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SAR Image Denoising via Clustering-Based
Principal Component Analysis

Linlin Xu, Graduate Student Member, IEEE, Jonathan Li, Senior Member, IEEE, Yuanming Shu, and Junhuan Peng

Abstract—The combination of nonlocal grouping and trans-
formed domain filtering has led to the state-of-the-art denoising
techniques. In this paper, we extend this line of study to the
denoising of synthetic aperture radar (SAR) images based on
clustering the noisy image into disjoint local regions with similar
spatial structure and denoising each region by the linear minimum
mean-square error (LMMSE) filtering in principal component
analysis (PCA) domain. Both clustering and denoising are per-
formed on image patches. For clustering, to reduce dimensionality
and resist the influence of noise, several leading principal com-
ponents identified by the minimum description length criterion
are used to feed the K-means clustering algorithm. For denoising,
to avoid the limitations of the homomorphic approach, we build
our denoising scheme on additive signal-dependent noise model
and derive a PCA-based LMMSE denoising model for multiplica-
tive noise. Denoised patches of all clusters are finally used to
reconstruct the noise-free image. The experiments demonstrate
that the proposed algorithm achieved better performance than
the referenced state-of-the-art methods in terms of both noise
reduction and image detail preservation.

Index Terms—Clustering, denoising, linear minimum mean-
square error (LMMSE), minimum description length (MDL),
principal component analysis (PCA), speckle noise, synthetic
aperture radar (SAR).

I. INTRODUCTION

YNTHETIC aperture radar (SAR), as a coherent imaging

system, is inherently suffering from speckle noise, which
has a granular appearance and greatly impedes automatic image
processing and visual interpretation. Although multilook aver-
aging is a common way to suppress speckle noise at the cost
of reduced spatial resolution, it is more favorable to develop
suitable filtering techniques. Although classical filters, such as
Lee filter [1], Frost filter [2], and Kuan filter [3], which denoise
SAR images in spatial domain by recalculating the center pixels
of the filtering windows based on the local scene heterogeneity,
work well in stationary image area, they tend to either preserve
speckle noise or erase a weak scene signal at heterogeneous
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areas, e.g., texture area, boundary, line, or point targets. In order
to better preserve image edges, Yu and Acton in [4] designed a
speckle reduction anisotropic diffusion (SRAD) method which
can be treated as an edge-sensitive version of the classical
filters. The performance of the gamma MAP filter [5], which
denoises the SAR image via maximum a posteriori criteria,
depends highly on whether the imposed gamma distribution can
accurately describe the SAR image.

Instead of denoising in spatial domain, it has been proved
more efficient to perform the task in transformed domain where
the signal and noise are easier to separate. The wavelet tech-
niques assume that noise mainly exists on the high-frequency
wavelet components and thus can be removed by filtering
the wavelet coefficients in transformed domain. This idea has
proved great success to denoise additive white Gaussian noise
(AWGN). To adapt wavelet for SAR denoising, many tech-
niques adopted the homomorphic approach where speckle noise
subject to log-transformation is treated as AWGN and denoised
in wavelet domain by thresholding [6], [7] or modeling [8]—[10]
the wavelet coefficients. However, since the performance of
denoising is very sensitive to logarithmic operation that tends to
distort the radiometric properties of the SAR image, techniques
based on additive signal-dependent noise (ASDN) model were
developed in [11]-[14].

Although wavelet-based denoising methods have proved bet-
ter efficiency than classical filters, limitations reside in the
inadequate representation of various local spatial structures
in images using the fixed wavelet bases [15]-[17]. On the
other hand, locally learned principal component analysis (PCA)
bases, a series of mutually orthogonal directions with sequen-
tially largest variances, have shown better capability of repre-
senting structural features, e.g., image edges and texture. In
PCA domain, the scene signal is mostly captured by several
leading principal components (PCs), while the last few compo-
nents with low variances are mainly due to noise. The denoising
of AWGN has been achieved by filtering the PCs through linear
minimum mean-square error (LMMSE). Examples include the
adaptive PCA denoising scheme proposed by Muresan and
Parks [15] and local pixel grouping PCA (LPG-PCA) algorithm
proposed by Zhang et al. [16]. Both methods have proved to be
more effective than the conventional wavelet-based denoising
methods. However, no efforts have been made to adapt PCA-
based denoising to SAR images. Since SAR images assume
signal-dependent noise, a new denoising model that takes into
account this particularity is required.

A different line of research initiated in [18] approaches
image denoising as a nonlocal means (NLM) problem, where
“nonlocal” pixels whose neighborhoods share similar spatial

0196-2892 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



XU et al.: SAR IMAGE DENOISING VIA CLUSTERING-BASED PRINCIPAL COMPONENT ANALY SIS

structure, rather than “local” pixels that are just geometrically
near to each other are used to perform weighted average with
the weights measured by the Euclidean distances between the
referenced image patch and the other candidate patches. In
[19]-[21], the NLM method has been adapted for SAR image
denoising by adjusting the similarity measure to the multi-
plicative nature of speckle noise. In particular, the probabilistic
patch-based (PPB) algorithm in [21] proved to achieve the state-
of-the-art performance for SAR image denoising. Moreover,
the idea of NLM has been extended to combine with the
transformed domain denoising approaches, leading to the state-
of-the-art image denoising techniques, e.g., the block-matching
3-D filtering (BM3D) [22], LPG-PCA [16], and SAR-BM3D
[30] algorithms. All methods take advantage of the enhanced
sparsity in transformed domain when denoising is performed on
image patches with similar structure. In these methods, block-
matching approach was adopted to find, for each patch in the
image, a group of similar patches. However, this approach faces
the difficulty to define the threshold as to how ‘“similar” to
the reference patch is acceptable. It also has high computa-
tional cost.

