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Abstract—Hyperspectral image (HSI) denoising is essential for
enhancing HSI quality and facilitating HSI processing tasks.
However, the reduction of noise in HSI is a difficult work, pri-
marily due to the fact that HSI consists much more spectral
bands than other remote sensing images. Therefore, comparing
with other image denoising jobs that rely primarily on spatial
information, efficient HSI denoising requires the utilization of
both spatial and spectral information. In this paper, we design
an unsupervised spatial–spectral HSI denoising approach based
on Monte Carlo sampling (MCS) technique. This approach allows
the incorporation of both spatial and spectral information for
HSI denoising. Moreover, it addresses the noise variance hetero-
geneity effect among different HSI bands. In the proposed HSI
denoising scheme, MCS is used to estimate the posterior distri-
bution, in order to solve a Bayesian least squares optimization
problem. Based on the proposed scheme, we iterate all pixels in
HIS and denoise them sequentially. A referenced pixel in hyper-
spectral image is denoised as follows. First, some samples are
randomly drawn from image space close to the referenced pixel.
Second, based on a spatial–spectral similarity likelihood, relevant
samples are accepted into a sample set. Third, all samples in the
accepted set will be used for calculating the estimation of posterior
distribution. Finally, based on the posterior, the noise-free pixel
value is estimated as the discrete conditional mean. The proposed
method is tested on both simulated and real hyperspectral images,
in comparison with several other popular methods. The results
demonstrate that the proposed method is capable of removing the
noise largely, while also preserving image details very well.

Index Terms—Bayesian least squares optimization, hyperspec-
tral imagery denoising, Monte Carlo Sampling, spatial-spectral
similarity likelihood.

I. INTRODUCTION

A HYPERSPECTRAL image (HSI) is characterized by
high spectral resolution. With hundreds of spectral bands,

ranging from visible to infrared bands, HSI is capable of sup-
porting various important applications, including mineralogy,
environmental monitoring and defense. Nevertheless, due to
the uncertainty and complexity of the remote sensing system,
HSI is unavoidable contaminated by point noise, which disturbs
computer-aided image processing tasks, such as classification,
spectral unmixing, and target detection. Therefore, efficient HSI
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denoising techniques capable of reducing noise and restoring
scene signals are required.

HSI denoising has been achieved by different approaches.
The transformed-domain techniques have been used for HSI
denoising, e.g., Atkinson et al. [1] proposed a discrete Fourier
transform and wavelet-based hyperspectral image denoising
algorithm. Othman and Qian [2] proposed a hybrid spatial–
spectral wavelet shrinkage approach to address noise level vari-
ation across different bands, where the HSI is transformed into
spectral derivative space, then denoised by performing wavelet
denoising in spatial and spectral domain independently. Chen
and Qian [3], [4] performed wavelet denoising in 2-D image
domain, and then apply PCA on denoised HSI for simultane-
ous dimensionality reduction and denoising of hyperspectral
imagery. Chen et al. [5] performed HSI denoising by combining
PCA and wavelet techniques, where PCA is first used to decor-
relate the data, and then wavelets are used to perform denoising
in low-energy PCA output channels. Chen [6] extended Sendur
and Selesnick’s bivariate wavelet thresholding [7] from 2-D
image denoising to 3-D cube denoising.

The sparse regularization has been used for performing
HSI denoising, e.g., Rasti et al. [8] performed HSI denoising
based on sparse analysis regularization and a 3-D overcom-
plete wavelet dictionary. Bourguignon et al. [9] conducted HSI
denoising by sparsely representing the spectra observations
over a union of canonical and the discrete cosine transform
(DCT) bases. Qian and Ye [10] proposed a nonlocal spectral–
spatial structured sparse representation approach, where the
HSI is first partitioned into several groups, and sparse represen-
tation with spectral–spatial structure is performed within each
group to remove noise.

A spectral–spatial adaptive total-variation (TV) model has
been proposed by Yuan et al. [11] for HSI denoising, which is
capable of accounting for the noise intensity difference between
different bands and spatial property differences between dif-
ferent pixels. A genetic kernel Tucker decomposition (GKTD)
algorithm was proposed by Karami et al. [12] for HSI denois-
ing, which exploits both the spectral and the spatial information
in the images. An adaptive filtering approach was proposed by
Phillips et al. [13]. A multiway filtering method based on a ten-
sor model has been proposed by Letexier and Bourennane [14]
for HSI denoising, and used to aid target detection [15] and
classification [16].

In this paper, we present a novel statistical approach, where
HSI denoising is formulated as a Bayesian least squares opti-
mization problem. The posterior probability is estimated by a
Monte Carlo sampling (MCS) method. MCS approach works
in a nonparametric manner, therefore is more flexible than
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the parametric methods. It has been applied for denoising of
natural images [17] and SAR images [18]. However, both
approaches are not suitable for the HSI denoising, considering
the particularities of HSI.

