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Abstract—Hyperspectral endmembers are the spectra of pure
materials that are responsible for generating the mixed pix-
els in hyperspectral images (HSIs). Hyperspectral endmember
extraction (HEE) is essentially an inverse problem, where the
unknown endmembers are inferred from the spectral measure-
ments. Efficient extraction of endmembers in HSI relies on a
well-defined generative model that captures key factors in HSI
generation process, such as the clustering effect in the spatial
domain and the noise heterogeneity effect in the spectral domain.
This paper presents a weighted fuzzy purified-means (WFP-
means) clustering model for HEE, where the endmembers are
modeled as mean vectors of individual classes, and the fractional
contributions of individual endmembers, called abundances, are
treated as soft class membership. Accordingly, an endmember is
estimated as the weighted mean of purified pixels in HSI, while
the abundances are estimated as the nonnegative regression coef-
ficients. In contrast to a mixed pixel that consists of multiple
endmembers, a “purified pixel” is due to a single endmember. The
introduction of the concept of “purified pixels” into the fuzzy clus-
tering model leads to an elegant optimization scheme. Moreover,
the proposed model accounts for the noise variance heterogeneity
issue, which is essential for achieving unbiased abundance estima-
tion. The proposed method is tested on both simulated and real
HSI, in comparison with several other HEE methods. The results
demonstrate that the proposed method compares favorably with
respect to the referenced methods in terms of both endmember
and abundance estimation.

Index Terms—Endmember extraction, fuzzy C-means,
K-means, spectral unmixing, weighted fuzzy purified means.

I. INTRODUCTION

H YPERSPECTRAL image (HSI) captured by imaging
spectrometer has been widely used in a variety of appli-

cations, due to the very high spectral resolution. Nevertheless,
the observed spectral pixel value in HSI always involves the
spectral contribution of multiple materials within the ground
instantaneous field of view of imaging instrument [1]. The
determination of the spectra of pure materials, usually known
as endmembers, is essential for hyperspectral unmixing (HU)
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that aims to estimate for each pixel in HSI the fractional con-
tributions of individual endmembers, called the abundances
of endmembers [2], [3]. In the last two decades, many dif-
ferent HU and hyperspectral endmember extraction (HEE)
approaches have been proposed [3], including 1) geometrical-
based approaches, e.g., vertex component analysis (VCA) [4],
MVC-NMF [5], the simplex identification via variable split-
ting and augmented Lagrangian (SISAL) [6], N-FINDR [7],
pixel purity index (PPI) [8], [9], iterative constrained endmem-
bers (ICE) [10], and the minimum volume simplex analysis
(MVSA) [11]; 2) statistical Bayesian approaches, e.g., [12]–
[16]; and 3) sparse representation-based approaches, e.g., [17]–
[20]. However, effective HU/HEE remains unresolved issue,
because it faces important challenges [3], [21], [22]. In the fol-
lowing, we will highlight several aspects of the issue that have
not been sufficiently addressed.

This is still a lack of statistical generative clustering model
that accounts for the data generation mechanism of mixed
pixels. In HSI, mixed pixels belonging to the same class tend to
assume similar abundance pattern of endmembers, while those
of different classes tend to admit different material composi-
tions. In order to build effective data inversion model, some
approaches take advantage of this source heterogeneity effect.
For example, in [23]–[27], multiple convex regions in HSI are
simultaneously modeled by a fuzzy clustering approach. In
these approaches, each class defined by a convex region cor-
responds to a land cover type. Therefore, a class is required to
contain multiple endmembers, and different classes may share
some common endmembers. However, in HU and HEE, end-
members are treated as individual spatial processes. A more
fundamental approach is thereby to model each endmember
in HSI as a class. Moreover, since a mixed pixel contains the
contributions of multiple endmembers, it should be allowed to
belong to multiple classes based on the soft class membership.
In this way, the class composition of a pixel is directly linked to
the abundance pattern of endmembers on this pixel. Therefore,
unsupervised HEE can be interpreted as a soft clustering issue.
By estimating both the mean vectors of classes and the soft
class membership for each pixels, both the endmembers and
the abundances can be estimated.

Although pure pixels in HSI is essential for HU and HEE,
there have not been enough efforts to explicitly estimate pure
pixels from mixed pixels. Many geometrical approaches, e.g.,
VCA [4], N-FINDR [7], and PPI [8], [9], are based on the
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Fig. 1. Statistics (i.e., SAD, SID, AAD, and AID) achieved by different methods over different noise levels measured by SNR. The text “0.2/0.006” in the figure
indicates that the mean value and standard deviation of SISAL when SNR = 10 are, respectively, 0.2 and 0.06. For all statistics, smaller values indicate better
results. The proposed WFP-means algorithm achieves comparable results with the other advanced methods, e.g., K-P-means and MVC-NMF. The WFP-means
and K-P-means are less sensitive to noise level variation than the other methods, i.e., SISAL and MVC-NMF. FCM achieves the lowest performance based on
overall evaluation.

