D., 2009. Land market interactions between heterogeneous agents in a heterogeneous landscape: Tracing the macro-scale effects of individual trade-offs between environmental amenities and disamenities. Canadian Journal of Agricultural Economics 57 (4).
- Filatova, T., Parker, D. and van der Veen, A., 2009. Agent-Based Urban Land Markets: Agent's Pricing Behavior, Land Prices and Urban Land Use Change. Journal of Artificial Societies and Social Simulation 12 (1), 3.
- Parker, D. and Filatova, T., 2008. A theoretical design for a bilateral agent-based land market with heterogeneous economic agents. Computers, Environment, and Urban Systems 32 (6), 454–63.



## **Current vs. Ideal Housing Types**

 Most preferred rental housing type: single-detached house

| Current                  | Count and %<br>of total<br>responses | Ideal matches<br>Current                     | Ideal matches most<br>popular other than<br>current |
|--------------------------|--------------------------------------|----------------------------------------------|-----------------------------------------------------|
| Single-detached house    | N=35, 12%                            | 71% still prefer single                      | 24% prefer apartment                                |
| Semi-detached<br>house   | N=10, 3%                             | 40% still prefer<br>semi                     | 40% prefer single                                   |
| Row house                | N=28, 10%                            | 38% still prefer row house                   | 41% prefer single                                   |
| Apartment(<5<br>storeys) | N=85, 30%                            | 36% still prefer<br>apartment(<5<br>storeys) | 35% prefer single                                   |
| Apartment(>=5            | N=114, 40%                           | 56% still prefer                             | 19% prefer single                                   |

### **Descriptive Statistics of Selected Variables**

| Descriptive Statistics |     |            |            |         |           |  |  |
|------------------------|-----|------------|------------|---------|-----------|--|--|
|                        |     |            |            |         |           |  |  |
| Statistic              | Ν   | Mean       | St. Dev.   | Min     | Max       |  |  |
|                        |     |            |            |         |           |  |  |
| BDMS                   | 339 | 3.20       | 0.80       | 1       | 8         |  |  |
| FBTH                   | 339 | 1.87       | 0.73       | 1       | 4         |  |  |
| HBTH                   | 340 | 0.78       | 0.57       | 0       | 3         |  |  |
| GRAG                   | 340 | 1.14       | 0.65       | 0       | 4         |  |  |
| OPARK                  | 340 | 1.80       | 1.59       | 0       | 10        |  |  |
| BUL_AGE                | 297 | 30.32      | 22.05      | 0       | 118       |  |  |
| POP_DENS               | 327 | 2,961.55   | 2,106.47   | 38.80   | 15,811.80 |  |  |
| OS_ACES                | 340 | 42.76      | 17.84      | 8.66    | 103.77    |  |  |
| OS_ADJ                 | 340 | 0.16       | 0.37       | 0       | 1         |  |  |
| REG_RD_ADJ             | 340 | 0.09       | 0.29       | 0       | 1         |  |  |
| DIS_LRT                | 340 | 3,605.16   | 1,636.60   | 227.91  | 7,509.33  |  |  |
| DIS_BUS                | 340 | 347.84     | 310.65     | 10.00   | 1,600.00  |  |  |
| POST_EDU               | 327 | 62.35      | 9.52       | 34.75   | 87.70     |  |  |
| EMPL_RATE              | 327 | 65.31      | 8.88       | 25.00   | 83.00     |  |  |
| HP                     | 327 | 404,046.40 | 143,633.20 | 135,000 | 975,000   |  |  |
| LNHP                   | 327 | 12.85      | 0.34       | 11.81   | 13.79     |  |  |

# WATERLOO



