Auto-Calibration for Screen Correction and Point Cloud Generation

Jason Deglint*

Andrew Cameron*

Christian Scharfenberger*

Mark Lamm**

Alexander Wong*

David Clausi*

June 3, 2015

San Jose, California

SID 2015

* University of Waterloo

** Christie Digital

Outline

- Background
- Motivation
 - Manual Projector Camera Calibration
 - Finding 3D Geometry
- Auto-calibration
 - Overview & Goal
 - Pipeline
 - Experimental Setup
 - Gray Code Structured Light
 - Initialization & Optimization
- Applications
 - 3D Point Cloud
 - Screen Correction
- Summary

Background

- Projection mapping is projecting an image onto a 3D surface to change the appearance of that surface.
 - Large scale: buildings
 - Small scale: model cars, mannequins

Projection mapping used for altering the appearance of a grey car.

Motivation

- In order to project content onto an object's surface two steps must occur:
 - The projector and camera must be calibrated.
 - The 3D geometry of the surface must be known.

Calibration of Projector Camera System

- A calibrated system requires knowing the following:
 - 1. Intrinsic parameters: K_p and K_c
 - Focal lengths: f_p and f_c
 - Principal points: (x_0, y_0) and (u_0, v_0)
 - 2. Extrinsic parameters
 - Rotation (R)
 - Translation (T)

$$\boldsymbol{K_p} = \begin{bmatrix} f_p & 0 & x_0 \\ 0 & f_p & y_0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\boldsymbol{R} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$$

Manual Calibration of Projector and Camera

- Involves using a checkerboard target and capturing multiple images.
- Manual calibration can be:
 - Time consuming.
 - Inconvenient and sometimes not possible.

Manual camera calibration using MATLAB toolbox [2, 3].

Finding 3D geometry

- Find the 3D geometry can be accomplished using:
 - CAD model and 3D printing.
 - 3D laser scanning for larger objects like buildings.
 - Structured light or Kinect for smaller objects like a mannequin.
- This step can be both time consuming and expensive.

3D models of a hand, corvette and a mannequin.

Auto-calibration Overview

- Previously we needed the following before we could accomplish projection mapping:
 - Fully calibrated system
 - 2. 3D geometry
- With auto-calibration we combine these steps into one pipeline.
- From auto-calibration we fully calibrated the system and then find the 3D information.

Auto-calibration Pipeline

- The goal is to automatically calibrate a projector camera pair without any checkerboard.
- Use auto-calibration for two applications:
 - Point cloud generation.
 - 2. Screen correction.

An overview of the auto-calibration process with two applications.

Experimental Setup

- Projector projects gray code binary pattern sequence.
- Camera captures corresponding images.

The projector-camera setup relative to the 3D scene.

Structured Light for Dense Pixel Correspondence

- Gray code binary pattern was used for our structured light.
 - Encode both horizontal and vertical information of the scene.
- This results in a dense pixel correspondence between the projector and camera.

Horizontal and vertical gray code structured light [5, 6].

Distortion Model

- The radial lens distortion of the projector and camera can be represented by the division model [5]:
- The division model is an alternative to the conventional polynomial distortion model.

$$(u', v') = \frac{1}{1 + d_p |\mathbf{r}_p|^2} \mathbf{r}_p + (a_p, b_p)$$

 $(x', y') = \frac{1}{1 + d_c |\mathbf{r}_c|^2} \mathbf{r}_c + (a_c, b_c),$

• Here $m{r}_p = (u,v) - (a_p,b_p), \, m{r}_c = (x,y) - (a_c,b_c),$

Optimization: Initialization

- Reliable points were chosen using RANSAC [5].
- The following 15 parameters were then initialized:
 - Principal points: (x₀, y₀) and (u₀, v₀)
 - Distortion coefficients: d_p and d_c
 - Fundamental Matrix, F: 3x3 matrix
- Choosing a good starting point is imperative to ensure that the optimization converges to the correct answer.

Optimization: Cost Function

- A mathematical model is used to create a cost function which is minimized to estimate the intrinsic and extrinsic camera parameters.
- The main data term in the cost function is known as the Sampson reprojection error [5, 6, 8]:

$$\sum_{i=1}^{n} \frac{(\boldsymbol{u_i}^T \boldsymbol{F} \boldsymbol{x_i})^2}{(\boldsymbol{F} \boldsymbol{x_i})_1^2 + (\boldsymbol{F} \boldsymbol{x_i})_2^2 + (\boldsymbol{F}^T \boldsymbol{u_i})_1^2 + (\boldsymbol{F}^T \boldsymbol{u_i})_2^2}$$

 This 15 dimensional cost function was optimized using the Levenberg-Marquardt algorithm.

Application: 3D Point Cloud Generation

 Using this auto-calibration process we can create 3D point clouds by triangulating the 3D point from the pixel correspondences.

3D point clouds of a car and a hand.

Application: Screen Correction

 Using the auto-calibration we are apply to apply keystone correction to the projector image.

The distorted image on the left and the corrected image on the right.

Summary

In order to projection map onto an object two steps must occur:

Auto-calibration combines these steps using structured light:

 Auto-calibration can be used for generating a dense 3D point cloud as well as screen correction.

Questions

References

- J. Salvi, J. Pags, J. Batlle, Pattern codification strategies in structured light systems, PATTERN RECOGNITION 37 (2004) 827–849.
- 2. Z. Zhang, A flexible new technique for camera calibration, IEEE Trans. Pattern Anal. Mach. Intell. 22 (11) (2000) 1330–1334.
- 3. J. Y. Bouguet, Camera calibration toolbox for MATLAB.
- D. Moreno, G. Taubin, Simple, accurate, and robust projectorcamera calibration, in: 3D Imaging, Modeling, Processing, Visualization and Transmission (3DIMPVT), 2012 Second International Conference on, 2012, pp. 464–471.
- 5. S. Yamazaki, M. Mochimaru, T. Kanade, Simultaneous selfcalibration of a projector and a camera using structured light, in: Proc. Projector Camera Systems, 2011, pp. 67–74.
- 6. R. Hartley, C. Silpa-Anan, Reconstruction from two views using approximate calibration, in: Proc. 5th Asian Conf. Comput. Vision, Vol. 1, 2002, pp. 338–343.
- 7. L. Zhang, B. Curless, S. Seitz, Rapid shape acquisition using color structured light and multi-pass dynamic programming, in: 3D Data Processing Visualization and Transmission, 2002. Proceedings. First International Symposium on, 2002, pp. 24–36.
- 8. R. I. Hartley, A. Zisserman, Multiple View Geometry in Computer Vision, 2nd Edition, Cambridge University Press, ISBN: 0521540518, 2004.
- 9. Universität zu Köln, "Radial Distortion Correction," 2015. [Online]. Available: http://www.uni-koeln.de/~al001/radcor_files/hs100.htm. [Accessed 29 May 2015].

