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ABSTRACT

A multi-scale statistical non-redundancy modeling approach
is introduced for saliency detection in images. The statisti-
cal non-redundancy of pixels at different wavelet sub-bands
is characterized using a multi-dimensional lattice of non-
parametric statistical models, thus taking into account image
saliency at multiple scales. This identifies saliency in image
attributes at multiple scales, and makes saliency detection
strongly robust against noisy input images. Results based
on images from a public database show that the proposed
approach outperforms existing single and multi-scale ap-
proaches, particularly when dealing with noisy images.

Index Terms— multi-scale analysis, non-parametric
methods, wavelet transforms, saliency detection

1. INTRODUCTION

Saliency detection in images involves highlighting those re-
gions in the image which are unique in attributes — like color,
texture, etc. — relative to other regions in the image. This
forms an important first step in various image processing al-
gorithms such as object detection [1], existence detection [2],
object recognition [3], image segmentation [4, 5, 6], etc. Until
very recently, the majority of traditional methods in saliency
detection detect saliency at a single scale. Since different fea-
tures in the image are highlighted at different scales, and nat-
ural images are commonly affected by noise, it is often desir-
able to capture saliency information of an image at multiple
scales.

Achanta et al. [7] introduced a frequency-tuned saliency
detection approach, which uses band pass filtering to obtain
full-resolution saliency maps, and preserves boundary infor-
mation of original images. The concept of frequency-tuned
saliency detection has been extended in [8] with a maximum
symmetric surround approach to overcome effects of very
large salient regions or complex backgrounds. In addition,
many local contrast based saliency detection methods have
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Fig. 1: Based on noiseless (columns 1 and 3) and noisy
(columns 2 and 4) images (top), we analyze the statistical
non-redundancy of pixels at different wavelet sub-bands to
produce high-resolution saliency maps. Taking into account
the image saliency at multiple scales, image noise barely in-
fluences the resulting saliency maps (bottom).

been proposed that evaluate saliency of an image with respect
to small neighborhoods [9, 10, 11, 12, 13, 14]. These local
contrast schemes focus on edges in images, rather than high-
lighting the entire salient region. To overcome the limitations
of local contrast based concepts, Cheng et al. [15] suggested
two saliency approaches that take the global contrast of im-
ages into account. The histogram contrast based approach
relies on the color statistics of an image to compute saliency
maps. The region contrast based approach segments input
images first, and uses spatial relationships of image pixels
within segmented regions along with the contrast. A similar
global contrast based approach is discussed in [16] where the
luminance contrast is used to compute the saliency values
of the pixels in the image. Hou and Zhang [17] introduced
a spectral residual approach that analyzes the log-spectrum
of input images, and extracts the residuals of input images
in the spectral domain. The latter is used to construct the
saliency map in the spatial domain. The approach of [18]
makes use of a learned neighborhood-based texture feature
model, sparse texture modeling, and saliency computation
based on the concept of textural distinctiveness for detecting
salient regions in images. A recent non-parametric approach
discusses saliency based on statistical non-redundancy of im-
age pixel neighborhoods [19], and does not rely on training
or prior information about the image.
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Fig. 2: The multi-scale statistical non-redundancy model (a) and the proposed saliency detection technique (b).

Existing multi-scale approaches consider local and global
features at multiple scales for saliency computation. As a
prominent example, Lui et al. [14] propose to use a lin-
ear combination of local color contrasts obtained at mul-
tiple scales in a Gaussian image pyramid as an impor-
tant feature for saliency computation. The approach of
Imamogilu et al [20] employs wavelet transformation on
natural images to create saliency maps considering local edge
and texture features at multiple scales in a center-surround
manner. The final saliency map is then computed by fusing
the individual saliency maps based on maximum computa-
tion.