In this paper, we extend this line of study to denoise SAR
images by explicitly addressing two issues. First, we build a
new denoising model based on PCA technique to account for
the multiplicative nature of speckle noise. Based on the ASDN
model, we derive an LMMSE approach for solving PCA-based
denoising problems. Our approach is the first to build the
PCA-based denoising method on the ASDN model for SAR
image denoising. Besides SAR images, it is also applicable to
other signal-dependent noise. Second, instead of using block-
matching approach, we employ a clustering approach. We
propose to use the combination of log-transformation, PCA,
and K-means methods for finding similar patches. Based on
the statistical property of speckle noise, we proved the com-
patibility between the PCA features and the K-means model.
This clustering approach proved to be a competitive alterna-
tive to the block-matching approach adopted in [16], [21],
and [22].

The rest of this paper is organized as follows. Section II
discusses data formation and PCA analysis. Section III de-
rives the LMMSE filtering of speckle noise in PCA domain.
Section IV details the clustering-based scheme for SAR image
denoising. In Section I, the complete procedure of the proposed
strategy that involves a second stage is discussed. In Section VI,
experiments are designed to compare the proposed method with
other popular denoising techniques. Results obtained using both
simulated and real SAR images are presented and discussed.
Section VII concludes this study.

II. DATA FORMATION AND PCA ANALYSIS

The SAR image as a collection of all of the image patches is
represented by a data matrix

Yl M

where n denotes the number of pixels and y;(i = 1,2...,n)
is a p x 1 vector, representing the ith patch which is a small
square window centered at the ith pixel.

Y = [ylayQa"'
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Fig. 1. Illustration of the acquisition of a patch in SAR image.

The PCA can be achieved by performing singular value
decomposition (SVD) on the covariance matrix of Y
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where element C'4p in 3, represents the covariance between
the two pixels at position A and B across the image (see
Fig. 1). Therefore, 3, provides a statistical description of the
relationship among pixels in the SAR image. Pixels that do not
belong to the same patch are considered uncorrelated. Thus,
the size of the patch determines the scale of spatial patterns
that can be captured. Generally speaking, a bigger sized patch
considers larger range correlations and hence is more capable
of capturing larger scale repeated patterns in the SAR image.
w;(i =1,...,p), p x 1 vectors, denote the sequence of mutu-
ally orthogonal PCA bases onto which the projection of patches
stack Y produces the PCs with sequentially largest variances
represented by \;(i = 1,...,p).

In PCA domain, several leading PCs capture most of the
scene signal in image patches, while the last few components
are mostly due to noise. In this paper, we use PCA for both
denoising and feature extraction. In Section III, we develop
an LMMSE criterion based on the ASDN model to shrink
the PCs. Thus, denoising can be achieved by reconstructing
the SAR image using the processed PCs. In Section IV, we
use several leading PCs in the logarithmic space identified by
the minimum description length (MDL) criterion to feed the
K-means algorithm. This not only reduces the dimensionality
and decorrelates the spatial variables but also suppresses the
noise contained in image patches.

III. SAR IMAGE DENOISING IN PCA DOMAIN

In [15] and [16], the LMMSE shrinkage was conducted in
PCA domain to remove AWGN. For SAR speckle noise, we
can certainly adopt the homomorphic approach and apply the
same methods in [15] and [16]. However, since the performance
of denoising is sensitive to log-transformation that tends to
distort the radiometric dynamics of the SAR data, it is more
appropriate to perform denoising in original space instead of
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logarithmic space. In this section, we derive a new LMMSE
shrinkage approach under the ASDN model. We assume that
the speckle noise is fully developed; thus, a SAR image pixel
can be modeled as

y=sw 3)

where z, s, and y represent, respectively, the unobserved scene
signal, speckle noise, and observed signal. Based on (3), we get
the ASDN model as

y==z+n 4)

where n = x(s — 1). Because s has unit mean, thus n is a zero-
mean signal-dependent noise. Hence, the patch variable in the
SAR image can be described by

y=xz+n %)
where y = [y1,y2, ..., Yp|T, © = [x1,72,...,3,]T, and n =
[n1,ma,. .. ,np]T. Denoting the covariance between y; and y;

by 0,7 and the mean of y; by p,, we can get
= ty) (5 = 15)]

— B [(rs, ). ©

o) =E (i

= 1) (w555
For fully developed speckle noise, « and s are uncorrelated, so
we get F(zs) = E(x)E(s). Because E(s) = 1, we get E(y) =
E(x)E(s) = E(x). Therefore,

