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Abstract—Early detection of lung cancer can help in a sharp
decrease in the lung cancer mortality rate, which accounts for
more than 17% percent of the total cancer related deaths.
A large number of cases are encountered by radiologists on
a daily basis for initial diagnosis. Computer-aided diagnosis
(CAD) systems can assist radiologists by offering a second
opinion and making the whole process faster. We propose
a CAD system which uses deep features extracted from an
autoencoder to classify lung nodules as either malignant or
benign. We use 4303 instances containing 4323 nodules from
the National Cancer Institute (NCI) Lung Image Database
Consortium (LIDC) dataset to obtain an overall accuracy of
75.01% with a sensitivity of 83.35% and false positive of
0.39/patient over a 10 fold cross validation.
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tures, autoencoder, lung nodule

I. INTRODUCTION

Lung cancer is the leading cause of cancer deaths in North
America and worldwide among both men and women [1],
[2]. The number of deaths caused due to lung cancer is more
than prostate, colon and breast cancers combined. Also, most
patients detected with lung cancer today are already at an
advanced stage as lung cancer is hard to detect in early
stages [2]. The reason for failure in detecting lung cancer in
early stages is that there is only a dime-sized lesion growth
known as nodule, inside the lung, and by the time it is
detected it is already too late for the patient. Also, these
small lesions cannot be detected by X-rays and are only
detectable by a CT scan. Even after the detection, it takes a
considerable amount of effort and experience on the part of
radiologists to detect and label the nodules as benign or as a
probable case of malignancy. Considering the large number
of cases encountered by radiologists every day there is a
constant pressure on them to analyse a huge amount of data
and make a decision as quickly as possible based on the
analysis.

A possible solution to decrease this burden on the radiol-
ogists is to use computer aided diagnosis (CAD) systems as
a second opinion that can automatically detect and analyse
lung nodules in CT images. Some of the studies in the past
have shown an improvement in radiologists performance
through the use of these CAD systems [3], [4].
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Figure 1. Illustration of annotations provided by four different radiologists
for the same lesion in a single slice of CT study taken from LIDC-IDRI
dataset.

To create such CAD systems, there is always a need
for a reference standard dataset that can be used to obtain
ground truths and can also act as a basis for comparison
of different CAD algorithms. LIDC (Lung Cancer Data
Consortium) [5], [6] is one such database which contains
CT images of thoracic region for 1010 patients along with
the annotation data of suspicious nodules (for both benign
and malignant cases) for a size greater than 3 mm from up-
to four radiologists collected over a long period of time. The
dataset also contains diagnostic data for a limited number of
cases (157 patient) obtained from biopsy, surgical resection,
progression or reviewing the radiological images to show 2
years of nodule size.

Another important criteria to create an effective CAD
system for classification is to use a feature or combination
of features that can effectively represent the structure and
characteristics of region of interest in images. Recent studies
have shown that the use of deep learning can significantly
improve the performance of CAD systems. Deep learning
architectures are effectively formed by combination of many



linear and non linear transformations to obtain more abstract
and useful representations of data [7]. S. Liu et al. [8]
report a significant improvement of over 20% in the overall
accuracy over the earlier methods by using deep learning
architecture for early diagnosis of alzheimer’s disease; Cruz-
Roa et al. [9] reported an improvement of around 7%
over canonical representations while using a deep learning
architecture for image representation and automatic basal
cell carcinoma cancer detection. Xu Yan et al. [10] present
the effectiveness of using deep neural networks (DNN) for
feature extraction in medical image analysis and report that
the performance of an automatic unsupervised approach for
feature extraction from DNN is as effective as a supervised
approach. The main reason for outstanding performances of
deep learning architectures like DNN is that the higher level
of features are derived from lower level features to form a
hierarchical representation.

In this paper, we propose to use deep features extracted
from an autoencoder along with a binary decision tree
as a classifier to build a CAD system (Fig. 2) for lung
cancer classification. In the first step of our CAD system,
nodules are extracted from the 2D CT images using the
annotations provided by different radiologists. These nodule
areas are then individually fed into our autoencoder and
learned features are then extracted from layer 4 of the 5
layer autoencoder. These features are then used as input to
the trained classifier (binary decision tree in this case), which
gives us the classification results for each nodule in the test
set. To perform the classification we use CT scans for all
the patients in the LIDC dataset for which diagnostic data
was available as a ground truth for comparison purposes.
The next section explains the related work done in recent
past in the field of lung cancer classification and the use
of deep learning in medical imaging. The methodology to
extract the deep features is described in Section III . Further,
the implementation methodology is explained in Section IV
and the experimental results obtained by using the proposed
CAD system is discussed in Section V. We conclude this
paper by summarizing our work and by discussing future
avenues in Section VI.