This paper, therefore, introduces a new statistical approach
based on MCS for HSI denoising. A spatial–spectral acceptance
likelihood based on band-dependent noise distribution is used
to aid the MCS process. The proposed acceptance likelihood
is capable of capturing the signals in both spatial and spectral
domain, and is robust to noise. Moreover, the method accounts
for the noise variance heterogeneity across various bands, and
can perform denoising adaptively, based on the noise levels of
different bands. Once the posterior has been obtained, the noise-
free value can be estimated as the discrete conditional mean,
according to the Bayesian optimization scheme.

The contribution of this paper lies in the following aspects.
1) A Bayesian least square optimization scheme is introduced
into the HSI denoising problem, leading to an efficient sta-
tistical HSI denoising approach. 2) An MCS approach that is
capable of efficiently collecting samples in image space for pos-
terior distribution estimation is designed. 3) A spatial–spectral
similarity likelihood that is capable of accounting for the band-
dependent noise distribution and the local patterns in both
spatial and spectral domain is created.

This paper is organized as follows. Section II introduces the
proposed denoising framework, as well as the MCS and the
spatial–spectral similarity likelihood approaches. Section III
presents the experiments results on both simulated and real
HSIs. Section IV concludes the study.

II. METHODOLOGY

A. Hyperspectral Noise Model and Estimation

Here, an observed noisy pixel variable in HSI is denoted
by yijb , where the indices (i, j) determine the location of yijb
in image space, while b represents the band number in the
spectral domain. Accordingly, the degradation model of HSI is
expressed as [5], [11], [19]

yijb = xijb + nb (1)

where xijb denotes the unobservable noise-free variable, and nb
is band-dependent noise. The term band-dependent noise refers
to noise which tends to assume different variances on different
spectral bands. We assume that nb satisfies zero-mean Gaussian
distribution

P (nb) =
1

σb

√
2π

exp(−n2
b/2σ

2
b ) (2)

where σ2
b is the noise variance of the band b image.

The noise variances of different spectral bands σ2
b (b =

1, 2, . . . , B) are not necessarily the same. For example, in
Fig. 1, the estimated noise standard deviation varies greatly
across different bands in the benchmark Indian Pines image
[20]. Ignoring this noise variance heterogeneity issue in denois-
ing will lead to insufficiently removal of noise in some bands,
but erasing of scene signals in some others. Therefore, it is
important to design statistical distributions that are capable of

Fig. 1. Estimated noise standard deviation (std.) of different bands in the
benchmark Indian Pines HSI. The overall noise std., displayed by the blue line,
is estimated by assuming that noise in all bands has the same variance. The
homogeneous area used for calculating the std. values is displayed on the noisy
image in Fig. 18.

accounting for the noise level variation across bands. That is
why we adopt the band-dependent noise distribution in (2).
As we shall see in Section II-D, this noise distribution can be
incorporated into the proposed MCS scheme for enhancing the
denoising performance.

Since the noise variance of each of the spectral bands
σ2
b (b = 1, 2, . . . , B) is generally unknown, they need to be esti-

mated based on the noisy observations. Several methods can
be used for HSI noise variance estimation [21], e.g., local
means and local standard deviations (LMLSD) method [22],
spectral and spatial decorrelation (SSDC) method [23], homo-
geneous regions division and spectral decorrelation (HRDSDC)
method [24], and residual-scaled local standard deviation
(RLSD) method [25]. Different methods tend to impose differ-
ent assumptions on the spatial–spectral characteristics of signal
in HSI, and the performance of a method deteriorates when
its assumption is not satisfied. In this paper, considering that
our main focus is the introduction of the spatial–spectral MCS
model for HSI denoising, we adopt a simple approach for noise
variance estimation. We estimate noise variances by identify-
ing a homogeneous area in each image band of HSI. Then, σ2

b

is estimated as the variance of corresponding pixel values in the
bth band. This approach can yield acceptable estimate of noise
variances if the signal in the identified area is fairly stationary.

B. Problem Formulation

HSI denoising is essentially an inverse problem, where the
estimation of noise-free variable x from the observed noisy
variable y can be formulated as a Bayesian least squares
optimization problem [26]

x̂ = argminx
{
E((x − x̂ )2|y)}

= argminx

{∫
(x − x̂ )2p(x |y)dy

}
.

(3)

In the above equation, p(x |y) represents the posterior distri-
bution of x given y . To estimate x̂ , the derivative is taken and
set equal to zero
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∂

∂x̂

∫
(x − x̂ )2p(x |y)dx = −

∫
2(x − x̂ )p(x |y)dx = 0 (4)

∫
xp(x |y)dx =

∫
x̂p(x |y)dx . (5)

The right-hand side of (5) can be simplified as∫
x̂p(x |y)dx = x̂

∫
p(x |y)dx = x̂ . (6)

Therefore, the goal is to estimate the conditional mean

x̂ =

∫
xp(x |y)dx = E(x |y) (7)

with the discrete form being expressed as

x̂ =
∑
x

p(x |y)x. (8)

However, the estimation of the conditional mean directly is
difficult because the posterior distribution p(x |y) is unknown,
and it could be a complex function of y. In Section II-C, p(x |y)
is estimated via stochastic MCS, based on the spatial–spectral
similarity likelihood in Section II-D. The weighted histogram,
as the estimate of p(x |y), will afterward be used to calculate x̂ ,
as the discrete conditional mean.