0 = B(zx;)E(s;5;)

f — 11,

= [ppnd, + 0] [L+ 0] — i,
=pipd + phplo? + ol + ool —
=09 + o E(xx5). (7)

We assume that the speckle noise is spatially uncorrelated, i.e.,
0% = 0 for i # j. Thus, we have
o)) = ol (fori# j). (8)
In the following analysis, we represent the empirical mean of
the patches in Y by Y, and we assume that the patch variable
y has been centralized. Denoting the covariance of y by X,
the PCA bases can be obtained by performing SVD on 3,

3y, = WAW? ©)

where the column vectors in W represent the PCA bases with
sequentially largest variances and A is the diagonal matrix of
the variances of PCs, which are the projection of patch variables
onto PCA bases
p=Wly=Wiax+Win=p, +p, (10)
where p,, = WTg and Pn = WTn stand, respectively, for
the signal and noise parts in the projection. If p_, is known,
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denoising can be achieved by performing inverse PCA transfor-
mation using p_,. In this paper, p,, is estimated by the LMMSE
criterion

(p— E(p))
o, A p.

Pe = E(py) + Cov(pe, p)E,"
=0+3,,. 5, (p—0) =

The 7jth element of 3, can be estimated through the follow-
ing equation:

oy = E (px()p2(5)) — 11y, 115,
= B{[W (i, )] [W' (5, )]} =W, ) pa WG, e

—E {Z Wk, iyen S Wt )z

k

=D Wkl Yy Wit j)p

k

=FE {Z > Wik, i)W(t,j):ck.xt}

k t

(1)

=N Wk WL, §)ubpt
k t
= Z ZW(k DW(t,§) [E(zrae) — plhpt)]
k t

=3NS Wk Wt j)okt

=S, Wk, i)W (k, §) ok + S350 126 W (k, )W (2, )0k

(12)

Denote u; = s; — 1. Because x; and u; are uncorrelated for
fully developed speckle noise, we can get

E (yf) =F [(ch —&—Jc]uj)z]
:E( )+E(a: us )

—E(22) (1 +0u). (13)

From (13) and (7), we get o = 05 — (ou/ou +

1)E(y,§), SO
ij . . Kk Ou 2
o) = SeW(k, i)W (k, j) |:O'y Sl 1E (yk)}
+ Sk Sk W (k, )W (L, j)os’. (14)

From (8), we get 0§ = o}* for t # k, so

. . O
ol =S W (k, i)W (k, j) {0’; 2 (yi)}

+ kS W (k)W (t, j)oft. (15)
In (15), 0, can be calculated from the theoretical distribution
of speckle noise, e.g., for gamma distribution o, = 1/L[12],
where L stands for the ENL. W (i, j) is the ijth element of W
in (9). E(y}?) and ajt are estimated by the respective empir-
ical values: E(y3) = £, (k, k) + Y?(k), and o} = %, (k,t),
where ¥, (i, j) stands for the ijth element of ¥, and Y (i)
stands for the ith element of Y.

Given P in (11), the noise-free image patch can be obtained
by performing inverse PCA transformation

=Y +Wp,. (16)
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The denoised patches will finally be used to construct the noise-
free SAR image.

IV. CLUSTERING SCHEME

The effectiveness of denoising in PCA domain depends
highly on whether the PCs can sparsely represent the scene
signal. Moreover, the sparsity can be achieved by performing
analysis on patches with similar spatial structure. There are two
approaches for finding similar patches, namely, block-matching
and clustering. Block-matching is a supervised approach, which
finds, for each pixel on the image, a group of patches that are
“similar” to the reference patch. This approach has high compu-
tational cost. Since it is hard to define the “threshold” as to how
“similar” to the reference patch is acceptable, the researchers
always turn to guarantee a minimum number of similar patches.
However, it may render some of the selected patches less rele-
vant to the referenced patch. As opposed to the block-matching
approach adopted in BM3D and NLM, the clustering approach
involved in the proposed approach finds similar patches in an
unsupervised manner by adaptively partitioning the image into
disjoint areas. It requires less computation. Moreover, since the
“threshold” in the clustering approach is adaptively determined
by comparing the proximities of the candidate patch to different
cluster centers, rather than being predefined, the clustering
approach is supposed to be more capable of finding relevant
patches than the block-matching approach.

In this paper, we adopt the K-means algorithm [27] proposed
by Lloyd considering its simplicity and speed. Moreover, we
use the Euclidean distance to measure similarity in feature
space. Performing K-means clustering on image patches also
faces problems, such as high dimensionality, high correlation
among features, and intense iterations due to poor initial pa-
rameter values. In this paper, we adopt log-transformation and
PCA to extract compact features to feed the K-means algorithm.

This section is organized as follows: we start with the illus-
tration of feature extraction techniques, we then prove the com-
patibility of the extracted features and K-means algorithm, and
lastly, we discuss parameter tuning and efficient realizations of
the clustering algorithm.