II. RELATED WORK

In the past, several methods have been proposed to detect
and classify lung cancer in CT images using different algo-
rithms. For example, Camarlinghi et al. [11] have used three
different computer aided detection techniques for identifying
pulmonary nodules in CT scans. Abdulla and Shaharum [12]
used feed forward neural networks to classify lung nodules
in X-Ray images albeit with only a small number of features
such as area, perimeter and shape. Kuruvilla et al. [13] have
used six distinct parameters including skewness and fifth
& sixth central moments extracted from segmented single
slices containing 2 lungs along with the features mentioned
in [12] and have trained a feed forward back propagation

neural network with them to evaluate accuracy for different
features separately. In Bellotti et al. [14], the authors have
proposed a new computer-aided detection system for nodule
detection using active contour based model in CT images.
The paper reports a high detection rate of 88.5% with a
average of 6.6 false positives (FPs) per CT scan on 15
CT scans. In the recent past a comparison between six
different methods for detecting nodules in lungs was done by
Ginneken et al. [15] that also proposed a method to combine
the output of multiple systems for effectively detection
of pulmonary nodules. In Riccardi et al. [16] the authors
presented a new algorithm to automatically detect nodules
with an overall accuracy of 71% using 3D radial transforms.

In the recent years, there has also been a renewed in-
terest in the field of deep learning and the latest research
in area of medical imaging using deep learning shows
promising results. One such study is of Suk et al. [17] in
which the authors propose a novel latent and shared feature
representation of neuroimaging data of brain using Deep
Boltzmann Machine (DBM) for AD/MDC diagnosis. The
methods outperforms the competing methods and achieve a
maximal diagnostic accuracy of 95.52% (AD vs. NC); Wu et
al. [18] use deep feature learning for deformable registration
of brain MR images demonstrating that a general approach
can be built to imporve image registration by using deep
features. A stacked autoencoder (a type of deep learning
architecture) was used by Fakoor et al. [19] to diagnose and
classify different types of cancer based on gene expression
data, which eventually out performs contemporary methods
for different datasets. To the best of our knowledge there
has been no work that uses deep features for lung nodule
classification.

The work that is closest to the proposed work is of
Zinovev et al. [20]. In this paper, the authors propose to use
belief decision trees for the classification of lung nodules in
LIDC dataset. They use different features such as lobulation,
texture, spiculation etc. to create a 63 dimensional feature
vector for the classification of each of the 914 instances
(1 instance/nodule). The paper reports an overall average
accuracy of 68.66%.

III. METHODOLOGY

A. LIDC Dataset: Data Extraction

The Lung Image Database Consortium (LIDC) [5], [6] has
made a database publically available that contains thoracic
CT images of 1010 patients of lung cancers along with anno-
tations (nodules outlines) from up-to four radiologists. Even
though annotation are provided for over a thousand patients,
the diagnostic data is only available for 157 patients con-
taining information about ratings of nodules (0-Unknown,1-
benign,2-Primary malignant,3-Malignant(metastatic)). The
ratings were obtained by performing biopsy, surgical re-
section, progression or reviewing the radiological images
to show 2 years of nodule state at two levels; first at the



Figure 2. Illustration of different modules of the proposed CAD system.

patient level and second diagnosis at the nodule level. The
LIDC database of thoracic CT studies for 1010 patients was
acquired over a long period of time with various scanners.
As there can be multiple nodules associated with a single
study, a different number of slices may be associated with
a particular nodule study. Also, each slice can contain
annotations data for a nodule from up-to four radiologists.
These annotations are available in LIDC dataset for only
those nodules which are greater than 3 mm in size. As the
diagnostic data is the only way to judge the certainty of
malignancy, we chose to use the ratings from diagnostic
data as the ground truth for training the classification system
and evaluating the results instead of using the radiologists
provided ratings in dataset.