In this paper, we extend the promising concept of statisti-
cal non-redundancy [19] to a multi-scale modeling framework
based on wavelet decompositions, where a multi-dimensional
lattice of nonparametric statistical models is used to charac-
terize statistical non-redundancy of pixels at different wavelet
sub-bands. Given the Gaussian characteristic of noise in nat-
ural images, our proposed framework involves the construc-
tion of statistical modeling of wavelet coefficients, and com-
putes the saliency value of every pixel by analyzing its sta-
tistical non-redundancy with respect to the different wavelet
sub-bands. This multi-scale approach does not only offer the
advantage of identifying saliency in image attributes at mul-
tiple scales, but also makes saliency detection strongly robust
against noise in natural images (see Fig. 1) because of its
explicit modeling of noise in the statistical non-redundancy
framework. This is an important difference to existing ap-
proaches such as [14] and [20] which do not explicitly model
noise for saliency computation.

The rest of the paper is organized as follows. We present
our multi-scale approach in Section 2, along with saliency
detection in Section 3. We discuss experimental results in
Section 4. Finally, conclusions are drawn and some directions
for future work is presented in Section 5.

2. MULTI-SCALE STATISTICAL
NON-REDUNDANCY MODELING

Salient regions of interest within natural images are regions
that typically exhibit low content redundancy when compared

to the rest of the image. Since such salient regions of inter-
est may exist at different scales, our aim is to quantify and
characterize such “non-redundancies” at different scales via
a multi-scale statistical modeling framework (see Fig. 2) to
better account for image saliency in a robust manner, particu-
larly when dealing with noisy images. Suppose that an image
fofsize X x Y is decomposed into a series of () sub-bands
at different levels via wavelet decomposition [21]. The sta-
tistical non-redundancy between two pixel neighborhoods N;
and N; (around the pixels ¢ and j respectively) at a particular
sub-band ¢ is defined as

O‘gj =1—P(Niq|Nj,q) ey
where P(N; 4N, ,) represents the probability of a pixel
neighborhood N; being a noisy observation of another pixel
neighborhood NN; following a noise process at a particular
sub-band ¢, where N; and N differ only in an additive ran-
dom component. We wish to model the noise process as an
independent and identically distributed Gaussian random field
with zero-mean and a variance ¢ and define the probability
P(Nig|Njq) as

7<N'ﬁq7NJkyq)2
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where N,;’fq denotes a pixel £ within the neighborhood N; of
a pixel ¢ at sub-band ¢. As such, a high value of agj denotes
high statistical non-redundancy, which indicates low content
redundancy between the two pixel neighborhoods.

Given this metric for quantifying the statistical non-
redundancy between pixels at a particular sub-band, we can
characterize the statistical non-redundancy of a pixel with re-
spect to entire sub-bands within a nonparametric multi-scale
modeling framework. Let P(a|q) denote the probability of
statistical non-redundancy at pixel 7 (i.e., o), given the entire
sub-band ¢. To obtain P(«a|q) in a computationally efficient
manner, we employ a stochastic nonparametric estimation
strategy, where a set of n samples (which we will denote
as x) drawn from a uniform distribution across ¢ is used to
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Fig. 3: Precision-recall curves for state-of-the-art multi (MC, WT) and single-scale saliency approaches (solid lines), and for
our approach (MSRN, dashed line). We averaged the curves over the images from the MSRA-B dataset for noiseless (a) and
noisy images (b) using additive Gaussian noise, with o = 24% of the dynamic range.

approximate P(a|q) based on the following formulation:

ZjEX ) (ag — agj)
A

where Z is a normalization term such that ) P(af|q) =
1. Based on empirical results, it was found that n = 300
samples was sufficient for obtaining a reliable approxima-
tion of P(a|q) for the purpose of saliency detection. Given
this nonparametric estimation strategy, we can then obtain an
X XY x @ lattice of nonparametric statistical models that
characterizes the statistical non-redundancy of different pix-
els at different scales.