C. Posterior Estimation via Monte Carlo Sampling

This section describes an MCS approach for estimating the
posterior probability in a nonparametric manner. It is more
flexible than a parametric estimation approach.

Let y0 represent a spatial–spectral variable, for which the
posterior p(x |y0 ) is being estimated. Here, we use single
index 0 , instead of (i, j, b) for brevity. In MCS, p(x |y0 ) is esti-
mated by drawing a sequence of samples Ω = {y1, y2, . . . , ym}
around y0 , which are likely to be realizations of p(x |y0 ). Then
using the samples in Ω, p̂(x |y0 ) can be estimated by a weighted
histogram approach.

More specifically, given the referenced pixel y0 , first, MCS
chooses some pixels that are close to y0 in image space. Then,
α(yk |y0 ), the acceptance probability of the sampled pixel yk ,
given y0 , is used to decide whether to accept yk , or reject
it. The acceptance probability α(yk |y0 ) is realized by some
probabilistic similarity likelihood measures, which are detailed
in Section II-D. Then, α(yk|y0) is compared with a random
number into range (0, 1) drawn from uniform distribution. If
α(yk|y0) is bigger than the random number, yk is accepted into
Ω. Otherwise, it is rejected.

After sample pixels are selected into Ω, the importance-
weighted Monte Carlo posterior estimate is computed in a
nonparametric manner via the following weighted histogram
approach [17]

p̂(x |y0 ) =
∑

k∈Ω α(yk|y0)δ(x − yk )

T
(9)

where α(yk|y0) represents the acceptance probability of yk in Ω
(see Section II-D for more details), δ(·) is the Dirac delta func-
tion, and T is a normalization term such that

∑
x p̂(x |y0 ) = 1.

Based on p̂(x |y0 ), we can estimate noise-free image value as
the discrete conditional mean, according to (8).

Note that only pixels in the same band with y0 are considered
as sampling candidates. As a result, the accepted samples in Ω
belong to the same band as y0 . This choice is motivated by the
fact that different spectral bands tend to capture different phys-
ical properties of the targets, and assume varying noise levels.
Therefore, pixels in different bands are less likely to satisfy the
same statistical distribution than pixels in the same band.

Based on the above consideration, instead of performing
sampling from multiple adjacent spectral bands, we conduct
band-wise sampling by drawing samples from pixels that are
in the same band as y0 . The samples will be accepted based
on an acceptance probability, α(yk |y0 ), whose realizations are
detailed in Section II-D. In order to achieve accurate estimation
of acceptance probability, in Section II-D, we use 3-D cubes
centered at y0 and the pixel samples for estimating α(yk |y0 ).

D. Spatial–Spectral Similarity Likelihood

The acceptance probability α(yk |y0 ) of the sampled pixel yk
determines whether it will be accepted for estimating the pos-
terior distribution. Therefore, designing a robust and effective
acceptance probability is crucial in MCS.

In practice, α(yk |y0 ) is realized by a probabilistic similar-
ity likelihood [17], which measures the degree of similarity
between the sampled pixel yk and the referenced pixel y0 .
In this paper, the similarity likelihood between y0 and yk is
expressed as follows:

P (yk |y0 ) = 1

σb

√
2π

exp(−(yk − y0)
2/2σ2

b ) (10)

where σ2
b is the noise variance of band b that entails both pix-

els y0 and yk . Therefore, P (yk |y0 ) measures the probabilistic
distance between y0 and yk .

Based on (10), one straightforward realization of α(yk |y0 ) is
pixel-based likelihood

α(yk |y0 )pxl = {P (yk |y0 )}1/β (11)

where β is the scaling parameter. Using α(yk |y0 )pxl in MCS
leads to an denoising approach, called pixel-MCS in this paper.
However, pixel-based likelihood is very sensitive to noise.

In order to increase the robustness against noise, region-
based textual similarity likelihood can be used for implement-
ing α(yk |y0 )

α(yk |y0 )spa =

⎧⎨
⎩
∏
ij

P (yk (i , j )|y0 (i , j ))
⎫⎬
⎭

1/β

(12)

where indices (i, j) are used to iterate the corresponding pixel
pair yk(i, j) and y0(i, j) within the sampled region Rk and the
referenced region R0. A region could be defined as a square
window centered at a pixel. Note that (12) assumes that pixels in
a region are independent. As we can see, in (12), two pixels are
considered similar when their local spatial patterns are similar.
Consequently, α(yk |y0 )spa is more robust to noise disturbance
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Fig. 2. (a) Spectra used for simulating data 1 based on the Indian Pines image. (b) Simulated and estimated noise variances at different bands in the simulated
data 1.

