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Abstract. Prostate cancer is the most diagnosed form of cancer, but
survival rates are relatively high with sufficiently early diagnosis. Cur-
rent computer-aided image-based cancer detection methods face notable
challenges include noise in MRI images, variability between different MRI
modalities, weak contrast, and non-homogeneous texture patterns, mak-
ing it difficult for diagnosticians to identify tumour candidates. We pro-
pose a novel saliency-based method for identifying suspicious regions in
multi-parametric MR prostate images based on statistical texture dis-
tinctiveness. In this approach, a sparse texture model is learned via ex-
pectation maximization from features derived from multi-parametric MR
prostate images, and the statistical texture distinctiveness-based saliency
based on this model is used to identify suspicious regions. The proposed
method was evaluated using real clinical prostate MRI data, and results
demonstrate a clear improvement in suspicious region detection relative
to the state-of-art method.
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1 Introduction

Prostate cancer is the most commonly diagnosed cancer in Canadian men (ex-
cluding non-melanoma skin cancers), with an estimated 23,600 new cases and
4,000 deaths from it in 2014 [5]. According to the Canadian Cancer Society,
prostate cancer is the third leading cause of death from cancer, accounting for
10% of cancer deaths in Canadian men. Despite these statistics, survival rates
are relatively high with sufficiently early diagnosis, making the need for fast and
reliable detection methods crucial.

The current clinical model uses a digital rectal exam (DRE) or a prostate-
specific antigen (PSA) test for initial screening. Men with a positive DRE or
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Fig. 1: From left to right: pathology samples, identification results of proposed
method (6 texture atoms), identification results for [4].

elevated PSA require a follow-up transrectal ultrasound (TRUS) guided biopsy
to assess malignancy. Recent studies [2] [13] indicate that the PSA test has a
high risk of overdiagnosis, with an estimated 50% of screened men being diag-
nosed with prostate cancer. This oversensitivity results in expensive and painful
prostate biopsies, which cause discomfort, possible sexual dysfunction, and may
result in increased hospital admission rates due to infectious complications [10].
The challenge diagnosticians face is how to improve prostate cancer diagnosis
by reducing the overdiagnosis caused by conventional screening methods while
still maintaining a high sensitivity.

Current imaging-based cancer screening methods (such as the use of mag-
netic resonance imaging or MRI) require extensive interpretation by an expe-
rienced medical professional. One notable challenge is the variability between
diagnosticians (“inter-observer variability”) and the variability of a single di-
agnostician over multiple sittings (“intra-observer variability”) when evaluating
features using multi-parametric MRI (i.e. different MRI modalities) [7]. The Eu-
ropean Society of Urogenital Radiology (ESUR) recently introduced PI-RADS,
or the Prostate Imaging - Reporting And Diagnosis System [3]. PI-RADS is a
set of guidelines for interpreting multiple MRI images, and aims to raise the
consistency between diagnosticians through a common set of criteria.

Despite PI-RADS and further development to standardize the interpreta-
tion of multi-parametric MRI images [11], there is still a level of subjectiveness
that can lead to inconsistent diagnosis. Notable challenges include noise in MR
images, variability between different MRI modalities, weak contrast, and non-
homogeneous texture patterns, making it difficult for diagnosticians to identify
tumour candidates. Computer-aided cancer detection methods are being devel-
oped to help the physicians with the process.

One specific area of research is the identification of suspicious regions to aid
physicians with performing a more efficient and accurate diagnosis. The current
method for identifying suspicious regions is to threshold apparent diffusion coef-
ficient (ADC) maps, as low ADC values are associated with tumorous tissue [6].
Cameron et al. [4] proposed a threshold-based approach where tissue associated
with ADC values within a threshold range are automatically identified as suspi-
cious. However, this method depends on fixed thresholds, making it susceptible
to noisy MR images and ADC variations across different sets of multi-parametric
MRI data.
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Fig. 2: Proposed framework for identifying suspicious regions using prostate
multi-parametric MRI. Unique texture features extracted from different MRI
modalities are used to learn a sparse texture model, and suspicious regions are
identified via a statistical textural distinctiveness-based saliency map.

To facilitate a more reliable diagnosis, a novel method for identifying suspi-
cious regions indicative of potential prostate cancer using texture-based saliency
in multi-parametric MR images is proposed. The proposed method uses unique
texture information from each MRI modality to learn a sparse texture model,
and better characterize suspicious tissue within a patient’s MRI data.

2 Methods

A novel method is proposed for identifying suspicious regions to better aid
physicians with performing more efficient and accurate diagnoses. The proposed
method uses multi-parametric MR images and incorporates cross-modality tex-
ture features to better identify suspicious regions via statistical textural distinc-
tiveness. Figure 2 shows the general algorithmic framework developed.

