
Digitization, Data and Digital Capital

ERIK BRYNJOLFSSON STANFORD DIGITAL ECONOMY LAB

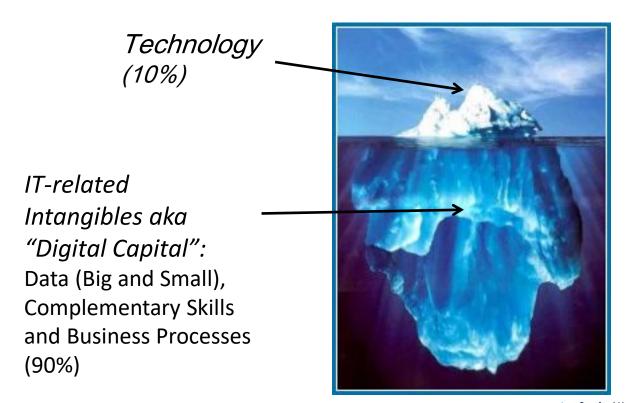
JIS Data Value Creation Workshop

2021.02.04

What is a GPT?

GPTs (Bresnahan & Trajtenberg, 1996)

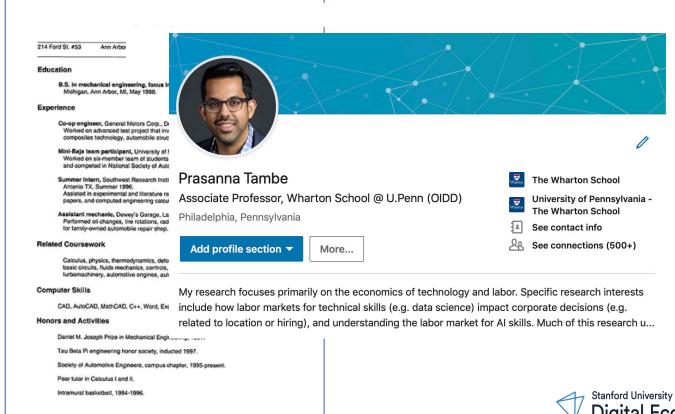
- 1. Pervasive
- 2. Able to be improved on over time
- 3. Able to spawn complementary innovations


IT, especially AI, is a GPT

GPTs Drive Economic Growth

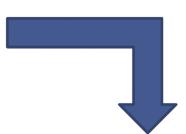
- 1. Pervasive
 - Key capabilities of classification, labeling, perception, prediction and diagnosis are core to broad range of tasks, occupations and industries (Brynjolfsson, Rock and Syverson, 2017)
- 2. Able to be improved on over time
 - Essence of machine learning is improving over time (Brynjolfsson & Mitchell, 2017)
 - Overcoming "Polanyi's Paradox"
- 3. Able to spawn complementary innovations
 - Perception (esp. vision, voice recognition) and cognition (problem solving) are building blocks that drive combinatorial innovation

Computerization > Computers


Preview: IT Intangibles are Large and Growing

- 1. The market value of Digital Capital rose sharply during the late 1990's but then fell in the early 2000's then rose again after 2010.
 - The recent rise coincides with a wave of innovations based on big data, data science, and most recently, AI
- 2. Most fluctuations in value can be attributed to changes in Digital Capital quantities, not prices.
 - An exception is the dot.com boom and bust, which was price-driven
 - Digital Capital accounts for about 20%-25% of the levels of physical capital for firms in our sample, with AI-related intangibles accounting for a rapidly growing share
- 3. "Superstar" firms account for most of the increase in Digital Capital

Preview: Changing IT Intangibles add to productivity


- 4. Digital Capital corresponded with several waves of changing skills.
 - First, the employment of systems and network administrators in the late 1990's,
 - Then web designers and database engineers in the early and mid 2000's, and
 - Finally data science and artificial intelligence experts after 2011
- 5. The contribution of Digital Capital to productivity growth during was about double that of IT capital stock.
 - However, AI related intangibles do not yet appear to be contributing measurably to productivity or output
 - Instead, it creates a <u>Productivity J-curve</u>

Employment histories posted online provide rich information about firms and workers

Online employment databases: Employment histories for millions of US workers

Leading online job search site provided resumes for about 40 million workers including <u>fielded data</u>

150 million employer-employee combinations

Can step backward through employment histories to create longitudinal measures

Employee Data					
Employee	Education	Occupation			
Employee 1	4 Years College	IT			
Employee 2	4 Years College	Sales			

Employee Work History Data							
Employee Work history Data							
Employee	Employer Name	Job Title	Start Date	End Date			
Employee 1	Firm Name 3	Project Manager	5-01-2006	Present			
Employee 1	Firm Name 2	Software Engineer	9-01-2003	3-15-2006			
Employee 2	Firm Name 2	Director of Technology	4-01-2006	Present			
Employee 2	Firm Name 1	MIS Manager	1-01-2006	3-20-2006			

What are some challenges with using these data sources?