Fig. 3. (a) PSNR and (b) β achieved by different methods, at different bands of the simulated data 1. On both measures, the lines of SS-MCS are above those of
the other methods, indicating that SS-MCS outperforms the other methods in terms of both noise removal and detail preservation.

than α(yk |y0 )pxl. The resulting MCS denoising approach is
called spatial-MCS.

Alternatively, α(yk |y0 ) can be implemented using only spec-
tral information

α(yk |y0 )spe =
{∏

b

P (yk (b)|y0 (b))
}1/β

(13)

where index (b) is used to iterate the corresponding pixel pair
yk(b) and y0(b) within the sampled pixel stack Vk and the
referenced stack V0. A stack can be acquired by gathering pix-
els in all bands that are located at the same spatial position.
In (13), two pixels are considered similar when their local
spectral patterns are similar. Consequently, α(yk |y0 )spe is also
robust to noise. The resulting MCS denoising approach is called
spectral-MCS.

Since, in HSI, signal that is discriminative against noise lies
in both spatial and spectral domain, instead of using solely
spatial information or solely spectral information, we should
incorporate both spatial and spectral information for building
effective similarity likelihood. Accordingly, we expressed the

acceptance probability α(yk |y0 )ss based on spatial–spectral
similarity likelihood as follows:

α(yk |y0 )ss =
⎧⎨
⎩
∏
ijb

P (yk (i , j , b)|y0 (i , j , b))
⎫⎬
⎭

1/β

(14)

where indices (i, j, b) are used to iterate the corresponding pixel
pair yk(i, j, b) and y0(i, j, b) within a sampled 3-D cube Tk and
referenced cube T0. The size of the 3-D cube is characterized
by region size in image space and the bandwidth in spec-
tral domain. The resulting MCS denoising approach is called
spatial–spectral-MCS (SS-MCS).

Therefore, comparing with spatial-MCS that considers only
spatial information, and spectral-MCS that utilizes only spec-
tral information, SS-MCS takes into account both spatial and
spectral information for obtaining similar pixels. Consequently,
SS-MCS is supposed to be more robust to noise, and more
capable of finding pixels that are due to the same distribution.
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TABLE I
STATISTICS ACHIEVED BY DIFFERENT METHODS ON SIMULATED IMAGES (BEST RESULTS ARE HIGHLIGHTED IN BOLD)

Fig. 4. Spectra at pixel (70,70) of the simulated data 1, before and after denois-
ing by different methods. SS-MCS produce the most similar spectra to the true
image. The spectra of spatial-MCS also seems to have less fluctuations than
other methods. Pixel-MCS fails to significantly reduce the noise.

E. Summary of the Proposed Algorithm

The proposed algorithm is summarized as the following
steps:

1) For each pixel in the HSI, randomly draw M pixel-
samples in the same image band, from a search area
around the referenced pixel y0 using MCS. For each
pixel-sample y0 , obtain a 3-D cube sample Tk centered
at yk . Obtain also a 3-D cube T0 centered at y0 .

2) For each 3-D cube-sample Tk, calculate the probabilis-
tic similarity of each pixel-pair yk(i, j, b) and y0(i, j, b)
at location (i, j, b) of the 3-D cube, using (10). Then
calculate α(yk |y0 )ss in (14).

3) Generate a value u randomly from a uniform distribu-
tion U(0, 1). Accept yk into the sample set Ω, if u ≤
α(yk |y0 )ss; otherwise, discard.

4) After processing the M samples by repeating (ii)–(iv),
the accepted samples in Ω will be used to estimate
the posterior distribution p̂(x |y0 ) in (9), as described in
Section II-C.

5) Given p̂(x |y0 ), compute the noise-free estimate x̂0 of
the reference pixel y0 as the discrete conditional mean,
according to (8).

Fig. 5. Spectra at pixel (130,130) of the simulated data 1, before and after
denoising by different methods.

III. EXPERIMENTS AND DISCUSSION

The proposed method is tested on both simulated and
real HSI, in comparison with several other popular methods.
In the simulated study, two benchmark images, i.e., Indian
Pines image [20] and Pavia U image are used for simulating
noisy hyperspectral images. The first simulation uses only the
ground-truth label information of Indian Pines image, while the
second is achieved by treating the PaviaU image as clean obser-
vations. Given the true image values in the simulated study,
some numerical measures can be derived for performance
assessment. The real image adopted is the Indian Pines image.
The evaluation is primarily based on the visual inspection and
some posterior measures, such as signal-to-noise ratio (SNR)
and the classification accuracy using the denoised images.