2.1 Region-based textural representations

Region-based textural representations are used to allow for the characterization
of texture features indicative of suspicious regions in prostate MR images. For
region-based textural representations, we incorporate the feature set proposed
by Khalvati et al. [8], which consists of sets of 19 low-level texture features
extracted each from T2-weighted (T2w) images, apparent diffusion coefficient
(ADC) maps, computed high-b diffusion-weighted imaging (CHB-DWI) data,
and correlated diffusion imaging (CDI) data, to better capture healthy and can-
cerous tissue characteristics. These MRI modalities were selected based on their
potential to separate cancerous from healthy prostate tissue.

The sets of texture features are combined into a single textural representation
h(x), and a compact version of the textural representation is produced using
principal component analysis (PCA). A compact textural representation t(x) is
produced using the u principal components of h(x) with the highest variance:

t(x) = 〈Φi(h(x))|1 ≤ i ≤ u〉 (1)

where Φi is the ith principal component of h(x). While u can be selected based on
variance compactness, u components of h(x) were selected to represent 90% of
the variance of all the textural representations as determined through extensive
empirical testing.
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2.2 Sparse texture model

To characterize healthy and suspicious tissue for a patient, a sparse texture
model is learned using the extracted multi-parametric MRI texture features [8].
The sparse texture model incorporates unique texture features from each MRI
modality to learn tissue characteristics via cross-modality texture information.
Thus, the sparse texture model can better identify healthy and suspicious tissue.

Using a subset of t(x) as training data, a global texture model is defined to
represent the heterogeneous characteristics of healthy and suspicious prostate
tissue. As global texture modelling is computationally expensive, we generalize
an MRI slice as being composed of a set of regions where a particular texture pat-
tern is repeated over a given area. In addition, the number of areas with unique
texture patterns is assumed to be much fewer than the number of individual
voxels in the training data.

Using this generalization, we can establish a textural sparsity assumption,
and the global textural characteristics of prostate tissue can be well-represented
using a small set of distinctive local textural representations. This allows for the
use of a sparse texture model, defined as a set of m representative texture atoms:

T r = {tri |1 ≤ i ≤ m} (2)

The sparse texture model used in the proposed method is a set of represen-
tative texture atoms corresponding to healthy or suspicious tissue, where each
texture atom represents the mean and covariance (i.e., tri = µ

i
, Σi) of a particular

texture pattern characteristic of healthy or suspicious tissue. The representative
atoms in the sparse texture model are learned via expectation maximization [1].

2.3 Statistical textural distinctiveness

Suspicious regions in prostate MRI data can be characterized as areas that are
highly unique and texturally distinct. Using the concept of statistical textural
distinctiveness [12], we quantify the distinctiveness of texture patterns and un-
cover the underlying saliency by using the statistical relationship between texture
patterns across different MRI modalities.

To define statistical textural distinctiveness between two representative tex-
ture atoms (denoted as tri and trj) in the sparse texture model, we use Kullback-
Leibler (KL) divergence [9] to measure the statistical difference between the
representative texture atoms in the sparse texture model:

βi,j = log
|Σj |
|Σi|

− u+ trace(Σ−1
j Σi) +

(µ
j
− µ

i
)TΣ−1

j (µ
j
− µ

i
)

2
(3)

where u is the number of PCA components selected, µ
i

and µ
j

represent the

mean of tri and trj , respectively, and Σi and Σj represent the covariance of tri
and trj , respectively. Thus, the distinctiveness metric βi,j increases as the texture
patterns become more distinct from one another.
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2.4 Suspicious region detection via saliency map computation

As the majority of prostate tissue is considered to be healthy, salient regions
can be interpreted as suspicious due to the uniqueness and statistical occurrence
of the corresponding cross-modality texture characteristics. Given a subset of
compact texture features used for testing (denoted as t(x)Z), the saliency map for
a given MRI image can be computed using the previously determined statistical
textural distinctiveness graphical model. The saliency αi is defined as:

αi =

m∑
j=1

βi,jP (tri |t(x)Z) (4)

where P (tri |Z) is the occurrence probability of tri in t(x)Z .
For Si being the set of texture representations that corresponds to saliency

αi, voxels belonging to salient representative texture atoms Si (i.e., αi >
αmax

2 )
are classified as regions of suspicious tissue, with all other voxels classified as
healthy tissue. That is, each voxel x in a given MRI image is assigned a label y:

y =

{
1 x ∈ Si, αi > αmax

2

0 otherwise
(5)

3 Results

3.1 Experimental Setup

The performance of the proposed method was evaluated using the MRI data
of 13 patients acquired using a Philips Achieva 3.0T machine at Sunnybrook
Health Sciences Centre, Toronto, Ontario, Canada. The resolution of the signal
acquisitions ranged from 1.36 mm x 1.36 mm to 1.67 mm x 1.67 mm, with
a median of 1.56 mm x 1.56 mm. Institutional research ethics board approval
and patient informed consent for this study was obtained at Sunnybrook Health
Sciences Centre. The patients’ ages ranged from 53 to 75. The data set includes
segmentation information to isolate the prostate, and ground truth data for
tumour size and location. All images were reviewed and marked as healthy and
cancerous tissue by a radiologist with 18 and 13 years of experience interpreting
body and prostate MRI, respectively.