A. Feature Extraction

Before extracting features for clustering, we apply log-
transformation on the original SAR image as a preprocess-
ing step. It has been common practice to aid clustering
by preprocessing heavy tail distributed variables using log-
transformation [23], [24]. In particular, Liu [23] indicated that
log-transformation significantly improved the clustering result,
and Paxson [24] demonstrated a 10% increase in clustering
accuracy after applying the log-transformation. The speckle
noise in the SAR image follows gamma distribution that is
long tailed. Moreover, the speckle noise is signal dependent,
which means that it has a bigger variance on brighter image
areas. This unstable nature would produce large between-
cluster overlapping. Therefore, the log-transformation is used
here to deskew the data set and to stabilize the variance. The
log-transformed data tend to be symmetrically distributed with

6861

constant variance; thus, they are more desirable for statistical
methods, such as PCA and K-means algorithms.

Although clustering can be performed directly on image
patches, it always suffers from high dimensionality, e.g.,a5 x 5
patch produces 25 variables, and the intense speckle noise con-
tained in the patch. In order to solve these problems, we adopt
PCA as a feature extraction technique. Only K leading PCs that
are mostly due to the signal are used as features for clustering.
The accurate estimation of K is important in the sense that the
underestimation would lose useful information, but overestima-
tion would introduce noise and unnecessary computation cost.
One popular approach determines K by setting a threshold to
the percentage of variation explained by signal components.
This approach is simple but rather subjective. In this paper,
we estimate K by the MDL criterion which was proposed by
Rissanen in [25] and which has been used to determine the
number of signals in [26]. The p x 1 dimensional image patch
variable 4 subject to log-transformation can be represented by
the following equation:

K

Y=Y W(ipi+7 (17)
1=1

where W is the eigenvector matrix, whose ith column W(:7 i)
denotes the ith PCA bases, and 71 denotes the log-transformed
speckle noise that roughly satisfies Gaussian distribution with
zero mean and diagonal covariance matrix I,o>. We assume
that the scene signal Z can be reconstructed by the first K PCs

T = Z W(.,i)7,

(18)

where p; = 27 ‘7[?(:7 i) stands for the ith PC. We can see that
(17) is the same with (1) in [26], where Wax and Kailath
estimated the number of signals by

P )\4
Kyipr, = arg mkin(p —k)log ﬁ
p
k(2p —k
- logkl;[l)\j + %bgn (19)

where )\; stands for the jth biggest eigenvalue of Xy and
n denotes the number of observations.Kypr, can be easily
determined by comparing all of the p — 1 solutions.

B. Compatibility of PCA Features and K-Means Algorithm

K-means algorithm that relies on Euclidean distance implic-
itly assumes that the noise of input features satisfies indepen-
dent and identically Gaussian distribution. In the following,
we prove that PCA features described previously satisfy this
assumption. We reformulated (17) as

Yy==2+n. (20)
Since # and n are independent for fully developed speckle
noise, we can get

Ty =3g oyl 21
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where 35 and X3 denote, respectively, the covariance matrices
of 3 and . The PCA analysis can be achieved by performing
SVD on X z:

. o .T
T;: =WSW (22)

where the column vectors in W represent the PCA bases and
S= diag(s1,. .., sp) is an eigenvalue matrix.
Then, we have
—y—T

. o T
S =WSW 40, WW

s1+om o 0 -

— —
=W : . : W (23)
Therefore, we can see that X3 and X share the same PCA
bases. As in (10), the PCA features can be obtained by project-
ing the image patch onto PCA bases

T T T
P7=W y=W T+W "W=7p,+7, 24

T _,T

where p, = W & and p,, = W 1 stand, respectively, for
the signal and noise parts in the PCA feature. Denote the
variance matrix of p by X5

S1 PPN O

Eﬁ:Eﬁj—Eﬁn: N

O e sp 0

o

W(ZS)
Since X5 = oI, the assumption of K-means algorithm on
noise distribution can be well satisfied. Although this property
could not guarantee the convergence of K-means algorithm to
global minimum, it provides theoretical assurance that K-means
performance can be optimized.

C. Parameter Tuning and Efficient Realization

1) Number of Clusters: The number of clusters 7' in the
image depends on the definition of what constitutes a cluster.
This issue is mostly application oriented, e.g., for background
subtraction, background and foreground should be represented
as two clusters, but in content-based image analysis, the number
of cluster is mainly determined by the number of objects in
the image. Here, we have no high-level requirements on the
notion of cluster but only a loose constraint that a cluster is
a collection of image patches with similar spatial structures.
Thus, the number of clusters cannot be and does not need to
be estimated very accurately. A loose cluster can be split into
several compact ones, which does not have too much influence
on the denoising results. Nevertheless, the rough estimation of
the number of patterns that exist in the image is still important
because over underestimation would reduce the sparsity in PCA
domain, and the opposite would increase computation burden
and also preserve unnecessary artifact. Therefore, the number
of clusters can be better determined based on the complexity
of the scene. A more complex image should be assigned more
clusters to fully capture image details. Since PCA detects statis-
tically uncorrelated sources, a more complex image scene tends
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to have a larger number of signal PCs. Therefore, we use the
number of signal PCs Kyipr, in Section I'V-A as the estimate of
the number of clusters. Moreover, to prevent oversegmentation,
we set an upper limit on 7. In this paper, we require

T = max(KMDL, 15) (26)

2) Size of Cluster: The number of patches in each cluster
should be big enough for efficient estimation of the covariance
matrix 3,,. In this paper, we constrain that each cluster should
have at least 50 members. A cluster smaller than this value will
be deleted, and its members will be dispersed into the other
clusters based on the proximity in Euclidean space.

