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K-P-Means: A Clustering Algorithm of K “Purified”
Means for Hyperspectral Endmember Estimation

Linlin Xu, Student Member, IEEE, Jonathan Li, Senior Member, IEEE,
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Abstract—This letter presents K-P-Means, a novel approach
for hyperspectral endmember estimation. Spectral unmixing is
formulated as a clustering problem, with the goal of K-P-Means
to obtain a set of “purified” hyperspectral pixels to estimate
endmembers. The K-P-Means algorithm alternates iteratively be-
tween two main steps (abundance estimation and endmember
update) until convergence to yield final endmember estimates.
Experiments using both simulated and real hyperspectral images
show that the proposed K-P-Means method provides strong end-
member and abundance estimation results compared with existing
approaches.

Index Terms—Clustering, endmember estimation, K-P-Means,
purified hyperspectral pixel, spectral unmixing.

I. INTRODUCTION

ACCURATE estimation of the spectra of pure materials
called endmembers is essential to spectral unmixing that

aims at estimating for each pixel the fractional abundances
of endmembers. Current methods for endmember estimation
can be categorized as geometric, statistical, and sparse coding
approaches [1]. Although all these approaches have their own
respective advantages, it is undeniable that endmember extrac-
tion would be more straightforward if we have “pure” pixels
that are due to individual endmembers, rather than multiple
endmembers, for a number of reasons. First of all, classical
geometric approaches that rely on the presence of pure pixels,
such as vertex component analysis (VCA) [2], would achieve
optimal performance. More intuitively, if we know the group
of pixels that are due to a particular endmember, we can just
use the mean value of pixels as an estimate of the endmember.
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Nevertheless, pure pixels are rare to obtain directly from the hy-
perspectral images due to factors such as low spatial resolution
or the complexity of ground targets.

Given these considerations, this letter therefore intends to
explore the feasibility of obtaining “purified” pixels from mixed
pixels in order to achieve simplified yet efficient endmember
estimation. A “purified” pixel is defined as the residual of
mixed pixel after removing the contribution of all endmembers,
except the one that dominates the pixel. We estimate “purified”
pixels in two steps based on the abundance information of the
hyperspectral image. First, we partition all pixels into several
groups that are dominated by different endmembers. Second,
for pixels in each group, we remove the contributions due
to nondominant endmembers in that group. In the first step,
since a cluster is defined by predominant endmember, our
approach differs from other label-utilizing approaches [3]–[5]
in spectral unmixing literature where a cluster may involve
multiple significant endmembers. We treat the purified pixels
in each group as realizations of endmember subject to random
noise and thereby use the expected value of the pixels as
the endmember estimate. The resulting algorithm, which we
will refer to as a K-P-Means algorithm, alternates iteratively
between two main steps (abundance estimation and endmember
update) until convergence to yield final endmember estimates.
The capability of K-P-Means is proved by experiments on both
simulated and real hyperspectral images.

II. PROPOSED APPROACH

A. Problem Formulation and Motivation

This letter addresses a linear spectral unmixing model where
the observed spectral pixels stack X is represented by endmem-
ber matrix A and abundance matrix S with independent and
identically distributed (i.i.d.) Gaussian noise N, i.e.,

X =SAT +N (1)⎛⎜⎜⎝
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xT
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where si is a K × 1 nonnegative abundance vector that mea-
sures the contribution of endmembers aj (j = 1, 2, . . . ,K) to
p× 1 dimensional hyperspectral pixel xi, i.e.,

xi =

K∑
j=1

sijaj + n. (3)
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In most cases, the endmember collection {aj} contribute
unequally to xi, and the group of pixels dominated by aj is
denoted by Gj . Therefore, the image can be partitioned into
K sets Gj (j = 1, 2, . . . ,K). In order to reduce the coupling
effect among endmembers, it is reasonable to infer aj (j =
1, 2, . . . ,K) separately from pixels in Gj . Nevertheless, mixed
pixels in the same class may still admit multiple endmembers.
In order to further remove the influence of less dominant
endmembers, it is desirable to use the proportion of xi that
is solely due to the contribution of dominant endmember aj

to estimate aj , as opposed to using xi wholly. We refer to xi

after removing the contribution of less dominant endmembers
as “purified” pixels.

Not only good abundance information can be utilized to
obtain “purified” pixels for enhanced endmember estimation,
but accurate endmember estimates can, in turn, boost the accu-
racy of abundance estimation. Consequently, spectral unmixing
can be treated as an iterative optimization issue by taking
advantage of the label information from the abundance. We
therefore present in the following sections a K-P-Means clus-
tering algorithm that intends to enhance endmember estimation
based on the “purified” pixels by explicitly utilizing the label
information.