Methods in all experiments include some popular denois-
ing techniques, i.e., the Wiener filter [27], wavelet-based
BayesShrink algorithm [28], and the total variation (TV) meth-
ods [29], [30]. Moreover, in order to test the influence of
spectral and spatial information on the proposed method,
we incorporate for comparison also three variants introduced
in Section II-D, i.e., pixel-MCS, spatial-MCS, and spectral-
MCS, besides the proposed SS-MCS algorithm summarized in
Section II-E.
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Fig. 6. Spectra at pixel (60,100) of the simulated data 1, before and after
denoising by different methods.

Fig. 7. Denoising results achieved by different methods, on band 30 of sim-
ulated data 1. Denoised image by the proposed SS-MCS method is the most
similar one to the true image. The other methods tend to either preserve
undesirable artifacts or blur image boundaries and weak signal.

In all experiments, the parameters of referenced methods
are set by following the suggestions of the respective authors.
For the MCS-based methods, a region-size of 3× 3 is used
for spatial-MCS and SS-MCS; a band width of 5 is used for
spectral-MCS and SS-MCS; the search area of all methods is set
to be 21× 21, with approximately half of pixels being sampled;

the β parameter of all methods is set to be the dimensionality
of the variable used for calculating similarity likelihood, e.g., 9
for spatial-MCS.

In the proposed methods, in order to obtain region samples
at the boundary areas, before obtaining samples, we per-
form image padding in spatial dimensions. Therefore, region-
samples centered at image boundaries will be full-sized, since
padded pixels can be utilized. But, we do not perform padding
in the spectral dimension. So, band-stack-samples centered at
the ends of spectral band are half-sized, since no padding was
performed at the end of spectral band.

A. Experiments With Simulated Data

In this experiment, we simulate two noisy HSI by polluting
the clean data with band-dependent Gaussian noise, with band
variance being determined by the following rule:

σ2
b =

∑
ij y

2
ijb

10SNR/10MN
(15)

where M and N are, respectively, the numbers of rows and
columns in the image, and SNR is the signal-to-noise ratio,
given which the noise variances can be calculated.

For performance evaluation, we use peak signal to noise ratio
(PSNR) to measure the degree of noise removal. The PSNR of
band b is formulated as

PSNRb =
MN∑

ij(x̂ijb − xijb)2
. (16)

We use β to measure the image detail preservation [31],
which has been widely used in image denoising, e.g., [32]. The
β of band b is formulated as

βb =
t(Sb − S̄b, Ŝb − ¯̂

Sb)√
t(Sb − S̄b, Sb − S̄b)t(Ŝb − ¯̂

Sb, Ŝb − ¯̂
Sb)

(17)

where Sb and Ŝb are the high-pass filtered version of the clean
image Xb and denoised image X̂b in band b, obtained using
3× 3 standard approximation of the Laplacian operator, S̄b and
¯̂
Sb are the mean values of Sb and Ŝb and

t(Ab, Bb) =
∑
ij

AijbBijb (18)

β should be close to unity for the optimal effect of detail
preservation.

1) Simulated Data 1: The benchmark Indian Pines image
is used for simulating the first noisy hyperspectral data. The
Indian Pines image was captured by airborne visible/infrared
imaging spectrometer (AVIRIS) over a vegetation area in north-
western Indiana, USA, with a spatial resolution of 20 m,
consisting of 145× 145 pixels of 16 ground-truth classes and
220 spectral reactance bands.

Only the labeling information of Indian Pines image is used
in simulation. We substitute the pixels in 17 ground-true classes
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Fig. 8. Denoising results achieved by different methods, on band 150 of
simulated data 1.

(the zero-labeled class are also utilized here) with 17 spec-
tra of 224 spectral bands randomly chosen from the USGS
spectra library [33] [see Fig. 2(a)]. The resulting image is
considered a clean image. We then degrade this image with
band-dependent Gaussian noise, whose variance in band b is
determined according to (19). In this simulated study, we set
SNR = 20. Accordingly, σ2

b (b = 1, 2, . . . , B) varies, depend-
ing on the signal strength of band [see Fig. 2(b) for the
simulated and estimated noise variances of all bands].

After testing all methods on the simulated image, in Fig. 3,
we plot the PSNRb and βb as a function of band number, for
each method. As we can see, for both measures, the lines of
SS-MCS are above those of the other methods, indicating that
SS-MCS outperforms the other methods in terms of both noise
removal and detail preservation. The second best method seems
to be spatial-MCS, followed closely by spectral-MCS. Due to
its sensitivity to noise, pixel-MCS achieves the lowest PSNR
line among all methods. The Wiener and BayesShrink methods
achieve comparable performances, but BayesShrink has large
variation on β. The TV method produces the lowest β line,
which is probably because TV tends to oversmooth image. The
lines of all denoising methods are above the lines of the noisy
image.

Table I shows the statistics of different methods on PSNR
and β. They are basically consistent with Fig. 3. SS-MCS
achieved the highest mean and median PSNR and β values,
followed by spatial-MCS and spectral-MCS. Pixel-MCS pro-
duces very low values. Wiener and BayesShrink achieve com-
parable statistics, which are better than those of TV method.