3) Initial Cluster Centers: K-means clustering is very sen-
sitive to initial parameter values. Poor assignment of initial
parameters may cause longer time to converge. Because the
PCs provide a contiguous membership indicator for K-means
clustering [28], we estimate the labels of image pixels by
sorting the values of the first PC and then splitting them evenly
into 7" groups. Given the initial labels, we estimate the centroids
for each group.

4) Deal With Large Image: SAR images always have a big
size. Clustering on them directly tends to ignore weak patterns
that involve a small number of pixels. Hence, some image
details would be erased during the denoising stage. Therefore,
in this study, a large image is divided into several subimages
which are denoised separately. The final noise-free image is
reconstructed by all of the denoised subimages. There is no
universal standard for the size of the subimage. It should be
adjusted according to the complexity of the image scene. A
small size should be preferred for an image with a complex
scene. For the SAR image, a size of 64 x 64 pixels can
achieve a good result based on our experiments. To avoid the
boundary artifacts between neighboring subimages, we design
the neighboring subimages to be slightly overlapping. Based
on our experiment, an overlapping of 5 pixels would produce
smooth boundaries.

5) Size of Patch: As discussed in Section III, a patch with
big size can capture large-scale patterns but would also increase
the computation cost. For SAR images that are without strong
texture patterns, the size of 3 x 3 pixel is sufficient according
to our experiments. However, a larger patch size, suchas 5 x 5,
is required for heavily textured images (Fig. 1).

V. COMPLETE PROCEDURE OF THE PROPOSED APPROACH

The complete procedure involves two stages (Fig. 2): the first
stage produces a denoised image which is referenced as a clean
image in the second stage to feed the clustering algorithm and
to aid the LMMSE shrinkage. The detailed procedure is given
in the following.

Stage 1: The original SAR image is split into /N subimages
which are M x M sized (M = 64). For each subimage, we
repeat the steps of clustering and denoising until all subim-
ages have been processed. Finally, we aggregate the denoised
patches to produce the denoised SAR image.

1) Clustering: This step intends to identify image pixels

whose neighborhoods have a similar spatial structure. The
i1th subimage is first log-transformed. Then, we extract all
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Fig. 2. Flowchart of the proposed algorithm (left part: stage 1; right part: stage 2).

2)

of the S x S sized patches (S = 5) to form a data matrix
which is then transformed into the PCA domain. The
first Kp1, PCs are used to feed the K-means algorithm,
where Kypr, is given in Section IV-A. The number of
cluster is determined by (26). Other parameters, i.e., the
size of the cluster and the initial cluster centers, are given
in Section IV-C. The products of this step are the labels
of all pixels in the 7th subimage.

Denoising: Given the labels, this step aims to denoise the
ith subimage. Image patches in each cluster are denoised
separately. Note that the image patches are extracted from
the original SAR image. For each cluster, patches of
pixels that belong to this cluster are extracted to form a
data matrix. We calculate the empirical mean Y and vari-
ance matrix X,,. Then, the patches are denoised by the
following operations: obtaining PCA bases (9), projecting
onto PCA bases (10), shrinking PCs in PCA domain (11)
and (15), and transforming back into patch domain (16).
This step does not stop until all of the clusters in the
ith subimage have been denoised. The final product of
this step is a collection of denoised patches in the ith
subimage.

3) Aggregation: In this step, the denoised patches are used

to construct the noise-free image. Because the patches are
overlapping, each pixel in the image has many denoised
values. The final value is estimated as their average. The
final product of this step is a denoised image.

Stage 2: This stage goes through the same operations as
stage 1, except that we use the denoised image in stage 1 to

feed

the clustering step and to aid the LMMSE shrinkage in the

denoising step.

1y

2)

3)

Clustering: Instead of the original SAR image, the de-
noised image produced in stage 1 is used for clustering
to get the labels. Moreover, the log-transformation is
avoided. Other operations are the same with stage 1.
Denoising: The denoising procedures on this stage are the
same with stage 1, except that we use the denoised image
in stage 1 to estimate X in (11). Given labels, we ex-
tract two sets of patches for each cluster. One set is from
the original SAR image. This set is to be denoised. An-
other set is from the denoised image produced by stage 1.
This set is treated as a collection of signal patches.
Hence, the covariance matrix of signal patches 2 can be
estimated as the sample covariance matrix. The shrinkage
of the first set of patches in PCA domain requires the
estimation of 3, . Here, instead of using (15), we use

2, = WIS, W, Q27)
Aggregation: The denoised patches are used to estimate
the final noise-free image. The aggregation procedures
are the same with stage 1.