B. K-P-Means Model

This section formulates K-P-Means from a comparative per-
spective with the classical K-Means algorithm. In K-Means, the
spectral vector in class k can be expressed as

xk
i = mk + n (4)

where mk is the mean vector of class k, and n is class-
independent white noise. Based on the following objective
function

{mk, l} = min
l,m

K∑
k=1

∑
li=k

‖xi −mk‖2 (5)

where l = {li|i = 1, 2, . . . , n} are the labels of pixels, K-
Means algorithm iterates two steps: estimating l given {mk}
and estimating {mk} based on l.

Similarly, the generative model of K-P-Means is formu-
lated as

xk
i =

K∑
j=1

sijaj + n, where sik > {sij �=k} ≥ 0 (6)

where the general term mk in K-Means is expressed more
specifically by

∑K
j=1 sijaj . It means that K-Means charac-

terizes a class by the mean vector mk, whereas K-P-Means
defines the class by the dominant endmember ak, whose abun-
dance sik is the biggest. Therefore, comparing with K-Means
that considers the overall effect of a physical process, K-P-
Means probes into the sources of the physical process that

contribute to the observations. The object function of K-P-
Means can be expressed as

{ak, l} = min
l,a

K∑
k=1

∑
li=k

‖yi − ak‖2 (7)

where xi in the objective function of K-Means is substituted by

yi =

⎛⎝xi −
K∑

j �=k

sijaj

⎞⎠/
sik. (8)

Therefore, as opposed to K-Means that adopts mixed pixels
{xk

i } in class k for estimating the mean vector mk, K-P-
Means excludes the contribution of less significant endmem-
bers from estimating dominant endmember ak. Accordingly,
ak in the proposed algorithm can be treated as the mean
vector of “purified” hyperspectral pixels {yk

i }. That is why
our algorithm is termed K-P-Means. Based on the previously
described model, K-P-Means iterates abundance estimation and
endmember estimation, just as the two steps in K-Means, which
are introduced in Section II-C and D, respectively.

C. Abundance Estimation

Following (7), given {aj}, pixel labeling requires solving the
following optimization issue:

li = argmin
k

∥∥∥∥∥∥
⎛⎝xi−

K∑
j �=k

sijaj

⎞⎠/
sik − ak
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2

s.t. {sij} ≥ 0 and sik > {sij �=k}. (9)

It means that xi is associated with the kth endmember ak,
which will take the largest coefficient sik when the represen-
tation error is minimized. Suppose {ak} are of similar scale,
this optimization issue is equivalent to first estimating {sij} by
solving

arg min
{sij}

∥∥∥∥∥∥xi −
K∑
j

sijaj

∥∥∥∥∥∥
2

s.t. {sij} ≥ 0 (10)

then determining li by

li = argmax
k

{sik}. (11)

As we can see, the estimation of abundance in (10) is
essentially a nonnegative least square (NNLS) issue that can
be efficiently solved by the method in [8]. Note that the sum-
to-one constraint is not necessary since we only need the
relative magnitudes of abundances to determine the dominant
endmember. Therefore, both K-Means and K-P-Means measure
the “relevance” of a pixel to different clusters in order to
determine its label. Nevertheless, for K-Means, the “relevance”
is measured by the geometric “closeness” from the pixel to
class centers, whereas for K-P-Means, it is measured by the
magnitude of the nonnegative contribution of endmembers to
the representation of the pixel in a least squares sense.
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D. Endmember Estimation

Following (7), given {yk
i }, K-P-Means updates ak based on

the following generative model:

yk
i = ak + n. (12)

Since n is i.i.d. zero-mean Gaussian noise, the maximum-
likelihood estimation of ak is the expected value of {yk

i }.
Note that it is possible to apply other endmember extraction
techniques, such as VCA on yk

i , to produce candidates of ak;
it, however, will introduce extra problems, such as the difficulty
to determine the most relevant one.

E. Complete Algorithm

Assembling abundance estimation in Section II-C and end-
member update in Section II-D into the iterative optimization
framework leads to the complete algorithm of K-P-Means,
which is detailed in Algorithm 1. In the endmember update step,
in order to speed up convergence, the update of an endmember
is allowed to utilize the endmembers that have been updated.
The iteration of the two steps will stop if either the spectral
angle difference (SAD) (see Section III) between endmember
estimates in two continuous iterations is smaller than a given
value (i.e., τ ) or a predefined maximum number of iteration
(i.e., iters) is reached.