assumption that there is at least one pure pixel in HSI for
each endmember. However, this assumption is not true in many
datasets. In order to address HSI without pure pixels, the mini-
mum volume approaches, e.g., MVC-NMF [5] and ICE [10],
estimate endmembers by identifying a simplex of minimum
size containing the data. However, these approaches could not
achieve their optimal performance when the pixels in HSI are
highly mixed [3]. The statistical approaches do not rely on the
pure pixel assumption, because they model the endmembers
and abundances using proper prior distributions. However, they
require large computational cost, when dealing with practical
data of large size. With respect to these difficulties, one alter-
native approach is to explicitly estimate the “purified pixels”
from mixed pixels in HSI. A “purified pixel” of a particular
endmember is defined as the residual after removing the spec-
tral contribution of the other endmembers from the mixed pixel.
If the purified pixels that are due to a particular endmember can
be identified, the estimation of this endmember is an easy task,
which, e.g., can be achieved by replacing the endmember with
the mean value of purified pixels. This approach is investigated
in this paper to achieve an efficient HEE model. Based on our
previous research on the K-P-means algorithm [28], we propose
a fuzzy version of K-P-means for addressing this issue.

The noise variance heterogeneity effect has not been fully
addressed in the literature. HSI is inevitably contaminated by
noise during the data acquisition process. Since the spectral
signatures of different pure materials are highly correlated, the
HU approaches are sensitive to noise [3]. Therefore, the suc-
cess of HU and HEE approaches depends on their effectiveness
in resisting the noise effect. Some geometric approaches, e.g.,
MVC-NMF [5], suppress noise beforehand using PCA. Some
other approaches project data onto signal subspace to reduce
noise influence. The statistical approaches deal with noise by
explicitly modeling noise distribution. However, most of these
methods assume that different bands in HSI contain the same
degree of noise. This is a strong assumption and not true in most
cases, considering the different imaging mechanism of different
bands and the presence of junk bands [29]. Therefore, it is nec-
essary to design HEE approach that is capable of addressing
noise variance heterogeneity.

Motivated by the above discussions, the paper therefore
presents a weighted fuzzy purified-means (WFP-means) clus-
tering model for HEE. The proposed model interprets HEE
as a soft clustering problem, where each class corresponds to
an endmember, and the soft class memberships correspond to
the abundances of endmembers. This interpretation is further
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Fig. 2. True endmembers (green line) and estimated endmembers (black line) achieved by different methods. Each column displays the four endmembers of a
method by row. WFP-means and K-P-means yield endmembers that are most similar to the true values. The endmembers in the bottom row achieved by SISAL
and MVC-NMF do not match the true endmember very well. FCM fails to determine the endmembers from HSI.

combined with the ideas of purified pixels estimation and the
heterogeneous noise adjustment for efficient HEE. For model
optimization, the endmembers are estimated as the weighted
means of the purified pixels in the same class, called “purified
means,” while the abundances of endmembers at a pixel are
estimated as the coefficients of weighted nonnegative regres-
sion model. The proposed WFP-means is iteratively optimized
by alternating between the estimation of endmembers and the
estimation of abundances. The contributions of this paper lie in
the following aspects.

1) A novel statistical generative fuzzy-membership clus-
tering model is introduced for HEE. In the proposed
WFP-means algorithm, the simultaneous modeling of
endmembers, abundances, and heterogenous noise con-
stitutes a sound modeling framework. Since the proposed
model captures the data generation mechanism described
in linear spectral mixture model (LSMM), the abundances
and endmembers can be elegantly integrated into a fuzzy
clustering framework. Moreover, the proposed model is
compact comparing with other statistical approaches that
relies on additional model definitions and parameters.

2) The noise variance heterogeneity effect is addressed.
Since different spectral bands tend to have different
noise levels, efficient HEE models need to accommodate
the noise heterogeneity effect, and thereby resist noise
influence on endmember estimation. The proposed WFP-
means model is capable of incorporating the statistical
description of noise characteristics. In model optimiza-
tion, a weighted least square regression is adopted for

abundance estimation, in order to account for the noise
heterogeneity effect.

3) The modeling of endmembers as weighted expectations
of purified pixels is introduced. The proposed WFP-
means model is based on the concept of “purified pixels.”
Comparing with a “mixed” pixel in HSI that is usually
treated as a linear combination of endmembers, a “puri-
fied” pixel is due to the sole contribution of a particular
endmember. A “purified” pixel for an endmember can
be obtained by removing the contributions of the other
endmembers from the mixed pixel. The resulting purified
pixels can be treated as realizations of the endmember
subject to different weights and random noise. Therefore,
given the purified pixels, the endmember can be estimated
as the weight mean of the purified pixels.