B. Autoencoder: Feature Extraction

An autoencoder is primarily a two layer network that
takes an input fε[0, 1]d and then uses a linear or non-linear
transformation to ”encode” the data to a latent space. On
the output layer, it uses a ”decoding” transformation to
reconstruct the data. Stating precisely we want to learn a
representation:

l(f(i);W, b) = φ(Wf(i) + b) (1)

such that φ(WT l(f(i);W, b) + c) is approximately f (i).

min
W,b,c

n∑
i=1

‖ φ(WTφ(Wf (i) + b) + c)− f (i) ‖22 (2)

For penalizing the error between input and output l-2 norm
is used. Normally sigmoid or hyperbolic tangent functions
are used as the activation function in autoencoder. In autoen-
coder the cost function can be accurately determined which
results to a possibility of using more advance methods of
optimization, such as L-BFGs [21] for training the networks.
Since the optimization function in deep neural networks
could be non convex, pre-training the filters greedily allows
a way to trick the optimization objective by starting from
a point that is likely to be closer to the optima [22]. The

selection of network configuration parameters (number of
hidden layers,iteration set, batch size etc.) seems to be
somewhat an ad-hoc process with it been still an active topic
of research.

Extraction of deep features using an autoencoder is ex-
plained in detail in the following section.

IV. IMPLEMENTATION

For each nodule greater than or equal to 3 mm in diameter
in the LIDC dataset, we extracted the annotations provided
by the radiologists to be used later to extract features from
the autoencoder (Section III B.). To extract the annotations,
we used the same annotation extractor as used in Lampert
et al. [23]. Using the annotaion extractor, we extracted
annotations of 157 patients. Figure 1 shows the extracted
annotations by four radiologists for a single nodule present
in a study. It is interesting to note the different degree of
variations in the annotation, from just a region inside the
image (Fig. 1(b)) to an actual outline (Fig. 1(d)). Unlike
many past methods which use only the largest area or
the best outline, we used all the available annotations for
feature extraction and classification. The reasons of using
all available annotations is explained in Section V.

For extracting features we use a five layered de-noising
auto-encoder trained by L-BFGS with a iteration set to 30
and batch size of 400, as the parameters seemed to work
well for many datasets reported in past [24]. To extract
features, we first created an adaptive window based on the
nodule size to construct a rectangular window based on the
max and min of (x,y) co-ordinates enclosing the nodule. We
then resized each rectangular area to a fixed dimension to
create a fixed length input for the auto-encoder. We gave
this input to the auto-encoder and trained our network for
4303 instances (1 instance = 1 slice containing nodules)
containing 4323 nodules for patients with rating 0, 1, 2,
and 3 in the diagnostic dataset. The rating 0 i.e., unknown
is treated as malignant for our experiments as it is better to
flag such cases for doctors instead of ignoring them. Then we
extracted features from different hidden and output layer of



autoencoder. The features from layer 4 of autoencoder of 5
layers were used to create a feature vector of 200 dimensions
for each instance.

To evaluate the performance of the CAD system, we use
a binary decision tree as a classifier as it can handle missing
information in the input as well. 200 dimensional features for
each of 4323 nodules were given as input to the decision tree
and classification into benign and malignant classes were
obtained.

V. EXPERIMENTAL RESULTS

For evaluating the performance of our proposed CAD sys-
tem which uses deep features, we used the 200 dimensional
feature vector obtained from the layer 4 of our autoencoder
architecture (Section III B.) for 4323 nodules from diag-
nostic dataset of the large LIDC dataset. Each annotation
marking provided by each radiologist is considered to be
one instance in a slice, which leads to up-to 4 annotations
for one slice for certain cases. One of the advantages of
this approach of using the annotation of all the radiologists
as compared to many other similar approaches which use
the best annotation for a slice or the annotation with largest
area is that while testing in the real world, if one of the
radiologists provide a partial annotation of a nodule (which
can happen often), our system would still work. For example,
if instead of annotation shown in Fig. 1(d), if Fig. 1(b) is
given as input to our system, our system will still be able
to provide reasonable output, where as systems which rely
only on lobulation or spiculation as features would fail. As
mentioned in section III, the diagnostic dataset had rating
of 0, 1, 2, and 3 from two levels of inspection. We decided
to take the ratings of the second level i.e., ratings at the
nodule level because the second rating were the final ratings
obtained from biopsy, surgical inspections or rate of growth
which are considered conventionally to be the best methods
for determining malignancy. We treated the rating 1-Benign
as Benign and combined the rating 0-Unknown, 2-Primary
malignant and 3- malignant (metastatic) as malignant. For
the cases where level 2 rating wasn’t available, we took
the ratings of level 1. For all the cases associated with the
benign and malignant, we extracted 200d deep features. We
used these deep features as input to the binary decision tree
to perform the binary classification. We obtained an overall
accuracy of 75.01% with a sensitivity of 83.25% and a false
positive of 0.39 per patient (FP/patient) over 10- fold cross
validation on our dataset. For obtaining the results we used
90% of dataset as training set and the rest 10% as testing
set. This set-up was chosen similarly to the method used in
Zinovev et al. [20] for the purpose of a better comparison
as it is the state-of-the-art classification results for the LIDC
dataset, to best of our knowledge. Zinovev et al. [20] use
a 63 dimensional feature vector containing features such as
lobulation, malignancy, etc to achieve an overall accuracy of
68.66%, measuring the area under the curve as a metric for