Stage 2 is basically a repetition of stage 1, except that we
used the denoised image in stage 1 to perform clustering and to
estimate X, in (11). These modifications are motivated by the
fact that the first stage can significantly suppress SAR speckle
noise and achieve a cleaner image. Hence, using the denoised
image, instead of the noisy image, can achieve more accurate
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clustering results. Moreover, treating the denoised image as a
clean image to estimate X, is more efficient than performing
shrinking on the noisy image. A second stage in the BM3D
algorithm [21] was motivated by similar considerations.

VI. RESULTS AND DISCUSSION

In this paper, both simulated and real SAR images are used to
test the proposed SAR denoising method. In order to achieve a
quantitative evaluation, clean images are degraded by adding
multiplicative noise. Thus, we can treat the clean image as
the true values and use numerical measures to evaluate the
performance. Although the true values of real SAR images
are unknown, we can achieve qualitative assessments based on
visual interpretation. In this experiment, three other methods
(i.e., PPB [21], LPG-PCA [16], and SAR-BM3D algorithms
[30]) are selected to compare with the proposed method. The
selection of these methods is based on the considerations of
both the availability of the codes and their relevance to our
work. The LPG-PCA represents the state-of-the-art denoising
techniques for images with additive noise, while PPB and SAR-
BM3D are the state-of-the-art methods for the SAR image.
Because LPG-PCA was designed to deal with additive noise,
to adapt it to the SAR image, we transform the speckle noise
into additive noise by logarithmic operation before performing
it on noisy SAR images. The biased means caused by log-
transformation are also corrected. In all experiments, without
explicit indication, the parameters of the aforementioned algo-
rithms are set as suggested in the referenced papers, and our
method is implemented by setting the patch size to 5 x 5 pixels
and the subimages to 64 x 64 pixels, with 5 pixels overlapping
with their neighbors. All of the other parameters in our method
are determined by the methods in Section I'V-C.

A. Test With Simulated Images

A variety of image sources are considered in this experiment,
including the benchmark test image, i.e., Barbara [Fig. 3(a)] in
the image denoising literature, and the high-resolution optical
satellite (i.e., IKONOS) image whose scene structure is similar
to a real SAR image [Fig. 3(b)]. An ideal SAR denoising
method is required to be capable of removing speckle effec-
tively while in the meantime preserving image details (e.g.,
texture, edge, and line target) that constitute the desired features
for further analysis. Therefore, in order to fully examine the
abilities of detail preservation, an image comprising two texture

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 52, NO. 11, NOVEMBER 2014

Clean images used in this paper. (a) Barbara. (b) Optical satellite image (IKONOS). (c) Synthesized texture image. All images are 256 X 256 pixels big.

parts with a smooth boundary is designed to be used in this
experiment. As shown in Fig. 3(c), the left part of the image is
weakly textured with a wave-like appearance, while the right
part is with a strong mesh texture. Thus, the performance of
denoising methods on an image with changing scene complex-
ities can be investigated. Simulated SAR images are obtained
by multiplying speckle noise with these clean images. In this
experiment, we use speckle noise in amplitude format which
satisfies a squared-root gamma distribution [12]. All images are
degraded with four different levels of speckle noise, i.e., the
ENL (denoted by L) is equal to 1, 2, 4, and 16, respectively. To
avoid randomness, 20 noisy images for each clean image are
produced by multiplying different noise realizations. All noisy
images are processed, and the numerical evaluation is based on
the average of the results.

In this paper, two statistics (i.e., signal-to-mean-square-error
ratio (S/MSE) and () are used to evaluate these denoising
methods. S/MSE corresponding to SNR in case of additive
noise is a very effective measure of noise suppression in mul-
tiplicative case [6]. On the other hand, to measure image detail
preservation, we employ /3 originally defined in [29]. 3 should
be equal to unity for an ideal detail preservation.

The zooms of denoised images by different methods when
L =1 are shown in Figs. 4-6, and the values of the two statis-
tics for L = 1, 2, 4, and 16 are summarized in Table I, in which
the best value in each unit is bold. Overall, it shows in Table I
that the proposed method outperformed the other referenced al-
gorithms in terms of both measures. This demonstrates that our
method is good both at speckle noise suppression and image de-
tail preservation. The row “prop.stagel” in Table I was achieved
by the first stage of our method. Comparing with row “prop.,”
we can see that the second stage involved in our method can
significantly improve the results. The row “prop.global” in
Table I was achieved by performing PCA denoising on the
subimages without the clustering step. The observation that
values in “prop.global” are lower than values in “prop.” justifies
the clustering approach in the proposed method.

Both LPG-PCA and the proposed method denoise SAR im-
ages in PCA domain. However, LPG-PCA works on the AWGN
obtained by performing log-transformation on the SAR image,
while the proposed method takes into account the multiplicative
nature of speckle noise by building the denoising approach on
the ASDN model. The observation that the proposed method
greatly outperformed LPG-PCA on most noise levels justifies
the proposed denoising model for ASDN. We also observed
that the performance of LPG-PCA is very sensitive to noise
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Fig. 4. Zoom of Barbara image degraded by single-look speckle noise. (a) Clean image. (b) Noisy image. (c) PPB. (d) LPG-PCA. (e) SAR- BM3D. (f) Proposed

method.