- 1. Uneven sampling across firms, occupations, industries or regions
 - · Somewhat mitigated by sample size
- 2. Biases in employee characteristics (job hoppers?)
- 3. Significant missing data on interesting characteristics such as college or degree obtained
- 4. People lying on their resumes?
- 5. Logistical issues
 - · Potentially significant technical barriers
 - Proprietary data (e.g. PR concerns, releasing data)

Framework

 Estimate total market value of IT-related assets (Brynjolfsson, Hitt & Yang, 2002)

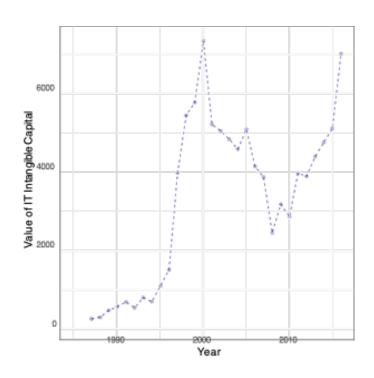
$$MV_{it} = \alpha_i + \sum_{j=1}^J (1 + \lambda_j^*) K_{j,it} + controls + \varepsilon_{it}^v$$
 Firm Market Value Physical Asset Stocks

Table 4: Regressions of assets on market value, balanced panel

	OLS	OLS	OLS	OLS	FE	LAD
	(1)	(2)	(3)	(4)	(5)	(6)
PPE	1.764***	1.603***	1.740***	1.305***	1.124***	1.168***
	(0.101)	(0.191)	(0.177)	(0.254)	(0.184)	(0.040)
Other assets	0.938***	1.014***	0.901***	1.738***	1.840***	1.663***
	(0.174)	(0.206)	(0.167)	(0.366)	(0.336)	(0.057)
IT capital	15.002		5.164			
	(10.819)		(11.072)			
IT labor		9.199**	6.951	11.899	16.906**	8.860***
		(3.664)	(5.729)	(7.256)	(8.525)	(1.351)
Constant	7, 158.233	-3,835.031*	7,037.395	-3,561.147		-858.390
	(6,054.834)	(2,308.417)	(6,069.005)	(3,546.841)		(652.631)
Year fixed-effects	Yes	Yes	Yes	Yes	Yes	Yes
Firm fixed-effects	No	No	No	No	Yes	No
Industry fixed-effects	Yes	Yes	Yes	Yes	No	Yes
Observations	1,398	2,448	1,398	7,017	7,017	7,017
R^2	0.732	0.745	0.733	0.822	0.907	
Adjusted R ²	0.722	0.740	0.724	0.820	0.904	

Table 4: Regressions of assets on market value, balanced panel

	OLS	OLS	OLS	OLS	FE	LAD
	(1)	(2)	(3)	(4)	(5)	(6)
PPE	1.764***	1.603***	1.740***	1.305***	1.124***	1.168***
	(0.101)	(0.191)	(0.177)	(0.254)	(0.184)	(0.040)
Other assets	0.938***	1.014***	0.901***	1.738***	1.840***	1.663***
	(0.174)	(0.206)	(0.167)	(0.366)	(0.336)	(0.057)
IT capital	15.002		5.164			
	(10.819)		(11.072)			
IT labor		9.199**	6.951	11.899	16.906**	8.860***
		(3.664)	(5.729)	(7.256)	(8.525)	(1.351)
Constant	7, 158.233	-3,835.031*	7,037.395	-3,561.147		-858.390
	(6,054.834)	(2,308.417)	(6,069.005)	(3,546.841)		(652.631)
Year fixed-effects	Yes	Yes	Yes	Yes	Yes	Yes
Firm fixed-effects	No	No	No	No	Yes	No
Industry fixed-effects	Yes	Yes	Yes	Yes	No	Yes
Observations	1,398	2,448	1,398	7,017	7,017	7,017
\mathbb{R}^2	0.732	0.745	0.733	0.822	0.907	
Adjusted R ²	0.722	0.740	0.724	0.820	0.904	