P(ajle) =

3

3. SALIENCY MAPS

Given the proposed multi-scale statistical non-redundancy
modeling framework as shown in Fig. 2, we define the overall
saliency S(i|q) at a pixel 7 at sub-band ¢ as the expected value
of «y;, given the entire sub-band g:

S(ilg) =Y alP(aflg). “)

For the purpose of computing a final saliency map for the
detection of salient regions within an image, irrespective of
scale, one effective strategy is to compute the weighted av-
erage of the normalized saliency S, S € [0..1] across all
sub-bands ¢ to take salient regions identified at N decom-
position levels into consideration. Given that the expected
saliency F/(S|q) represents the overall non-redundancy of a
sub-band ¢, weighting w(i|q) is based on the difference be-
tween the saliency S(i|q) and E(S|q) and allows us to assign
greater weights to sub-bands containing regions with signifi-
cant, while de-emphasizing sub-bands with less or almost no
significant non-redundancy characteristics. Thus, we define
the final saliency as

S() = 1 S wlila)S(ila), )
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In the experiments discussed in this paper, we have used N =
3 decomposition levels. In addition, an un-decimated wavelet
transform [22] was employed for wavelet decomposition, as
it was found to provide improved saliency detection perfor-
mance when compared to saliency maps based on the dec-
imated wavelet transform [21]. For computing the saliency
maps of color images using the proposed method, we calcu-
late the saliency maps for the CIELab channels L, a, b, and
take a weighted average of these maps.

4. RESULTS AND DISCUSSIONS

We wish to use quantitative measures to evaluate the perfor-
mance of the proposed MSNR algorithm against the current
state-of-the-art in saliency detection. We compared our ap-
proach with 11 state-of-the-art saliency detection methods
which have been selected based on the following criteria
[7, 15, 18]: number of citations (spectral-residual (SR) [17],
visual attention (IT) [23]), recency (luminance-contrast
(LC) [16], graph-based (GB) [24], frequency-tuned (FT) [7],
Maximum Symmetric Surround (SS) [8], context-aware
(CA) [25], histogram-contrast (HC) [15], non-redundancy
(NR) [19]), and being related to our approach (multi-scale
contrast (MC) [26], multi-scale wavelet transform (WT) [20]).
Alternate saliency approaches suggest to incorporate high
level priors, image segmentation, and training into saliency
computation. Since these concepts differ fundamentally from
our proposed saliency approach that relies on low-level fea-
tures only, we excluded them in our evaluation to ensure a
consistent and fair comparison.

The robustness of the MSNR approach is shown by means
of precision-recall characteristics (see Fig. 3), obtained from
noiseless and noisy images (contaminated by additive Gaus-
sian noise, with 0 = 24% of the dynamic range) from the
MSRA-B database [7]. In addition, this dataset contains accu-
rate human-marked labels as ground truth and is widely used
as a benchmark for comparing saliency approaches.

Based on the precision-recall curves, we can see that
the proposed MSNR method either outperforms or provides
state-of-the-art performance when compared to existing ap-
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Fig. 4: Saliency maps for the state-of-the-art in multi-scale (italic) and single—scale saliency detection, and our MSNR scheme.
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Fig. 5: Saliency maps for noisy images (addmve white Gaussian noise, o = 24% of the dynamic range). It can be seen that the
salient regions in saliency maps produced by our MSNR approach are well defined, despite the image noise.

proaches using noiseless (see Fig. 3a) and noisy images (see
Fig. 3b). From the precision-recall curves, we can see that
noise barely influences the MSNR approach, but noticeably
affects the single-scale saliency approaches. MSNR also
outperforms the multi-scale contrast (MC) [26] and wavelet
transform (WT) [20] for precision-recall values larger than
0.7 for noiseless and noisy images.