Algorithm 1: K-P-Means

Input: spectral stack X, number of clusters K, and iteration
threshold τ ;

Output: endmember Â and abundance Ŝ;
Initialization: t := 1, Â(0) = VCA(X); or

Â(0)= randomly selected pixels {xr}
while t ≤ iters or SAD(Â(t), Â(t−1)) ≥ τ do
(1) Ŝ = NNLS(Â(t),X), l̂ ← max(Ŝ);
(2) for k = 1, 2, . . . ,K

yk
i = (xk

i −
∑K

j �=k sijâ
(t)
j )/sik

â
(t)
k = mean({yk

i })
end for

end while

III. EXPERIMENTS

A. Simulated Study

A 64 × 64 sized image with mixed pixels of four endmem-
bers randomly selected from the U.S. Geological Survey Digital
Spectral Library [6] are simulated following the procedure
reported in [7]. Using the four endmembers, mixed pixels are
created by first dividing the entire image into 8 × 8 sized
homogeneous blocks of one of the four endmembers and then
degrading the blocks by applying a spatial low-pass filter of
7 × 7. To further increase the mixing degree, the remaining
relatively “pure” pixels with 80% or larger single abundance
are forced to take equal abundances on all endmembers. Zero-
mean i.i.d. Gaussian noise is added to further degrade the

image. The resulting image therefore resembles a highly mixed
hyperspectral image with measurement errors or sensor noise,
which is very challenging for spectral unmixing algorithms.

Two techniques, namely, VCA [2] and minimum volume
constrained nonnegative matrix factorization (MVC-NMF) [7],
are implemented using the code provided by their authors. VCA
represents classical techniques that rely on the existence of
pure pixels. Since VCA only extract endmembers, we estimate
abundance using NNLS [8]. The comparison with MVC-NMF
is desirable since both K-P-Means and MVC-NMF deal with
highly mixed pixels. MVC-NMF used as initial parameters the
endmember estimated by VCA and 150 iterations in maximum.

Moreover, three variants of K-P-Means are implemented.
K-P-Means used as initial parameters both endmembers pro-
duced by VCA and raw pixels randomly selected from the
data set in order to explore the sensitivity of K-P-Means to
initial parameters. The resulting algorithms are referred to
as K-P-Means-VCA and K-P-Means-Random, respectively. In
K-P-Means-Random, five replicates are performed, each with a
new set of initial endmembers, to obtain the solution with the
smallest residual. In order to prove the effectiveness of using
“purified” pixels in K-P-Means, we introduce for comparison
the “nonpurified” approach (i.e., K-nonP-Means), where xk

i

instead of yk
i is used in Section II-D to update endmembers.

All variants are implemented with iters = 50 and τ = 0.01
without explicit explanation.

The consistency between estimated endmember â and true
endmember a is measured by the widely used spectral angle
distance (SAD), defined as SAD = cos−1((aT â)/(‖â‖‖a‖)),
and the spectral information divergence (SID), expressed as
SID = D(a/â) +D(â/a), where D(x/y) measures the rel-
ative entropy between x and y [9]. The numerical measures
for abundance s are achieved by replacing a with s in SAD
and SID. The resulting measures are called AAD and AID,
respectively.

The five methods are performed on simulated image to
produce numerical measures. In order to investigate the noise
robustness of different methods, they are tested on images
with different noise levels measured by the signal-to-noise ratio
(SNR) [7]. For each noise level, 20 images with independent
noise realizations are processed to obtain statistics of numerical
measures, as reported in Fig. 1.

Overall, K-P-Means-VCA achieved much smaller mean
SAD and SID values than VCA and close results to MVC-NMF
across all noise levels, indicating that K-P-Means is capable
of extracting accurately the endmembers in highly mixed and
noisy circumstance. Moreover, the endmember estimation of
K-P-Means-VCA measured by SAD and SID seemed to be
robust to the noise level. As we can see, SAD and SID remained
at very low values with SNR decreasing from 45 to 20, although
from 20 to 10, there was a large increase in SAD and SID. When
SNR = 10, we noticed that K-P-Means-VCA achieved smaller
SAD and SID than MVC-NMF.

In terms of abundance estimation, K-P-Means-VCA outper-
formed VCA according to the mean AAD and AID values
across all noise levels. The variances of AAD and AID are
also smaller in K-P-Means-VCA than in VCA. MVC-NMF
achieved lower AAD and AID values than K-P-Means-VCA.
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Fig. 1. Performance comparison at different noise levels in terms of (a) SAD, (b) SID, (c) AAD, and (d) AID. In these four statistics, smaller value means better
result.

TABLE I
PERFORMANCE OF K-P-MEANS-VCA AND VCA, MEASURED BY MEAN SID AND AID, OVER DIFFERENT IMAGE

SIZES AND VARYING NUMBERS OF ENDMEMBERS

However, this advantage is less significant at the low noise
level. Overall, these results demonstrate that K-P-Means-VCA
can achieve fairly accurate abundance estimation, although it is
primarily designed for enhanced endmember extraction.