Table 4: Regressions of assets on market value, balanced panel

	OLS	OLS	OLS	OLS	FE	LAD
	(1)	(2)	(3)	(4)	(5)	(6)
PPE	1.764***	1.603***	1.740***	1.305***	1.124***	1.168***
	(0.181)	(0.191)	(0.177)	(0.254)	(0.184)	(0.040)
Other assets	0.938***	1.014***	0.901***	1.738***	1.840***	1.663***
	(0.174)	(0.206)	(0.167)	(0.366)	(0.336)	(0.057)
IT capital	15.002		5.164			
	(10.819)		(11.072)			
IT labor		9.199**	6.951	11.899	16.906**	8.860***
		(3.664)	(5.729)	(7.256)	(8.525)	(1.351)
Constant	7, 158.233	-3,835.031*	7,037.395	-3,561.147		-858.390
	(6,054.834)	(2,308.417)	(6,069.005)	(3,546.841)		(652.631)
Year fixed-effects	Yes	Yes	Yes	Yes	Yes	Yes
Firm fixed-effects	No	No	No	No	Yes	No
Industry fixed-effects	Yes	Yes	Yes	Yes	No	Yes
Observations	1,398	2,448	1,398	7,017	7,017	7,017
\mathbb{R}^2	0.732	0.745	0.733	0.822	0.907	
Adjusted R ²	0.722	0.740	0.724	0.820	0.904	

Table 4: Regressions of assets on market value, balanced panel

	OLS	OLS	OLS	OLS	FE	LAD
	(1)	(2)	(3)	(4)	(5)	(6)
PPE	1.764***	1.603***	1.740***	1.305***	1.124***	1.168***
	(0.181)	(0.191)	(0.177)	(0.254)	(0.184)	(0.040)
Other assets	0.938***	1.014***	0.901***	1.738***	1.840***	1.663***
	(0.174)	(0.206)	(0.167)	(0.366)	(0.336)	(0.057)
IT capital	15.002		5.164			
	(10.819)		(11.072)			
IT labor		9.199**	6.951	11.899	16.906**	8.860***
		(3.664)	(5.720)	(7.956)	(8.505)	(1.351)
Constant	7,158.233	-3,835.031*	7,037.395	-3,561.147		-858.390
	(6,054.834)	(2,308.417)	(6,069.005)	(3,546.841)		(652.631)
Year fixed-effects	Yes	Yes	Yes	Yes	Yes	Yes
Firm fixed-effects	No	No	No	No	Yes	No
Industry fixed-effects	Yes	Yes	Yes	Yes	No	Yes
Observations	1,398	2,448	1,398	7,017	7,017	7,017
\mathbb{R}^2	0.732	0.745	0.733	0.822	0.907	
Adjusted R ²	0.722	0.740	0.724	0.820	0.904	

Market value of Digital Capital

How much of market value is due to price vs. quantity?

Separate into price and quantity (Hall, 2002)

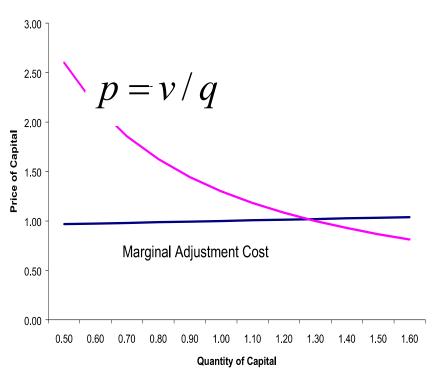
Definition of Intangible Value

Optimal Investment w/Adjustment Costs

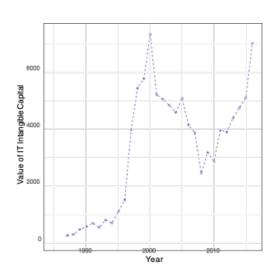
$$v_{t} = p_{t}q_{t}$$

$$\alpha_c \frac{q_t - q_{t-1}}{q_t} = p_t - 1$$

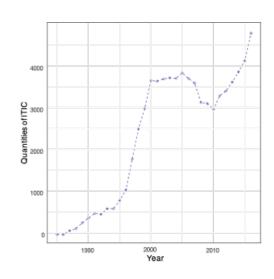
 p_t, q_t are shadow price and quantity of ITIC (unknowns)


 $\alpha_{\rm c}$ is the IT adjustment cost parameter ($\alpha_{\rm c} = 3$)

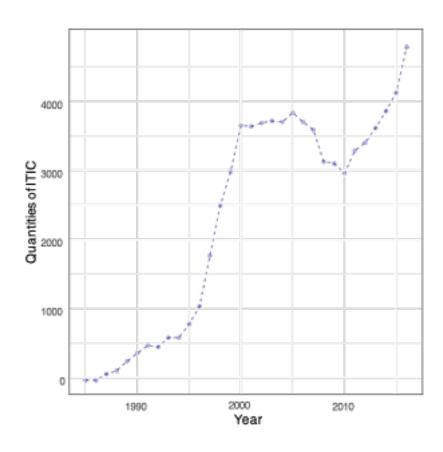
 $q_0 = 0$ (no initial ITIC stock)