For a visual comparison, Fig. 4 illustrates the saliency
maps obtained from different saliency detection algorithms.
We can see that the saliency maps obtained from the proposed
algorithm (MSNR) highlight the salient regions very clearly.
In Fig. 5, we show the saliency maps produced for noisy im-
ages having additive white Gaussian noise. A direct compar-
ison between the saliency maps in Fig. 4 shows a significant
degradation of the quality of the saliency maps in the case
of noise for all but those produced by the MSNR approach.
This illustrates that, by taking into account the image saliency
within the statistical non-redundancy framework at multiple
scales, the influence of noise on the quality of saliency maps
produced by the MSNR approach is weakened.

In terms of approaches relying on image segmentation or
training, the quality of their saliency maps strongly depends
on carefully selected pre-processing stages, whereas our pro-
posed algorithm does not. Hence, the proposed MSNR ap-
proach may be more suitable for real-life images, e.g., those
containing strongly textured backgrounds which may lead im-
age segmentation to fail, or those for which a priori knowl-
edge for training may not be available.

S. CONCLUSIONS AND FUTURE WORK

A saliency detection algorithm based on a multi-scale statis-
tical non-redundancy modeling approach has been proposed.
The proposed method has also been shown to provide re-
liable saliency maps that are particularly robust to noise.
Furthermore, the proposed approach was shown to provide

promising performance when compared to other saliency de-
tection methods, particularly in situations characterized by
noise. Our future work involves investigating the following
areas for improving saliency detection performance. First,
rather than employ a uniform distribution for the stochas-
tic nonparametric estimation strategy in building the multi-
scale statistical non-redundancy model, it would be worth
investigating more intelligent guided sampling approaches,
to better capture the distribution of salient and non-salient
regions within input images. Second, it would be worth in-
vestigating different weighting schemes for the individual
sub-bands, when computing the final saliency map based on
the individual saliency maps corresponding to the different
sub-bands. Third, different weighting schemes for the indi-
vidual color channels could be considered when computing
the final saliency maps for the color images based on the
importance of the individual channels with respect to image
saliency. In addition, when dealing with color-based weight-
ing schemes, a database such as [27] combining eye tracking
and segmentation results might be more suitable to study the
effects of color on saliency computation than other datasets
such as MSRA-B [7] ignoring the impact of color on saliency
maps at all.

6. REFERENCES

[1] A.Das, M. Dui, C. Scharfenberger, J. Servos, A. Wong,
J. S. Zelek, D. A. Clausi, and S. Waslander, “Map-
ping, planning, and sample detection strategies for au-
tonomous exploration,” Journal of Field Robotics, vol.
31, no. 1, pp. 75-106, 2014.

[2] C. Scharfenberger, S. L. Waslander, J. S. Zelek, and
D. A. Clausi, “Existence detection of objects in images
for robot vision using saliency histogram features,” in
IEEE Conf. on Computer and Robot Vision, 2013.



(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

[13]

(14]

U. Rutishauser, D. Walther, C. Koch, and P. Perona, “Is
bottom-up attention useful for object recognition?,” in
IEEE Conf. on Computer Vision and Pattern Recogni-
tion, 2004, vol. 2.

J. Han, K.N. Ngan, M. Li, and H.J. Zhang, “Unsuper-
vised extraction of visual attention objects in color im-
ages,” IEEE Transactions on Circuits and Systems for
Video Technology, vol. 16, no. 1, pp. 141-145, 2006.

D. Lui, C. Scharfenberger, K. Fergani, A. Wong, and
D. A. Clausi, “Enhanced decoupled active contour us-
ing structural and textural variation energy functionals,”
IEEE Transactions on Image Processing, vol. 23, no. 2,
pp- 855-869, 14.02.01 2014.

K. Fergani, D. Lui, C. Scharfenberger, A. Wong, and
D. A. Clausi, “Hybrid structural and texture distinctive-
ness vector field convolution for region segmentation,”
Computer Vision and Image Understanding, vol. 125,
pp- 85-96, 2014.

R. Achanta, S. Hemami, F. Estrada, and S. Susstrunk,
“Frequency-tuned salient region detection,” in IEEE
Conf. on Computer Vision and Pattern Recognition,
2009.