Comparing with our previously proposed K-P-means algo-
rithm that also adopted the purified means idea, WFP-means
algorithm proposed in this paper provides necessary and
important improvements and interpretational advantages. First,
WFP-means addresses the noise heterogeneity effect, which is
ignored in the K-P-means algorithm. The experiments demon-
strate that WFP-means can better reduce the bias caused by
noise variance variation. Second, WFP-means does not rely
on the discrete/hard class membership by identifying dominant
endmembers, but use the soft class membership of all pixels
for estimating the endmembers. Therefore, WFP-means is more
capable of identifying the endmember that does not admit pre-
dominant presence on any pixel in the image. Third, according
to WFP-means, LSMM innately defines a clustering model,
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Fig. 3. Statistics (i.e., SAD, SID, AAD, and AID) achieved by different methods over different degrees of noise variance heterogeneity measured by the amplitudes.
For all statistics, smaller value indicates better result. Overall, WFP-means produces the lowest values on all measures over all amplitude values. Moreover, WFP-
means is insensitive to the changing of amplitude values, indicating that WFP-means is capable of resisting the noise variance heterogeneity effect. The statistic
values of all other method increase fast with the increase of amplitudes. In particular, SISAL is most sensitive method, in terms of SAD and SID.

which provides further insights into the identified problems.
Finally, WFP-means provides an alternative purified mean
approach for estimating the endmembers, which is proved by
simulated experiment to be able to achieve comparable perfor-
mance with K-P-means, when the noise heterogeneous effect in
HSI is ignored.

The rest of this paper is organized as follows. Section II intro-
duces the proposed methodology. Section III conducts experi-
ments on both simulated and real HSI. Section IV concludes the
study.

II. METHODOLOGY

A. Problem Formulation

This paper addresses HEE based on LSMM with Gaussian
noise. LSMM is a widely used approach to identify and quan-
tify materials in remote sensing imagery [30]. In LSMM, the
spectral signature of a mixed pixel at position i, denoted by
xi, can be expressed as a linear combination of the spectra of
K pure materials (i.e., endmembers), weighted by fractional
abundances

xi =

K∑
k=1

aksik + ni (1)

where ak is the kth endmember, sik is the abundance of ak at
pixel i, which is usually required to satisfy the sum-to-one and
nonnegativity constraints∑

k

sik = 1 and ∀ sik ≥ 0 (2)

and ni is the noise vector at pixel i, which satisfies a zero-mean
Gaussian distribution

p(ni) =
1√

(2π)d |Λ|exp
(
−1

2
nT

i Λ
−1ni))

)
(3)

where Λ is the noise covariance matrix and d is the number of
spectral bands. Based on (1) and (3), the conditional distribution
of xi can be expressed as

p(xi|θ) = 1√
(2π)d |Λ|

· exp
⎛
⎝−1

2

(
xi −

∑
k

aksik

)T

Λ−1

(
xi −

∑
k

aksik)

)⎞⎠
(4)

where θ includes {ak}, {sik}, and Λ.
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Fig. 4. True endmembers (green line) and estimated endmembers (black line) achieved by different methods. WFP-means produces spectra that match the true
endmembers very well. In contrast, some spectra produced by other methods have needle-like features that cause them to deviate from the true endmembers.

Fig. 5. Abundance maps obtained by different methods. Each column displays maps of four endmembers achieved by a method. It demonstrates that WFP-means
produces abundance maps that are most similar to the true maps. It contains less artifacts than the other methods, which fail to produce informative and smooth
endmember maps in some cases, especially in the third row.

According to the above model definition, HEE intends to
estimate {ak} and {sik} from {xi}, which is formulated as
a maximum a posteriori (MAP) problem

θ̂ = argmax
θ

p(x|θ)p(θ). (5)

This is an ill-posed inverse problem, since the number of
unknown parameters is larger than the number of observa-
tions. Nevertheless, this model can be solved by the expectation

maximization (EM) algorithm, which treats {ak} as missing
observations and alternates until convergence the estimation of
{sik} for given {ak} and the update of {ak}, for given {sik}.

In probabilistic models, prior distributions p(θ) can be
utilized to serve as regularization, in order to achieve mean-
ingful data inversion. This paper follows the MAP strategy
by proposing an WFP-means model. Nevertheless, instead of
explicitly modeling the probabilistic distributions of unknown
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Fig. 6. Clustering labels obtained from abundances estimated by different methods. It indicates consistent results with Fig. 5. WFP-means produces a smooth
map, where different classes are correctly delineated. The other methods produce maps with many artifacts, and they all fail to identify some classes correctly.

parameters, θ is treated as nonrandom variable, and prior
knowledge is incorporated by imposing some constraints on θ.
In the proposed model, the following three important issues are
addressed for efficient HEE.

1) The mixture/clustering effect among HSI pixels is uti-
lized. The LSMM innately defines a clustering model,
where each endmember ak corresponds to an individual
class. In LSMM, since abundances of endmembers at a
pixel {sik| k = 1, 2, . . . ,K} are nonnegative, they can
be treated as the “soft” class membership [31], [32]. As
a result, the class composition of a HSI pixel is directly
connected with the abundance pattern of endmembers at
that pixel. Therefore, HEE can be interpreted as a cluster-
ing issue, where the mean vectors {ak} of classes and
class membership of pixels {sik} are iteratively opti-
mized by alternating between the estimation of {sik}
and the update of {ak}. Based on this interpretation,
we present a WFP-means clustering model for HEE. We
will show in Section II-C, the differences and connec-
tion between the proposed model and popular clustering
algorithms, e.g., K-means and fuzzy c-means (FCM).