Fig. 9. Denoising results achieved by different methods, on band 200 of
simulated data 1.

Figs. 4–6 show the spectra of clean, noisy, and denoised
images produced by different methods, at three different
locations of the image. They suggest that SS-MCS produces
the most similar spectra to the true images. The spectra of
spatial-MCS also seem to have less fluctuation than other
methods. Pixel-MCS fails to significantly reduce the noise.

Figs. 7–9 display the clean, noisy, and denoised images of
three different bands achieved by different methods. As we
can see, the denoised image by SS-MCS is the most simi-
lar one to the true image. Spatial-MCS also achieves good
balance between noise removal and edge preservation. But it
still tends to blur the boundaries of some weak blocks, com-
paring with spectral-MCS, which, on the other hand, tends
to preserve undesirable noise-like artifacts. Pixel-MCS does
not remove noise efficiently. Comparing with Wiener and TV,
BayesShrink achieves better balance between noise removal
and detail preservation. TV method tends to blur the boundaries
of blocks. Wiener preserves boundaries of dark blocks very
well, but erases those of bright ones.

An understanding of the SS-MCS method as a function of
the size of the 3-D cube is derivable. That is, we would like
to know how the variation of the spatial region size and spec-
tral bandwidth affect the similarity likelihood measurement. For
this purpose, in Fig. 10, we plot the performance of SS-MCS,
measured by PSNR and β values, as functions of bandwidth
and region size, respectively. The increase of the size of the
3-D cube sample, either by band width or by region size, would
lead to first increase, then decrease in numerical measures. The
peak bandwidth for β is 7, and for PSNR it is 13, while the
peak region sizes are 5× 5 for both measures. The size of 3-D
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Fig. 10. (a) Error bar plot of numerical measures achieved by SS-MCS, i.e., PSNR and β, as functions of bandwidth of the 3-D cube sample, on the simulated
data 1, with all the other parameters being fixed at the default values. (b) Plot of numerical measures as functions of the region sizes of 3-D cube sample, with all
the other parameters fixed at the default values. The center of the bar represents the mean value of numerical measures over all bands, while the height represents
standard deviation.

Fig. 11. (a) PSNR and (b) β achieved by different methods, at different bands of the simulated data 2. Proposed SS-MCS method achieves the highest values in
most bands, significantly outperforming spatial-MCS and spectral-MCS, which are usually the second and third best.

cube sample determines the extent of spatial–spectral correla-
tion considered when calculating similarity likelihood. Bigger
size explains larger scale similarities, thereby may be more
restrict toward accepting samples. Given an insufficient number
of accepted samples, the denoising performance may deterio-
rate. That may explain why decreased numerical measures are
observed with the increase in cube size.

2) Simulated Data 2: The second data is simulated based
on the Pavia University (PaviaU) image, which is an urban
image, centered at the University of Pavia, consisting of 610×
340 pixels, acquired by the reflective optics system imaging
spectrometer, with a spatial resolution of 1.3 m, consisting of
103 spectral bands after removing 12 noisy bands. In this exper-
iment, the image used for simulation is a 128× 128 subset
of the PaviaU image, containing both homogeneous area and
structured area.

We simulate noisy image by treating the PaviaU image as
a clean image, and polluting it by band-dependent Gaussian
noise. Since most bands in PaviaU image have very high SNR,
they can be treated as clean observations. However, for band

1–10 that contain higher noise level than the other bands, we
apply a 3× 3 mean filter on them to reduce noise, before using
them as clean image. The variances of the simulated noise
are band-dependent, generated according to (19) by using
SNR = 10.

The true image used here is more heterogeneous in the spatial
domain than the simulated data 1 in Section III-A1. Moreover,
the SNR is also lower. Therefore, the simulated image is more
challenging for the denoising methods.

In Fig. 11, the results are quite consistent with the results
in Section III-A1. The proposed SS-MCS method achieves
the highest values in most bands, significantly outperforming
spatial-MCS and spectral-MCS, demonstrating the importance
and benefits of utilizing both spatial and spectral information
in MCS. Similar to the experiment in Section III-A1, the over-
all performance of spatial-MCS is better than spectral-MCS,
which, however, achieves higher β values on bands 70–103.
The Wiener method outperforms BayesShrink on both mea-
sures. The pixel-MCS achieves the very low values on most
bands.
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Fig. 12. Spectra at pixel (38,42) of the simulated data 2, before and after
denoising by different methods. The proposed SS-MCS method produce
smooth spectra that are the most similar to the true ones. The noise has higher
variances in band 80–103. Nevertheless, SS-MCS method handles this noise
heterogeneity issue very well. But the other methods tend to preserve intense
noise on band 80–130.

Fig. 13. Spectra at pixel (67,39) of the simulated data 2, before and after
denoising by different methods.