Table I
EVALUATION OF DEEP FEATURES CLASSIFICATION RESULTS FROM 10

FOLD CROSS VALIDATION EXPERIMENTS

Accuracy(%) Sensitivity(%) FP/patient
1 75.05 83.92 0.40
2 75.93 84.42 0.39
3 73.14 81.41 0.38
4 76.02 84.56 0.40
5 72.71 80.65 0.33
6 75.98 86.38 0.41
7 75.76 83.56 0.40
8 74.67 82.35 0.42
9 75.32 80.95 0.38
10 75.54 85.37 0.39

Avg 75.01 83.35 0.39

Table II
COMPARISON OF RESULTS OBTAINED FROM DEEP FEATURES
CLASSIFICATION TECHNIQUE AND BELIEF DECISION TREE
CLASSIFICATION TECHNIQUE [20]. THE BEST RESULTS ARE

HIGHLIGHTED IN BOLD.

Deep Features Belief Decision Trees

Accuracy 75.01% 68.66%

914 instances from 154 patients of LIDC dataset. The results
from the cross-validation study and a comparison with [20]
is shown in Table I and II respectively. As noted in the Table
II, our proposed CAD system reports an increase of about
6% in the overall accuracy compared to the results report
by Zinovev et al. [20].

It is important to note here that there is a considerable
difference between the part of LIDC dataset used in our
proposed method and in [20]. In Zinovev et al. [20] the
authors use the rating provided by the radiologists which
corresponds to level 1 in our diagnostic data rating whereas
we use the rating at level 2 i.e. rating at nodule level,
which is generally considered as the final decisive rating
in the domain of medical diagnosis. The reason for using
the level 2 rating instead of just the radiologists provided
rating was to create & test a system that can be obtained to
replicate or at-least obtain comparable results along the lines
of diagnosis data. It should also be noted that we obtained a
false positive rate of 0.39 per patient which points towards
a low specificity of the system. The main reason for such
results is that many benign cases were visually very similar
to the malignant cases as shown in Figure 3, which led to
such results.

VI. CONCLUSION

In this paper, we presented a CAD classifier system for
classifying lung nodules as either malignant or benign. The
proposed system uses deep features extracted from an au-
toencoder for annotations provided by up-to four radiologists
for 157 patients to precisely create a strong representation of
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Figure 3. Examples of annotations for benign (a,b,c) and malignant cases (d,e,f) in the LIDC dataset. It can be observed that there are significant visual
similarities between the annotated nodules in (a,d), (b,e) and (c,f), making it very difficult to differentiate between such nodules during the classification
process. As such, such cases result in a high number of false positives obtained by the proposed CAD system. In general, from a clinicial decision support
perspective, it is more important to catch all malignant cases and as such false positives are of lesser concern than false negatives.

nodules. Using the LIDC dataset, we showed that the pro-
posed system convincingly outperforms the state-of-the-art
method on overall accuracy metric even after experimenting
with almost five times the data size (4323 vs. 914) used in
the state-of-the-art method and considering the biopsy level
clinical decision as ground truth. This is because the deep
features not only take the different conventional semantic
features like lobulation, spiculation etc. in to account but
they also take into account the association between them.

In terms of future work, we plan to extend the proposed
CAD system’s capabilities by integrating the automatic
detection of nodules module in it.
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