2) The noise variance heterogeneity effect in spectral
domain is considered. The noise distribution is charac-
terized by Λ. Since the correlation among spectral bands
in xi can be largely captured by

∑K
k=1 aksik, Λ is a

diagonal matrix

Λ =

⎡
⎢⎢⎢⎣
σ2
1 0 · · · 0
0 σ2

2 · · · 0
...

...
. . .

...
0 0 · · · σ2

d

⎤
⎥⎥⎥⎦ (6)

where σ2
j is the noise variance of the jth band. In HSI,

noise levels of different bands {σ2
j } are not necessarily

equal, due to varying physical properties of different
spectral bands and the existence of junk bands [29].

In Section II-D, this noise variance heterogeneity effect
is addressed by adopting a weighted nonnegative least
squares (WNNLS) algorithm to solve the proposed WFP-
means model.

3) Purified pixels are separated from the mixed pixels for
endmember estimation. A purified pixel for an endmem-
ber is defined as the spectral residual after removing the
contribution of all the other endmembers from the mixed
pixel. According to the LSMM in (1), a mixed pixel can
be expressed as a weighted summation of endmembers
based on their abundances. Accordingly, the individual
contribution of endmembers can be separated, if the abun-
dance and endmembers are known. Pixels, after being
purified, can be treated as the realization of an endmember
subject to different weights and random noise. Therefore,
the endmember can be estimated as the weighted average
of purified pixels.

By considering the above factors, the proposed WFP-
means model constitutes an elegant solution for HEE and
HU, without the need to resort to complex prior distribu-
tions and other modeling requirements. It is capable of
estimating both endmembers and abundances iteratively
in an adaptive manner. Moreover, it is especially effective
for addressing HSI with band-dependent noise.

B. Existing Models

1) K-Means: The objective function of K-means clustering
model can be formulated as

argmin
θ

n∑
i=1

∥∥∥∥∥xi −
K∑

k=1

aksik

∥∥∥∥∥
2

(7)

s.t. ∀sik = 0 or 1, and
∑
k

sik = 1 (8)
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Fig. 7. Abundance maps obtained by different methods. Each column displays seven endmembers associated, respectively, with seven ground truth classes in
Indian Pines image. Overall, WFP-means produces abundance maps that best correlate with the ground truth. Each abundance map of WFP-means highlight a
class in ground truth, indicating that WFP-means has identified the correct endmembers, considering that different ground truth classes tend to be dominated by
different endmembers. The observation that WFP-means sometimes highlights part of the ground truth area is also reasonable considering that a ground truth class
tends to involve multiple endmembers, with each one dominating a different part of the ground truth class. Other methods fail to highlight the ground truth in the
last row, and tend to produce more bright areas than the ground truth in other rows.

where ‖ · ‖2 is the Euclidean norm, and θ represents unknown
parameters, including {ak} and {sik}. Given this objective
function, the K-means algorithm repeats two steps until con-
vergence, i.e., estimate {sik} based on {ak} and update {ak}
using {sik}

sik = δ(k − t̂), with t̂ = argmin
t

‖xi − at‖ (9)

ak =

∑n
i=1 sikxi∑n
i=1 sik

(10)

where δ(·) is the Dirac delta function. Based on the above
formulation, K-means is a “hard” membership clustering algo-
rithm. It is not suitable for HEE, because the binary con-
straint on {sik} implies that all pixels in HSI are pure
pixels.

2) Fuzzy c-Means: As a soft clustering algorithm, FCM
aims to optimize the following objective function [31], [32]:

argmin
θ

n∑
i=1

K∑
k=1

smik ‖xi − ak‖2 (11)

s.t. 0 ≤ sik ≤ 1 and
∑
k

sik = 1 (12)

where 1 < m < ∞ determines the degree of fuzzyness. Similar
to K-means, FCM iteratively alternates the estimation of {sik}
using (13) and the update of {ak} using (10)

sik =
1∑K

j=1

(‖xi−ak‖2

‖xi−aj‖2

) 2
m−1

. (13)
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Due to the soft constraints on sik, FCM produces fuzzy class
membership, allowing a pixel to have mixed class composition.
Nevertheless, estimating ak using mixed pixels xi as conducted
by FCM in (10) is problematic. Since a mixed pixel in HSI
involves the spectral contribution of multiple pure materials,
the averaging of mixed pixels will lead to biased estimation of
any endmembers involved. In order to address this problem, the
proposed WFP-means model estimates ak using purified pixels
{yi} that are solely due to the contribution of ak, as shown in
Section II-E. Another problem with FCM is that it is difficult to
obtain the optimal value of the fuzzyness parameter m. With a
suboptimal parameter setting, FCM produces biased abundance
estimation. In contrast, the proposed WFP-means model can
avoid this problem by estimating abundance using constraint
weighted least squares approach, where the degree of fuzzyness
is adaptively determined.