The observation that K-nonP-Means performed worse than
K-P-Means-VCA and K-P-Means-Random demonstrates the
importance and benefits of using “purified” pixels instead of
the original pixels for endmember estimation. K-P-Means-
Random outperformed VCA in terms of all measures across all
noise levels, indicating that K-P-Means is capable of achiev-
ing acceptable performance with random initializations. It is
not surprising that K-P-Means-VCA performed better than
K-P-Means-Random, considering the fact that good initial pa-
rameters can optimize the convergence properties of ill-posed
optimization problems.

Endmember estimation by VCA was insensitive to the noise
level change. SAD and SID stayed almost unchanged with SNR
decreasing from 45 to 20. MVC-NMF performed better than the
rest of the techniques in most cases, although its performance
of endmember estimation decreased very fast from SNR = 20
to 10. We noticed that MVC-NMF performed very well when
SNR = 10 in [7]. This inconsistency is probably because we
used different endmembers for simulation.

In order to explore the sensitivity of K-P-Means to image size
and number of endmembers, Table I presents the performances
of VCA and K-P-Means-VCA, measured by mean SID and
AID, over increasing image sizes from 64 × 64 to 512 ×
512 and the numbers of endmembers from 4 to 15. Generally
speaking, K-P-Means is not sensitive to the increase in image
size, and the mean SID and AID values that achieved by K-P-
Means-VCA are, respectively, around 10% and 50% of those
achieved by VCA. However, the performances of both VCA
and K-P-Means-VCA deteriorated with the increase in the
number of endmembers. Nevertheless, the SID and AID values
achieved by K-P-means are, respectively, 25% and 50% of the
statistics achieved by VCA on average.

Fig. 2. Ground-truth map of 16 classes in AVIRIS Indian Pines image.

All algorithms were implemented under the MATLAB plat-
form. On average, it took 0.04, 6.51, and 26.24 s, respectively,
by VCA, K-P-Means-VCA, and MVC-NMF to process images
with 64 × 64 pixels, on a personal computer with a Pentium
2.30-GHz Quad-Core processor.

B. Test on Real Hyperspectral Images

The Indian Pines image, which was captured by Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS) over a vege-
tation area in northwestern Indiana, USA, is used to test the
proposed algorithms. The image has spatial resolution of 20 m
and contains 200 spectral reflectance bands after removing
20 water absorption bands (104–108, 150–163, and 220). The
image consists of 145 × 145 pixels belonging to 16 different
land cover types, as shown in Fig. 2.

In this experiment, K-P-Means-Random with iters = 50 and
τ = 0.01 extracted a number of 20 endmembers from pixels
covered by ground-truth classes. The abundance maps of eight
selected endmembers are shown in Fig. 3(a). As we can see, the
maps from left to right, top to bottom correspond, respectively,
to Grass/Trees, Hay-windrowed, Grass/Pasture, Soybeans-min,
Corn-notill, Wheat, Wood, and Stone-steel Towers. These
correspondences between abundance maps and ground-truth
classes may indicate that K-P-Means accurately identified the
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Fig. 3. (a) Abundance maps of eight selected endmembers extracted by K-P-Means-Random. (b) Abundance maps of the corresponding eight endmembers
extracted by MVC-NMF.

endmembers in the image, considering that different endmem-
bers tend to dominate different classes. Nevertheless, the bright
areas of most abundance maps do not match very well the
ground truth, except Wheat and Stone-steel Towers. It is not sur-
prising considering the gap that while K-P-Means is designed
to identify individual endmembers, the pixels in the same
ground-truth class may actually assume multiple significant
endmembers, due to the complexity of ground targets in Indian
Pines image.

Fig. 3(b) shows the maps of the eight corresponding end-
members achieved by MVC-NMF for comparison purposes. As
we can see, most endmember maps achieved by MVC-NMF do
not match the ground truth as well as the maps achieved by
K-P-means, except the two maps corresponding to Wheat and
Stone-steel Towers.

IV. CONCLUSION

This letter has presented a K-P-Means algorithm for hy-
perspectral endmember extraction. Based on abundance in-
formation, we proposed to obtain the “purified” pixels from
the original mixed pixels for enhanced endmember estima-
tion, which can, in turn, aid abundance estimation. Therefore,
we interpreted spectral unmixing as an iterative optimization
problem and designed the K-P-Means algorithm that alternates
iteratively between two main steps (abundance estimation and
endmember update) until convergence to yield final endmember

estimates. Experiments on both simulated and real hyperspec-
tral images proved that K-P-Means is capable of accurately
estimating both endmembers and abundance.
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