(d

®

Fig.5. Zoom of IKONOS image degraded by single-look speckle noise. (a) Clean image. (b) Noisy image. (c) PPB. (d) LPG-PCA. (¢) SAR-BM3D. (f) Proposed

method.

level variation in logarithmic space. As we can see in Table I,
when L = 1, LPG-PCA achieved lower statistics than the pro-
posed method. However, with the increase of L, LPG-PCA
tends to achieve comparable results with our method in terms
of 8. LPG-PCA even achieved higher S on image Barbara
when L =4 and 16. This is reasonable because LPG-PCA
was designed for AWGN. When L is big, the speckle noise
subject to logarithmic operation is very close to the Gaussian
white noise. Therefore, the method can achieve good results.
However, when L is small, speckle noise begins to deviate
from Gaussian distribution, and its mean value is no more zero.

This discrepancy between the empirical data and the model
assumption may reduce the efficiency of LPG-PCA. As we can
see, the images in Figs. 4-6 denoised by LPG-PCA show many
small artifacts, while images by the proposed method have little
artifacts but plenty of image details.

It is noticed that our method was especially better at denois-
ing the synthesized texture image [Fig. 3(c)]. In Fig. 6, the
image produced by the proposed method is the most similar
to the clean image. The images denoised by PPB and SAR-
BM3D are blurred, and the holes in the boundary area are
erased. The image produced by LPG-PCA has clear textural
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Fig. 6. Zoom of synthesized texture image degraded by single-look speckle noise. (a) Clean image. (b) Noisy image. (c) PPB. (d) LPG-PCA. (e¢) SAR-BM3D.

(f) Proposed method.
TABLE 1
RESULTS (S/MSE AND (3) ON THREE IMAGES WITH DIFFERENT NOISE LEVELS
IKONOS Barbara Syntexture
L=1 L=2 L=4 L=16 L=1 L=2 L=4 L=16 L=1 L=2 L=4 L=16
© noisy 6.68 9.35 12.19 18.10 6.69 9.35 12.18 18.11 6.69 9.35 12.18 18.09
Z | PPB 14.99 16.56 17.97 21.26 16.27 17.08 18.76 19.20 11.41 11.10 11.95 17.76
M | LPG-PCA 16.70 18.06 19.43 21.15 16.84 17.11 18.49 19.41 10.73 12.45 14.74 19.99
SAR-BM3D 14.85 15.04 18.04 21.97 16.93 17.19 17.31 19.58 15.89 17.29 16.55 18.60
Prop. 17.17 18.10 19.70 22.24 17.29 18.27 18.75 19.80 18.95 20.30 21.28 23.99
Prop.stagel | 13.89 15.90 18.67 22.87 14.83 16.64 17.38 19.46 13.31 15.73 17.59 21.75
Prop.global 12.25 14.04 15.63 20.05 12.98 14.67 15.71 18.39 10.65 13.06 14.65 18.71
noisy 0.183 0.246 0.333 0.572 0.167 0.223 0.304 0.534 0.252 0.335 0.441 0.695
PPB 0.323 0.470 0.567 0.696 0.519 0.663 0.765 0.873 0.599 0.640 0.697 0.818
LPG-PCA 0.364 0.527 0.658 0.796 0.616 0.738 0.852 0.917 0.730 0.791 0.838 0.893
@ | SAR-BM3D 0.484 0.576 0.658 0.804 0.708 0.771 0.835 0.897 0.663 0.729 0.783 0.783
Prop. 0.495 0.598 0.685 0.829 0.719 0.788 0.845 0.913 0.792 0.835 0.868 0.920
Prop.stagel | 0.376 0.498 0.616 0.804 0.562 0.668 0.760 0.883 0.655 0.751 0.815 0.899
Prop.global | 0.321 0.401 0.491 0.687 0.472 0.576 0.675 0.826 0.522 0.596 0.671 0.812

patterns but assumes many artifacts. The statistics in Table I
indicate consistent results. The proposed method achieved high
values in both measures, indicating good performance on both
noise removal and detail preservation. In contrast, LPG-PCA
achieved small S/MSE values, while PPB and SAR-BM3D
achieved small 3 values. The clustering approach involved in
the proposed method may have contributed to the superiority
of the proposed method in dealing with textual images. In a
textured image, the increased scene complexity renders it diffi-
cult to find similar patches. Given the difficulty, the clustering
approach might find more relevant patches than the block-
matching approach, leading to better preservation of texture
patterns. On a less-textured image, i.e., IKONOS, the proposed
approach also achieved higher S values and preserved more
image details than the other methods. The observation that
LPG-PCA and the proposed method outperformed SAR-BM3D
in terms of detail preservation in highly textured image (i.e.,

Fig. 6) may suggest that the PCA-based denoising approach is
more efficient at dealing textural structures.