C. WFP-Means

The proposed WFP-means model has the following objective
function:

argmin
θ

n∑
i=1

(
xi −

∑
k

aksik

)T

Λ−1

(
xi −

∑
k

aksik)

)

(14)

s.t. ∀sik ≥ 0. (15)

The objective function of WFP-means has several differences
with that of K-means. First, it imposes nonnegative constraint,
instead of binary constraint on sik, thereby allowing pixels
to have fuzzy/soft class membership. This characteristic helps
build the connection between soft membership of classes and
the abundance of endmembers, and enables WFP-means to
model the HEE issue. Note that here we discard the use of
sum-to-one constraint on sik, because we empirically find that
it does not increase the HEE performance, but increases greatly
the computation time. The second difference with classical K-
means model is that WFP-means incorporates noise covariance
matrix Λ defined in (6) to address the noise heterogeneity
effect.

WFP-means also differs essentially with FCM in objective
functions. In (14), WFP-means tries to minimize the difference
between xi and

∑
k aksik, while FCM in (11) intends to min-

imize the weighted difference between xi and ak. Therefore,
given {sik}, WFP-means promotes ak that is capable of pro-
viding a sound representation of xi when working jointly with
other {aj |j �= k}, while FCM promotes ak that alone repre-
sents xi well. As a result, in HEE, where pixels are highly
mixed, FCM is less efficient for separating different sources.
In contrast, WFP-means is more efficient for HEE, because it
innately reflects the data generation mechanism described by
LSMM.

Following the EM algorithm, the proposed WFP-means is
solved in an iterative manner, by alternating between the esti-
mation of {sik} based on {ak} and the update of {ak}
based on {sik}. The former is essentially a nonnegative least
squares optimization (NNLS) issue. To reduce the bias caused

by the noise heterogeneity effect, in Section II-D, we intro-
duce a weighted NNLS approach based on the estimated
band-dependent noise variances.

For the estimation of {ak}, in contrast to K-means and FCM
that rely on mixed pixels {xi}, we introduce in Section II-E, a
novel approach utilizing “purified” pixels. In this approach, the
abundance {sik} is used to obtain purified pixels for each end-
members. Finally, an endmember is estimated as the weighted
average of its purified pixels.

D. Abundance Estimation Via WNNLS

According to the EM algorithm, one essential step is to
estimate {sik} given {ak}, which is an NNLS issue, and is
typically formulated as [33]–[35]

arg min
{sik}

∥∥∥∥∥xi −
∑
k

aksik

∥∥∥∥∥
2

(16)

s.t. ∀ sik ≥ 0.

Based on this above formulation, a popular approach for
NNLS is an active-set method, which was proposed by Lawson
and Hanson in [33] and modified by Bro and De Jong for fast
computation [35].

However, (16) assumes that different bands in HSI admit the
same noise level, which is not necessarily true due to the vary-
ing physical properties of different spectral bands. Since least
squares approaches are sensitive to noise distributions, failure
to address this noise heterogeneity issue will lead to biased esti-
mation of {sik}. To achieve accurate estimation of abundance,
we want to trust more on informative bands with lower noise
level. Therefore, in NNLS, instead of assigning equal weight
to all bands, a sound approach is to assign smaller weight to a
band with high noise level, and a larger weight to a band with
low noise level. This can be achieved by using weights that are
inversely proportional to noise variances.

A WNNLS approach is therefore presented, with the follow-
ing objective function:

arg min
{sik}

(
xi −

∑
k

aksik

)T

Λ−1

(
xi −

∑
k

aksik)

)

s.t. ∀sik ≥ 0 (17)

where Λ is defined in (6). Since {σ2
j } in Λ are unknown, they

need to be estimated in WNNLS. One way is to iterative esti-
mate noise variance during the model optimization process,
such as in iterative weighted least squares algorithm. Here,
however, we estimate noise variances before optimizing the
model, by identifying a homogeneous area in HSI. Then, σ2

j

is estimated as the variance of the pixels values in the homo-
geneous area of the jth band. This approach assumes that the
true pixel values in homogeneous ares are the same, and there-
fore the variation is mainly caused by noise. This approach has
been widely adopted in the image denoising literature, because
it is robust and can reduce the computation cost due to iterative
noise variance estimation.
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Given the estimated Λ̂, the objective function can be refor-
mulated as

arg min
{sik}

∥∥∥∥∥Λ̂−0.5xi −
∑
k

Λ̂−0.5aksik

∥∥∥∥∥
2

s.t. ∀sik ≥ 0. (18)

It means that WNNLS can be achieved by adjusting xi and
ak using Λ̂, and then feeding the ordinary NNLS approach with
adjusted quantities. The complete algorithm of WNNLS based
on fast active set algorithm [35] is summarized in Algorithm 1.