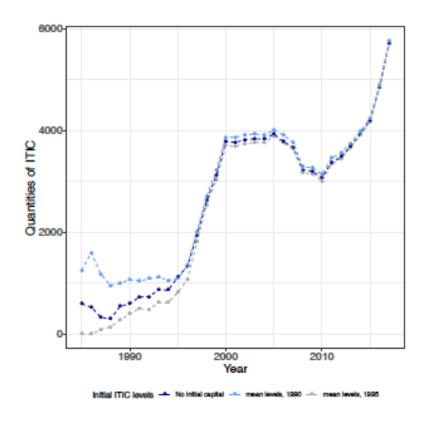

 v_t is ITIC value (we compute this)


From R. Hall (2001)

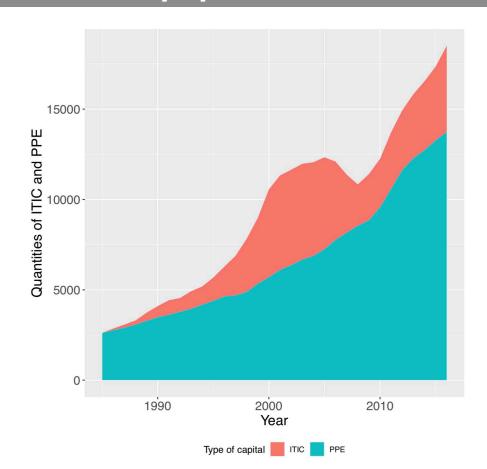

Visualizing the Quantity Revelation Theorem

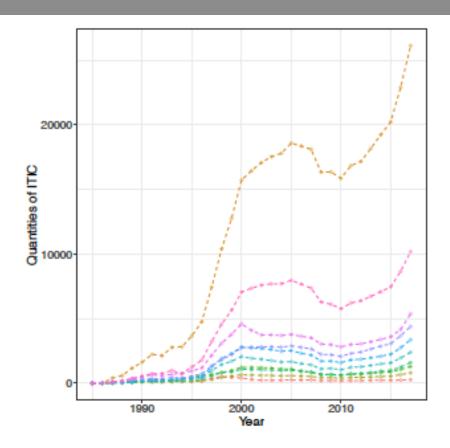
Market value = Price x Quantity





Market value of Digital Capital = Price of Digital Capital + Quantity of Digital Capital


Quantities of digital capital


Sensitivity to model parameter values: Initial Digital Capital levels

Digital Capital and Property, Plant and Equipment are Both Growing

Superstars: Digital Capital prices and quantities by deciles

Growth Accounting with Digital Capital

 Adding previously unmeasured digital capital, growth accounting equation becomes:

$$g_Y = \left(\frac{pF_KK}{Y}\right)\left(\frac{\dot{K}}{K}\right) + \left(\frac{pF_NN}{Y}\right)\left(\frac{\dot{N}}{N}\right) + \left(1 - \frac{\lambda}{z}\right)\left(\frac{zI}{Y}\right)\left(\frac{\dot{I}}{I}\right) + \left(\frac{F_t}{F}\right)$$

- Key component is λ / z , the ratio of the shadow price of investment to the purchase price of capital
- Physical component of GPT may be small relative to the required investments in data, org change, training, etc.

The Productivity J-Curve

Time
Source: Brynjolfsson, Rock and Syverson, "The Productivity J-Cuve" *American Economic Journal: Macroeconomics*, January 2021

Productivity Scenario

Self-driving cars:

- Total investment in autonomous vehicle technology from 2014-2020 was over \$200 Billion
- Number of chauffeurs replaced is 0

But potential future impact is large:

- BLS reports 3.5 million "motor vehicle operators"
- Suppose autonomous cars replaced ~40% of them, or 1.5 million
 - => ~ 1.7% increase in labor productivity
 - => Over 15 years, an additional 0.11%/yr

Also, call centers, healthcare, retailing, insurance, legal, banking, warehouses, factories, education, etc.

Summary: IT Intangibles are Large and Growing

- 1. We can measure the market value of Digital Capital, which include data.
- 2. More fluctuations in Digital Capital can be attributed to changes in quantities, rather than prices.
 - Digital Capital accounts for about 20%-25% of the levels of physical capital for firms in our sample.
- 3. Most of the increase in Digital Capital is concentrated in a small set of "superstar" firms that are pulling away from the rest.
- 4. In cross-sectional regressions, Digital Capital predicted double the productivity contribution of IT capital.
- 5. Digital Capital and other intangibles affect estimates of growth in the macroeconomy and productivity
- 6. GPTs required intangibles like digital capital. This creates a *Productivity J-curve*

To Learn More:

Stanford Digital Economy Lab: https://digitaleconomy.stanford.edu/

Erik Brynjolfsson: https://www.brynjolfsson.com/

Al & Future of Work Resources: https://digitaleconomylab.stanford.edu/AlfowResources

Measuring the Economy:
https://www.measuringtheeconomy.org/