Radhakrishna Achanta and Sabine Suesstrunk,
“Saliency Detection using Maximum Symmetric
Surround,” in IEEE International Conference on Image
Processing, 2010.

L. Itti, C. Koch, and E. Niebur, “A model of saliency-
based visual attention for rapid scene analysis,” IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 20, no. 11, pp. 1254-1259, 1998.

S. Goferman, L. Zelnik-Manor, and A. Tal, “Context-
aware saliency detection,” in IEEE Conf. on Computer
Vision and Pattern Recognition, 2010.

C. Koch and S. Ullman, “Shifts in selective visual atten-
tion: towards the underlying neural circuitry.,” Human
Neurobiology, vol. 4, no. 4, pp. 219-27, 1985.

Y.F. Ma and H.J. Zhang, “Contrast-based image atten-
tion analysis by using fuzzy growing,” in ACM Interna-
tional Conference on Multimedia, 2003.

J. Harel, C. Koch, and P. Perona, “Graph-based visual
saliency,” Advances in neural information processing
systems, vol. 19, pp. 545, 2007.

T. Liu, Z. Yuan, J. Sun, J. Wang, N. Zheng, X. Tang, and
H.Y. Shum, “Learning to detect a salient object,” IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 33, no. 2, pp. 353-367, 2011.

[15]

[16]

[17]

(18]

[19]

(20]

(21]

(22]

(23]

[24]

[25]

(26]

(27]

M.M. Cheng, G.X. Zhang, N.J. Mitra, X. Huang, and
S.M. Hu, “Global contrast based salient region detec-
tion,” in IEEE Conf. on Computer Vision and Pattern
Recognition, 2011.

Y. Zhai and M. Shah, ‘“Visual attention detection in
video sequences using spatiotemporal cues,” in ACM
International Conference on Multimedia, 2006.

X. Hou and L. Zhang, “Saliency detection: A spectral
residual approach,” in IEEE Conf. on Computer Vision
and Pattern Recognition, 2007.

C. Scharfenberger, A. Wong, K. Fergani, J. S. Zelek,
and D. A. Clausi, “Statistical textural distinctiveness
for salient region detection in natural images,” in IEEE
Conf. on Computer Vision and Pattern Recognition,
2013.

A. Jain, A. Wong, and P. Fieguth, “Saliency detection
via statistical non-redundancy,” in IEEE International
Conference on Image Processing, 2012.

N. Imamogilu, W. Lin, and Y. Fang, “A saliency de-
tection model using low-level features based on wavelet
transform,” IEEE Transactions on Multimedia, vol. 15,
pp- 96-105, 2013.

S.G. Mallat, “A theory for multiresolution signal de-
composition: The wavelet representation,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
vol. 11, no. 7, pp. 674693, 1989.

XH Wang, R.S.H. Istepanian, and Y.H. Song, “Microar-
ray image enhancement by denoising using stationary
wavelet transform,” I[EEE Transactions on NanoBio-
science, vol. 2, no. 4, pp. 184-189, 2003.

L. Itti, C. Koch, and E. Niebur, “A model of saliency-
based visual attention for rapid scene analysis,” IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 20, no. 11, pp. 1254-1259, 1998.

J. Harel, C. Koch, and P. Perona, “Graph-based visual
saliency,” in Advances in Neural Information Process-
ing Systems 19, 2007.

S. Goferman, L. Zelnik-Manor, and A. Tal, “Context-
aware saliency detection,” in IEEE Conf. on Computer
Vision and Pattern Recognition, 2010.

T. Liu, Z. Yuan, J. Sun, J. Wang, N. Zheng, X. Tang, and
H. Shum, “Learning to detect a salient object,” IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 33, no. 2, pp. 353-367, 2011.

T. Judd, F. Durrant, and A. Torralba, “A benchmark
of computational models of saliency to predict human
fixations,” in CSAIL Technical Reports, MIT, 2012.