Algorithm 1. WNNLS

Input: xi, A = (a1,a2, . . . ,aK), Λ
Output: s = (si1, si2, . . . , siK)T

Initialization: xi = Λ̂−0.5xi and A = Λ̂−0.5A,
two complementary indices sets P = ∅ and Z =
{1, 2, . . . ,K}, s = 0, w = AT (x−As)

1: while Z �= ∅ and max(wZ > tol1)do
2: t = index of max(wZ) in w
3: add t to P , and remove t from Z
4: gP = [(ATA)P ]−1(AT b)P

5: gZ = 0
6: while min(gP ) < tol1 do
7: α = min(sk/(sk − gk) for i in P )
8: s = s+ α(g − s)
9: Q = indices in s where abs(sP ) < tol1

10: add Q to Z
11: remove Q from P
12: gP = [(ATA)P ]−1(AT b)P

13: gZ = 0
14: end while
15: s = g
16: w = AT (x−As)
17: end while
Note: XY is restricted to the row and column variables of X
that are included in the indices set of Y ;

E. Endmember Estimation Via Weighted “Purified” Means

Another step in EM algorithm is the estimation of {ak} given
{sik}, according to the following equation:

ak =

∑n
i=1 y

k
i sik∑n

i=1 sik
(19)

where yk
i is the ith purified pixel that is solely due to the kth

endmember, which can be obtained by removing the contribu-
tions of all endmembers except the kth one from the ith pixel
in HSI

yk
i = xi −

∑
t �=k

atsit. (20)

Therefore, comparing with K-means and FCM that use
mixed pixels {xi} in (10) for endmember estimation, the pro-
posed WFP-means model estimates the kth endmember using

the purified pixels {yk
i } due to the kth endmember. Since

mixed pixels {xi} in HSI contain the contribution of multi-
ple endmembers, using them to estimate a single endmember
will inevitably be disturbed by the presence of the other end-
members. By performing weighted average, FCM adjusts the
involvement of a mixed pixel xi based on the soft membership
it assumes on an endmember. Pixels that are of higher asso-
ciation with an endmember will be assigned larger weights in
the estimation of this endmember. However, the mixed effect
just mentioned cannot be resolved, regardless of the magnitude
of the weight being assigned. Therefore, using weighted aver-
age of mixed pixels as estimate of endmember is essentially
biased.

In the proposed WFP-means model, however, the disturbance
effect caused by the existence of other endmembers is pre-
cluded by removing the contributions of the other endmembers
from the mixed pixels. Since the resulting purified pixels are
realizations of an endmember subject to different weight values
and random noise, using them for performing weighted average
leads to meaningful estimation of the endmember. A similar
approach has been adopted by a K-P-means algorithm [28].
However, in contrast to K-P-means estimates ak as the mean
value of only those pixels in the kth class dominated by the kth
endmember, WFP-means estimates ak as weighted mean of all
the pixels in the image regardless of their hard/discrete class
labels. The new approach, as implemented in WFP-means, can
be treated as soft version of that in K-P-means, and is able to
handle the case when an endmember does not have dominant
abundances on any pixels in the HSI.

F. Summary of Complete Algorithm

A summary of the proposed WFP-means algorithm is pre-
sented in Algorithm 2. Given an HSI, the time complexity
of WFP-means depends primarily on the number of itera-
tions before convergence. In step 7, the estimate of ak relies
on other endmembers {at|t �= k} for calculating the purified
pixels. In the mth iteration, {at|t �= k} that are used for esti-
mating ak may have already been updated in the current
iteration. All the updated endmembers in the current iteration
are used for estimating ak, in order to increase the speed of
convergence.

Algorithm 2. WFP-Means

Input: X = {xi}, K, Λ, iter, i.e., the maximum number of
iterations, and tol2, i.e., the tolerance for stopping criterion
Output: A = (a1,a2, . . . ,aK), and S = {si} where si =
(si1, si2, . . . , siK)T

Initialization: A=VCA(X,K), where VCA is the algorithm
in [4]

1: while
∥∥Am −Am−1

∥∥
F
> tol2 and m < iter do

2: for i = 1, 2, . . . , ndo
3: si=WNNLS(xi,A

m,Λ), using Algorithm 1
4: end for
5: for k = 1, 2, . . . ,Kdo
6: calculate {yk

i | for i = 1, 2, . . . , n} using (20)
7: calculate ak using (19)
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8: end for
9: Am = {ak| for k = 1, 2, . . . ,K}

10: end while
Note: ‖·‖F is the Frobenius norm

III. EXPERIMENTS AND DISCUSSION

The proposed WFP-means algorithm is tested on both sim-
ulated and real HSI, in comparison with several other popular
HEE methods. The methods used for comparison include FCM
[31], [32], VCA [4], MVC-NMF [5], SISAL [6], and K-P-
means [28]. The selection of these methods is based on the
availability of the codes, as well as their relevance to our work.
Three experiments are conducted. In the first experiment, differ-
ent methods are tested on a simulated HSI with isotropic noise,
which assumes the same variance on different bands. The sec-
ond experiment is also performed on simulated image, but with
heterogeneous noise that admits varying noise variances on dif-
ferent bands. The last experiment is based on the real Indian
Pines HSI.