Each patient dataset had corresponding T2w images, ADC maps, CHB-DWI
data, and CDI data. Using the radiologist contour of the prostate, a rectangle
cropped around the prostate gland was selected as the region of interest (ROI)
for each MRI slice. The performance of each method was evaluated using leave-
one-patient-out cross-validation. A subset of the training texture features were
randomly selected and used to train the classifier, and the voxels in a single
MRI slice were classified as either healthy or cancerous tissue and assigned the
saliency value of the nearest texture atom.

In addition, the number of texture atoms used to compute the spare texture
model (as described in Subsection 2.2) was varied to determine the optimal num-
ber of representative texture atoms for identifying suspicious regions in prostate
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MR images. The ADC-based method was compared against the proposed texture
distinctiveness method (TD) via sensitivity, specificity, and accuracy metrics.

Sensitivity =
TP

P
Specificity =

TN

N
Accuracy =

TN + TP

N + P

where the performance of each method was quantified by the metrics’ closeness
to one. TP is the number of voxels in the intersection of the identified cancerous
tissue and the radiologist’s tissue segmentation, TN is the number of voxels not
in the identified tissue that are also not in the radiologist’s segmentation, N is
the number of voxels not in the radiologist segmented tissue and P is the number
of voxels in the radiologist segmented tissue.

3.2 Experimental Results

The proposed textural distinctiveness method (TD) was evaluated using both
four-atom and six-atom sparse texture models. Table 1 shows the performance
metrics for the ADC-based method [4] and the proposed method. The testing
data contained 52 tumours (as identified by an experienced radiologist) across
the slices from 13 different patients.

Table 1: Comparison of TD (trained with both 4 and 6 texture atoms) with
ADC-based method [4]. TD has similar sensitivity values as the ADC-based
method, and improved specificity and accuracy values.

Sensitivity Specificity Accuracy

ADC-based method [4] 0.7911 0.7107 0.7115

TD (4 texture atoms) 0.8088 0.8285 0.8283

TD (6 texture atoms) 0.8103 0.8303 0.8301

As seen in Table 1, the proposed TD method outperforms the ADC-based
method [4] in terms of sensitivity, specificity, and accuracy. While there is only
a relatively small increase in sensitivity (approximately 1.5%), TD shows an
increase of at least 10% in specificity and accuracy relative to the ADC-based
method. This is especially beneficial, as a low specificity negatively impacts a
diagnostician’s ability to perform quick and accurate assessments of MRI data.
By increasing specificity, TD minimizes the number of wrongly detected regions
that contain no tumour candidates. This is important for procedures such as
radical prostatectomy where an extremely high specificity rate is required.

Figure 3 shows the suspicious regions detected using the ADC-based method
[4] and the proposed TD method using four and six representative texture atoms.
While all methods identify the cancerous regions as suspicious, the ADC-based
method in particular has a tendency to be over-sensitive and often identifies a
large portion of the prostate tissue as suspicious. A visual inspection of the iden-
tified suspicious regions shows that TD consistently produces spatially compact
and useful regions regardless of the number of texture atoms.
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(a) (b) (c) (d)

Fig. 3: Visual comparison of identified suspicious regions (shown in red) between
(a) ADC-based method [4], (b) TD using four texture atoms, (c) TD using six
texture atoms, and (d) radiologist segmented regions.

4 Conclusion

A novel method was proposed to aid physicians in efficiently and accurately
diagnosing patients via the identification of suspicious regions in prostate MR
images. We extracted unique textural information from different MRI modalities,
and used a sparse texture model to learn tissue texture characteristics. As the
majority of prostate tissue is considered to be healthy, texturally distinct regions
can be interpreted as suspicious due to the uniqueness and statistical occurrence
of the corresponding cross-modality texture characteristics.

The proposed statistical textural distinctiveness approach (using four-atom
and six-atom sparse texture models) was evaluated against the ADC-based
method [4]. In both cases, statistical textural distinctiveness has higher sensi-
tivity, specificity, and accuracy values than the state-of-art ADC-based method.
In additional, statistical textural distinctiveness also identifies suspicious regions
on a per patient basis, rather than relying on a fixed ADC value characteristic of
typical cancerous tissue (as is the case with the ADC-based threshold method).
Thus, statistical textural distinctiveness shows potential for more flexible and
visually meaningful identification of suspicious tumour regions.

Future work includes the further investigation of additional MRI modalities,
and the use of spatial consistency to enforce more compact identified suspicious
areas. Applications include identifying suspicious regions for clinicians to better
stream-line a patient’s diagnosis, and automatically identifying regions of interest
for computer-aided tumour detection methods.
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11. Röthke, M., Blondin, D., Schlemmer, H.P., Franiel, T.: [PI-RADS classification:
structured reporting for MRI of the prostate]. RöFo : Fortschritte auf dem Gebiete
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