A good denoising method should be capable of removing
speckle noise without sacrificing image details. PPB tended
to erase image details too much. In Figs. 4-6, we see that
the denoised images by PPB have very smooth appearances
but also blurred boundaries and reduced detail information.
On the IKONOS image, LPG-PCA achieved higher S/MSE
but lower [ values than SAR-BM3D, while on the Syntexture
image, LPG-PCA achieved lower S/MSE but higher g values.
Our method achieved very high S/MSE and S values on most
images.

The SAR-BM3D and PPB algorithms were implemented
using the C language, while the other algorithms were
implemented under the MATLAB platform. All of the com-
putations were conducted on a personal computer with a
Pentium 2.30-GHZ Quad-Core processor. On average, it took
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Fig. 7. Zoom of TerraSAR-X SSC image (112 x 95 pixels) of the parking lot located at the NE of the Macdonald-Cartier Freeway/Allen Road interchange,
Toronto, ON, Canada, with L = 1. (a) SRAD. (b) Original image. (c) PPB. (d) LPG-PCA. (e) SAR-BM3D. (f) Proposed method.

36.8, 53.1, 34.7, and 23.5 s, respectively, for PPB, LPG-PCA,
SAR-BM3D, and the proposed method to process a 256 x 256
pixel simulated image. It is fair to compare the time efficiency
of the proposed algorithm and LPG-PCA because both methods
are PCA-based and implemented in MATLAB language. The
observation that the proposed algorithm consumes less than
half of the time of LPG-PCA demonstrates the efficiency of
the clustering algorithm than the block-matching approach.
This conclusion is also supported by the shorter processing
time of our algorithm than PPB and SAR-BM3D, especially
considering the fact that C language is more efficient than
MATLAB.

B. Test With Real SAR Images

The real SAR images used for testing different denoising
methods are two TerraSAR-X sample imageries provided on
the Astrium Geolnformation Services website. Both images are
located at Toronto, ON, Canada, taken in December 2007 under
the spotlight mode with 1-m spatial resolution and incidence
angle of 48.8°. However, one is the single-look slant range
complex (SSC) image, while the other one is the spatially
enhanced (SE) multilook ground-range detected (MGD) with
L = 2. From the SSC image, we obtain two smaller images,
and from the MGD image, we obtain one. The three images
that comprise parking lots, roads, and buildings are supposed to
capture the major types of urban targets.

In this experiment, in addition to the denoising algorithms
in the simulated study, we also tested the SRAD method in
[4]. We adopted the default patch size parameters for the
referenced methods but a smaller size of 3 x 3 for the proposed
method because they experimentally allowed the respective best
tradeoffs between noise removal and detail preservation. The
zooms of these images denoised by different techniques are
shown in Figs. 7-9. The results are basically consistent with

the simulated study. The proposed method not only greatly
suppressed speckle noise, e.g., all three denoised images are
very smooth but also preserve image details very well, e.g.,
the eight bright spots in Fig. 7 were kept very well, and the
roads in Fig. 8 were delineated very clearly. The SAR-BM3D
also achieved good balance between noise removal and detail
preservation. The PPB method achieved very clean images, but
some image details were also smoothed out. The LPG-PCA,
because it was not specifically designed for SAR speckle noise,
produced many dark artifacts in Figs. 7 and 8 where noise level
is high but achieved smoother results in Fig. 9 where less noise
exists. Generally speaking, SRAD preserved point targets very
well but also produced undesirable artifacts.

VII. CONCLUSION

In this paper, we have presented a SAR image denoising
scheme based on clustering the noisy image into disjoint local
regions and denoising each region by LMMSE filtering in PCA
domain. In the clustering step, in order to reduce dimensionality
and resist the influence of noise, we have identified several
leading PCs in logarithmic domain by MDL criterion to feed the
K-means algorithm. This clustering approach can be treated as
the unsupervised counterpart of the commonly adopted block-
matching approach. It requires less computation. Moreover,
it is capable of adaptively identifying “similar” patches by
considering the closeness to different cluster centers. In the
denoising stage, in order to avoid the limitations of the ho-
momorphic approach, we have built our denoising scheme on
ASDN and derived a PCA-based LMMSE denoising model
for multiplicative noise. Our approach is the first to build the
PCA-based denoising method on the ASDN model for SAR
image denoising. Besides SAR images, it is also applicable
to other signal-dependent noise. The denoised patches of all
clusters were finally used to reconstruct the noise-free image.
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Fig. 8.

Zoom of TerraSAR-X SSC image (126 x 116 pixels) of the roads located at the SE of the Macdonald-Cartier Freeway/Allen Road interchange, Toronto,

ON, Canada, with L = 1. (a) SRAD. (b) Original image. (c) PPB. (d) LPG-PCA. (e) SAR-BM3D. (f) Proposed method.

Fig. 9. Zoom of TerraSSAR-X MGD SE image (104 x 101 pixels) of the area located at 1077 Wilson Avenue, Toronto, ON, Canada, with L = 2.1. (a) SRAD.
(b) Original image. (c) PPB. (d) LPG-PCA. (e) SAR-BM3D. (f) Proposed method.

We have tested our denoising scheme in both real and simulated
SAR images with several other state-of-the-art methods. The
results suggested that our method compared favorably w.r.t. the
referenced methods in terms of both image detail preservation
and speckle noise reduction.
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