In all experiments, we empirically set the parameters of
WFP-means to be iter = 30, tol2 = 10−5. The tol1 param-
eter in WFP-means is set to be tol1 = 10−8 in the first two
experiments, and tol1 = 10−7 in the last experiment. The
WFP-means and K-P-means algorithms are set to have five
replicates to adopt the one with the lowest representational
error. The parameters setting of all the other algorithms are
applied according, respectively, to the authors’ suggestions.
Since VCA and SISAL only estimate the endmembers, we use
the the NNLS algorithm implemented in [35] to extract the
abundance.

In the simulated studies, since the true values of endmem-
bers and abundances are known, some numerical measures can
be acquired to evaluate the performance of methods. Here, we
adopt four widely used measures for performance assessment
[5]. The spectral angle distance (SAD) is defined as

SAD = cos−1

(
aT â

‖â‖ ‖a‖
)

(21)

where â and a are, respectively, the estimated and the true end-
members. Smaller SAD value means shorter distance between
the estimated endmember and the true endmember, thereby
indicates better performance in terms of endmember estimation.
The spectral information divergence (SID) is expressed as

SID = D
(a
â

)
+D

(
â

a

)
(22)

where D(xy ) measures the relative entropy between x and
y [36]. Similar to SAD, smaller SID value indicates better
endmember estimation. The abundance angle distance (AAD)
and abundance information divergence (AID) are obtained
by replacing endmember vector a with abundance vector
s. Smaller AAD and AID values imply better abundance
estimation.

A. Experiment 1: Test on Simulated HSI With Isotropic Noise

In the first experiment, a 256× 256 sized image with mixed
pixels of four endmembers randomly selected from the USGS
digital spectral library is simulated, following the procedure
reported in [5]. Using the four endmembers, mixed pixels are
created by first dividing the entire image into 8× 8 sized homo-
geneous blocks of one of the four endmembers, then degrading
the blocks by applying a spatial low pass filter of 7× 7. To
further increase mixing degree, the remaining relatively pure
pixels with 80% or larger single abundance are forced to take
equal abundances on all endmembers.

Zero-mean Gaussian noise is added to further degrade the
image. In this experiment, different bands in HSI are con-
taminated by noise of the same variance. In order to examine
the robustness of different methods to noise levels, we sim-
ulated images with four different signal-to-noise ratio (SNR),
i.e., SNR = 10, 20, 30, and 45. For each SNR, we produce 10
images with different noise realizations to reduce the bias that
could be caused by randomness.

Fig. 1 displays the statistics of different methods over vary-
ing noise levels. It indicates that the proposed WFP-means
algorithm achieves comparable results with the other advanced
methods, e.g., K-P-means and NMF. Specifically, WFP-means
produces slightly higher SAD and SID values than K-P-means,
which seems to yield the smallest SAD and SID values in most
cases. However, in terms of AAD and AID, WFP-means and K-
P-means perform comparably. The WFP-means and K-P-means
are less sensitive to noise level variation than the other methods,
i.e., SISAL and MVC-NMF. SISAL performed very well when
the noise level is low, e.g., SNR = 30 and 45. However, its per-
formance deteriorates quickly from SNR = 20 to SNR = 10,
especially in terms of SAD and SID. MVC-NMF indicates sim-
ilar patterns. FCM achieves the lowest overall performance. It
always produces large bias in abundance estimation.

Fig. 2 shows the endmembers estimated by different methods
when SNR = 20, chosen randomly from the ten noise real-
izations when SNR = 20. WFP-means and K-P-means yield
endmembers that are most similar to the true values. The
endmembers in the bottom row achieved by SISAL and MVC-
NMF do not match the true endmember vary well. FCM fails to
determine the endmembers from HSI.

B. Experiment 2: Test on Simulated HSI With Heterogeneous
Noise

The same method in Experiment 1 is adopted for generating
HSI. However, instead of using the same SNR for all bands,
different SNRs are assigned to different bands to simulate the
noise heterogeneity effect. The SNR values used for simulation
are estimated from the benchmark Indian Pines image, intro-
duced in Section III-C, following the procedures described in
Section II-D. Denote the estimated SNR vector that has been
centralized and normalized by q, then the simulated SNR r can
be obtained according to the following rule:

r = αq + β (23)

where α is the amplitude that determines the magnitude of fluc-
tuation of band-dependent SNR, and β is the center value that
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Fig. 8. These endmembers associated with the abundance maps in Fig. 7. Green lines are the the mean spectra of the ground-truth classes in Indian Pines image,
and black lines are extracted endmembers by different methods. It indicates consistent results with Fig. 7, i.e., the endmembers extracted by WFP-means correlate
with the mean spectra of ground-truth classes better than those of the other methods especially on the second row, leading to consistent conclusions drawn from
Fig. 7.

defines the overall SNR of all bands. Therefore, by changing α,
noise variance heterogeneity effect of varying degrees can be
simulated. Bigger α value leads to stronger noise heterogeneity
effect. Here, we use fixed β = 20, but six different α values,
i.e., α = 0, 3, 5, 6, 7, 9.