In Table I, according to the mean PSNR values, SS-MCS
outperforms spatial-MCS by 5.3%, and spectral-MCS by 7.4%.
According to mean β value, they are 19.7% and 20.6%, respec-
tively. In both measures, the median values produce the same
rank of methods as the mean values. In terms of mean PSNR
value, Wiener slightly outperforms spectral-MCS, which nev-
ertheless achieves higher mean β value.

In Figs. 12 and 13, similar to Section III-A1, the proposed
SS-MCS method produce smooth spectra that are the most
similar to the true ones. The noise has higher variances in
band 80–103. Nevertheless, SS-MCS method handles this noise
heterogeneity issue very well. But the other methods tend to
preserve intense noise on band 80–130.

Fig. 14. Denoising results achieved by different methods, on band 30 of sim-
ulated data 2. The proposed SS-MCS method is capable of preserving image
details very well, e.g., trees and constructions in up-left area are clearly
delineated, in the meantime, reducing greatly the noise artifacts, e.g., the homo-
geneous area is sufficiently smoothed. The other methods tend to either keep
undesirable artifacts or remove scene signals.

Fig. 15. Denoising results achieved by different methods, on band 60 of
simulated data 2.
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Fig. 16. Denoising results achieved by different methods, on band 90 of
simulated data 2.

Figs. 14–16 also demonstrate that SS-MCS is capable of
preserving image details very well, e.g., trees and construc-
tions in up-left area are clearly delineated. Also, noise artifacts
are greatly removed, e.g., the homogeneous area is sufficiently
smoothed. The other methods tend to either keep undesirable
artifacts or remove scene signals.

B. Experiments With Real Hyperspectral Data

In this experiment, all methods are tested on the benchmark
Indian Pines image, introduced in Section III-A1. The image
contains 220 spectral bands. Some bands contain more noise
than the other bands. In this experiment, all bands are used for
testing, in order to examine the adaptability of the proposed
method.

1) SNR and Visual Evaluation: We use the SNR as
numerical measure of denoising performance. The SNR of
band b is expressed as follows [34]–[36]:

SNRb = 10log10

∑
ij x̂

2
ijb∑

ij(x̂ijb −mb)2
(19)

where x̂ijb is the denoised pixel value and mb is the mean value
of {x̂ijb} in a homogeneous area. The estimation of SNR relies
on a homogeneous area. Different selections of the homoge-
neous area may lead to different SNR values. In order to reduce
this variability, we adopt the class labels for identifying homo-
geneous areas. Since pixels in the same class are more similar
to each other than pixels in different classes, a homogeneous
area is set to contain all pixels belonging to the same class.
SNRb is estimated as the mean of SNR values estimated using

Fig. 17. (a) SNR achieved by different methods on Indian Pines image.
(b) Zoom-in plot of SNR in the highlighted region in (a). The proposed SS-MCS
achieves the highest SNR values on most bands, followed by spatial-MCS
and Wiener. On high-noise-level bands, i.e., 104–108 and 150–160, SS-MCS
performs especially better than the other methods.

TABLE II
SNR ACHIEVED BY DIFFERENT METHODS ON INDIAN PINES IMAGES

(BEST RESULTS ARE HIGHLIGHTED IN BOLD)

labels of different classes. Since all pixels are used for estimat-
ing SNR, this approach is capable of reducing the bias caused
by a particular selection of homogeneous area in the image.

Fig. 17 shows the plot of SNR achieved by different meth-
ods as a function of band number. It indicates that SS-MCS
achieves the highest SNR values on most bands, followed by
spatial-MCS and Wiener. On high-noise-level bands, i.e., 104–
108 and 150–160, SS-MCS performs especially better than the
other methods. Pixel-MCS achieves higher SNR values when
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Fig. 18. Denoising results achieved by different methods, on band 3 of Indian Pines image. The highlighted rectangular in noisy image shows the homogeneous
area used for calculating SNR of all bands in Fig. 1. The SNR values are shown in parenthesis. The proposed SS-MCS method increases the SNR of the noisy
image by 3.4 dB, the largest among all methods. Moreover, it reduces both random noise and systematic strip noise efficiently, while also preserving image details,
e.g., bright point targets very well. Other methods tend to either keep undesirable artifacts or oversmooth the image.

Fig. 19. Denoising results achieved by different methods, on band 103 of Indian Pines image. The SNR values are shown in parenthesis. The proposed SS-MCS
method increases the SNR of noisy image by 2.9 dB. In the image denoised by this method, the image details, such as point targets and line targets, are well
preserved and highlighted, while the noise in homogeneous areas is largely removed.

the SNR of noisy image is high, e.g., on bands 120–140.
Wiener tends to outperform TV and BayesShrink. All denoising
methods are able to increase the SNR of the noisy image.

The statistics of SNR in Table II suggests consistent results.
Comparing with the noisy image, SS-MCS increases the SNR
by 1.15 db on average, which is about 9.0% of the SNR of

the noisy image. Moreover, SS-MCS achieves lowest variation
across image bands than the other algorithms.