Fig. 3 shows the statistics achieved by different methods
on the second simulated HSI. As we can see, WFP-means
performs better than FP-means, demonstrating the impor-
tance and benefit of addressing the noise heterogeneous effect.
Considering that K-P-means and FP-means perform similarly
in Fig. 3, we only keep the results of K-P-means in the other
figures.

Fig. 3 shows the statistics of different methods over different
α values. A variant of WFP-means, called FP-means, which
ignores the noise heterogeneous effect by discarding the use of
the weighting scheme, is also included. Overall, WFP-means
produces the lowest values on all measures over all ampli-
tude values. The fact that WFP-means outperforms FP-means
demonstrates the importance and benefit of addressing the noise
heterogeneous effect. Moreover, WFP-means is insensitive to
the changing of amplitude values, e.g., it produces the most

consistent statistic values over the six amplitude levels, indicat-
ing that WFP-means is capable of resisting the noise variance
heterogeneity effect. The statistic values of all other methods
increase faster with the increase of amplitudes. SISAL is most
sensitive method in terms of SAD and SID.

Fig. 4 plots the endmembers achieved by different meth-
ods when α = 7. WFP-means produces spectra that match the
true endmembers very well. In contrast, some spectra produced
by other methods have needle-like features that cause them to
deviate from the true endmembers.

Fig. 5 displays the abundance maps associated with the end-
members in Fig. 4. The results are randomly picked up from the
10 noise realizations when amplitude equals 5. It demonstrates
that WFP-means produces abundance maps that are most sim-
ilar to the true maps. It contains less artifacts caused by noise
than the other methods, which fail to produce informative and
smooth endmember maps in most cases, especially in maps of
the third row.

Fig. 6 shows the hard membership, i.e., labels, obtained
from the abundances estimated by different methods. It indi-
cates consistent results with Fig. 5. WFP-means produces a
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smooth map, where different classes are correctly delineated.
The other methods produce maps with many artifacts, and all
fail to identify some classes correctly.

C. Experiment 3: Test on Real HSI

In this experiment, all methods are tested on the bench-
mark Indian Pines image, which was captured by Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS) over a vege-
tation area in northwestern Indiana, USA, with a spatial resolu-
tion of 20 m, consisting of 145× 145 pixels of 16 ground-truth
classes and 220 spectral bands.

Most methods use the number of endmembers as input,
which, however, is unknown in the Indian Pines dataset.
Considering that there are 16 ground-truth classes in the dataset,
and that some classes may involve more than 1 endmember,
each method is set to extract 20 endmembers from the dataset.
We empirically found that using other values around 20 does
not significantly influence the comparison results. The SISAL
method is not used here because it fails to produce seemingly
meaningful endmembers.

In this experiment, since the true endmembers are unknown,
we rely primarily on the ground-truth information to evalu-
ate the performances of different methods. Fig. 7 displays the
abundance maps obtained by different methods, where each
row displays an endmember associated with a ground-truth
class. From top to bottom, the associated classes in Indian
Pines image are, respectively, 1) corn-no-till; 2) grass/pasture;
3) grass/trees; 4) haywindrowed; 5) wheat; 6) stone-steel-tower;
and 7) grass/pasturemowed. For each ground-truth class in
Fig. 7, we looked through all the 20 endmembers of a method,
and visually determine the endmember that best matches the
ground-truth. Overall, WFP-means produces abundance maps
that have the best correlation with the ground-truth classes.
Considering that different ground-truth classes in HSI tend to
be dominated by different endmembers, we would expect a
particular endmember to have high abundance on a particu-
lar ground-truth class, but less abundance on the other classes.
Accordingly, the observation that the abundance maps obtained
by WFP-means associate better with the ground-truth classes
than those of the other methods might indicate a better perfor-
mance of WFP-means than the other methods. Considering the
complexity of material composition in ground-truth classes, it is
however not surprising to see some irregular patterns, e.g., the
abundance maps of WFP-means sometimes highlight only parts
of ground-truth class instead of the whole class, and sometimes
highlight slightly other classes besides the main class.

Fig. 8 indicates consistent results with Fig. 7, i.e., the end-
members extracted by WFP-means correlate with the mean
spectra of ground-truth classes better than those of the other
methods, leading to consistent conclusion drawn from Fig. 7.

IV. CONCLUSION

This paper presented a novel fuzzy membership clustering
model for HEE, where the endmembers are treated as indi-
vidual classes, and the abundances of endmember are defined
as the soft class membership. Therefore, HEE is interpreted

as a clustering problem, which is solved by iteratively alter-
nating the estimation between the estimation of abundances
and the update of endmembers. The proposed model is fur-
ther enhanced by utilizing the purified pixels estimated using
abundance and endmember information. The endmembers are
estimated as the mean values of purified pixels, leading to
an elegant optimization solution. Moreover, the noise variance
heterogeneity effect is addressed in the proposed model by
explicitly modeling the noise distribution. The proposed WFP-
means algorithm is tested on both simulated and real HSI, in
comparison with several other popular methods. The results
demonstrate that WFP-means produces better endmember and
abundance estimation than most referenced methods, especially
in the scenario of heterogeneous band-dependent noise.
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