Figs. 18–20 show the denoised images at three bands,
achieved by different methods. In Fig. 18, the proposed SS-
MCS method increases the SNR of the noisy image by 3.4 dB,
the largest among all methods. It reduces both random noise
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TABLE III
OA, AA, AND KAPPA COEFFICIENT (KAPPA) ACHIEVED BY DIFFERENT METHODS ON THE INDIAN PINES IMAGE

(BEST RESULTS ARE HIGHLIGHTED IN BOLD)

Fig. 20. Denoising results achieved by different methods, on band 219 of Indian Pines image. The SNR values are shown in parenthesis. The proposed SS-MCS
method increases the SNR of noisy image dramatically by 5.3 dB. Moreover, it recovers the scene signal from intense noise pollution. Using information in
adjacent channels, spectral-MCS also highlights the signals, but also preserves large amount of noise.

and systematic strip noise efficiently, while also preserving
image details, e.g., bright point targets very well. Other meth-
ods tend to either keep undesirable artifacts or oversmooth the
image. In Fig. 19, the SS-MCS method increases the SNR
of noisy image dramatically by 2.9 dB. The image denoised
by this method demonstrates fine image details, i.e., point
targets and line targets, as well as smooth and clean homoge-
neous areas. In Fig. 20, SS-MCS increases the SNR of noisy
image dramatically by 5.3 dB. Moreover, it recovers the scene
signal from intense noise pollution. Using information in adja-
cent channels, spectral-MCS also highlights the signals, but
preserves large amount of noise.

2) Classification-Aided Assessment: The denoised images
achieved by different methods are used for performing super-
vised classification, in order to shed light on the relative
performance of denoising methods. However, it is important to
keep in mind that other image processing tasks, such as tar-
get detection and spectral unmixing, could also benefit from
the denoising operation. In this experiment, we select two

classifiers, i.e., SVM [37] and linear discriminant analysis
(LDA) [38], for performing supervised classification. SVM rep-
resents the discriminative machine learning technique, while
LDA is a classical statistical generative model. All the 220
bands in the denoised images are used to feed the classifiers.
In the training stage, 10% of the labeled pixels in each of the 16
classes are randomly selected as training samples. The rest of
the pixels are used for testing. The numerical measures include
overall accuracy (OA), averaged accuracy (AA), and the Kappa
coefficient.

Table III shows the statistics of both classifiers on the
denoised images of different denoising methods. Overall, the
proposed SS-MCS method performs better than the other
methods in terms of all three measures, on both classifiers.
It achieves OA of 93.7% on SVM and 91.8% on LDA,
outperforming the second best method, i.e., Wiener, by 4.4
percentage points on average, and the noisy image by 16.7
percentage points on average. In terms of OA and Kappa
coefficient, spatial-MCS ranks third according to SVM, but
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Fig. 21. Classification maps achieved by different methods on the Indian Pines image. The overall accuracies are included. Classification on the orignal image
tends to produce intense artifacts in the classification map. All denoised images lead to maps of reduced artifacts to different degrees. Generally speaking, the
maps produced by SS-MCS demonstrate less inner-class artifacts than all the other denoising methods.

fourth according to LDA. In contrast, spectral-MCS ranks sixth
according to SVM, but third according to LDA. All denoised
methods are able to increase the classification accuracy over
the noisy image. Pixel-MCS achieves accuracies that are only
slightly higher than those of the noisy image. SVM pro-
duces higher OA and Kappa coefficients, while LDA produces
higher AA.

The classification maps in Fig. 21 indicate consistent results
with the statistics in Table III. Classification on the original
image tends to produce intense artifacts in the classification
map, due to the existence of noise in images. All denoised
images lead to maps of reduced artifacts to different degrees.
Generally speaking, the maps produced by SS-MCS demon-
strate less inner-class artifacts than all the other denoising
methods.

IV. CONCLUSION

This paper presented a novel hypersepctral image denois-
ing technique based on MCS and spectral–spatial similarity
likelihood. The stochastic MCS was used to estimate the pos-
terior probability. Also, in order to utilize both the spatial and
spectral information in hyperspectral image, a spatial–spectral
probabilistic similarity measurement based on band-dependent
noise distribution was used to calculate the acceptance proba-
bility in MCS. The proposed method was tested on two sim-
ulated hyperspectral images and the benchmark Indian Pines
image, in comparison with several other methods. Both the
numerical and visual results demonstrate that the proposed
method has strong capability in terms of both noise removal
and image details preservation.

Accurate estimation of noise variances is a difficult issue,
which relies on a system that is capable of fully capturing
the spatial–spectral correlation effect in HSI. In this paper, we

adopt a simple approach by identifying a homogeneous area
in the image. However, it will potentially be difficult to select
a region where the variation of pixel values is only due to
noise when the spatial resolution of the image is very low.
Therefore, in our future research, we will focus on developing
more advanced methods for noise level estimation in order to
further improve the denoising performance.
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