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ABSTRACT

The reconstruction of high dynamic range (HDR) images via
conventional camera systems and low dynamic range (LDR)
images is a growing field of research in image acquisition.
The radiance map associated with the HDR image of a scene
is typically computed using multiple images of the same
scene captured at different exposures (i.e., bracketed LDR
imzages). This approach, though inexpensive, is sensitive
to noise under high camera ISO. Each bracketed image is
associated with a different level of noise due to the change
in exposure time, and the noise is further amplified when
tone-mapping the HDR image for display. A new framework
is proposed to address the associated noise in the context of
random fields. The estimation of the HDR image from a set of
LDR images is formulated as a stochastically fully connected
conditional random field where the spatial information is in-
corporated to compute the HDR value in combination with
the LDR image values. Experimental results show that the
proposed framework compensated the non-stationary ISO
noise while preserving the boundaries in the estimated HDR
images.

Index Terms— High Dynamic Range Imaging, Condi-
tional Random Fields, Image Denoising, HDR Reconstruc-
tion, SFCRF

1. INTRODUCTION

High dynamic range (HDR) imaging has recently become a
growing area of research. While the human visual system is
able to interpret scenes with a high dynamic range of illumi-
nation, cameras are unable to properly capture these scenes
due to the limited dynamic range of conventional sensor ar-
rays found in digital cameras. As such, details within regions
of very high illumination and/or very low illumination are
lost. HDR imaging captures a wider range of illumination,
allowing for the representation of additional detail in scenes
with extreme illumination. The applications of HDR imag-
ing are widespread and include remote sensing [1], computer
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Fig. 1: Example of LDR images captured at different expo-
sures (first row) and the associated HDR reconstructed toned-
map image by Debevec framework [5] (second row), where
the right image shows a zoomed view of the marked area in
the left image. As seen the reconstructed image is highly con-
taminated by noise.

graphics [2], physically based rendering [3, 4], and various
image processing algorithms [5].

HDR imaging can be achieved with hardware via high dy-
namic range sensors [6]; however, cameras with HDR sen-
sors are relatively expensive, making them undesirable for
practical application. As a result, several algorithms have
been proposed for reconstructing HDR images from low dy-
namic range (LDR) images taken using conventional imaging
equipment[5, 7, 8]. The standard approach to HDR recon-
struction computes a radiance map of the scene using multi-
ple LDR images of the same scene captured at different expo-
sures. These images, commonly referred to as bracketed im-
ages, can then be combined using the camera response func-
tion to generate an HDR image.

Debevec and Malik [5] approximated the camera response
function by use of pixel intensities across different exposures
via least squares optimization. The final radiance map was
obtained by applying the approximated response function and
a triangular “hat-shaped” weighting function to lower contri-
butions from over-exposed or under-exposed regions (pixel
values near zero or 255). Robertson et al. [7] determined



the camera response function probabilistically and weighted
images taken at higher exposure times more heavily. Lastly,
Mitsunaga and Nayar [8] proposed a method to derive the re-
sponse function without explicit knowledge of the exposure
times via a parametric polynomial model for curve fitting.

While performance is generally good given bracketed im-
ages with minimal noise, these methods are sensitive to em-
bedded noise. Often times fast shutter speeds and high ISO
settings are used for scenes with changing light conditions,
such as outdoor or dynamic scenes. However, using high ISO
tends to cause noisy image captures. Various sources of noise
affect digital images and may arise during image acquisition,
transmission, or processing. Three primary sources of noise
are present in digital cameras: photon shot noise, dark cur-
rent noise, and read noise [9]. While dark current noise and
read noise are dependent on digital camera design, photon
shot noise is directly affected by ISO settings. For the re-
mainder of this paper, any noise amplified through the use of
high ISO will be referred to as ISO noise’. As shown in Fig-
ure 1 the constructed HDR image by conventional methods is
highly sensitive to ISO noise. Due to the changing exposure
times, a different level of ISO noise is present in each brack-
eted image and is subsequently amplified by the tone mapping
process used to constrain pixels back to standard image val-
ues (i.e., between zero and 255). Since the noise level of each
bracketed image is different, the associated noise of the HDR
image is non-stationary. To better account for noise, methods
have been proposed that performed weighted averaging on the
bracketed images as a preprocessing step to the standard HDR
reconstruction process [9, 10].

Methods that explicitly denoise bracketed images have
also been proposed [11, 12, 13]. Rameshan et al. [11] used
a Bayesian method and maximum a posteriori (MAP) formu-
lation to perform denoising in the HDR domain. Goossens et
al. [12] modeled the sensor noise with a Poisson distribution
to denoise the bracketed images. Hasinoff et al. [13] pro-
posed an imaging framework for acquiring a set of images to
optimize worst case SNR. However, these methods assume a
static level of ISO noise across all bracketed images, resulting
in inconsistent noise levels in the HDR image.

The aforementioned methods utilized a denoising method
as a pre-process or a post-process to HDR reconstruction.
Here we present a novel framework for HDR reconstruction
that simultaneously creates the HDR map while compensat-
ing for non-stationary ISO noise using a stochastically fully
connected conditional random field (SFCRF). The SFCRF
enforces a consistency constraint across pixels that are spa-
tially compact and similar in intensity, enabling each brack-
eted image to be denoised dynamically while creating the
HDR image. The clique connectivities are formed based on
the stochastic clique formation framework. Thus, the ap-
propriate long-range clique connectivities are formed in the
SFCREF, improving the model accuracy while relaxing the
computational complexity of high-order clique connectivity.

2. METHODS

To compensate for non-stationary ISO noise, we propose a
novel framework for HDR reconstruction via a SFCRF. The
creation of a HDR image is modeled as a conditional prob-
ability given a set of LDR images captured using different
exposure times. LDR images are usually captured using com-
mon digital cameras that tend to be noisy under low light con-
ditions and high sensitivity settings. Thus, the LDR images
have varying levels of ISO noise, resulting in inconsistent
noise levels across the HDR image.

We model the HDR estimation as a maximum a posteriori
(MAP) optimization where the HDR map is estimated to max-
imize the conditional probability of the HDR map given LDR
images. The proposed framework utilizes a SFCRF [14] to
address the non-stationary ISO noise by incorporating long-
range spatial information to create the HDR image. Given the
LDR images, the conditional probability of the HDR map is
formulated as

P(H|B) =
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where H is the estimated HDR image, B = { By, Bs, ..., Bn, }
is the set of m LDR images with different exposure times,
Z(B) is the normalization constant. ¢(-) is the potential func-
tion encoding the relationship between pixels in the HDR
map H:

Y(H,B) =Y ¢u(hi, B)+ Y tp(he, B) ()
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where h; represents pixel ¢ in the HDR image containing
|H| = n pixels, and 1,,(h;, B) is the unary potential repre-
senting the likelihood of each pixel ¢ and its corresponding
pixel intensities in the observed LDR images. The spatial
relationships between pixels in the HDR image are formu-
lated by v, (h., B), where h. represents a set of pixels that
construct a clique c in the set of all stochastic cliques C'.

The unary potential encodes the likelihood of the same
pixel across a set of differently exposed images to its asso-
ciated HDR value. The Debevec and Malik [5] camera re-
sponse approach is applied to formulate the unary potential in
the random field:
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where b;; is the i*" pixel in B;, g(-) represents the inverse
camera response function that maps the LDR value to a HDR
value based on the exposure time, At; encodes the exposure
time of LDR image j, and w(-) represents a weighting func-
tion to lessen the contribution of pixels that are under-exposed
or over-exposed (near zero or 255):
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similar to Debevec and Malik [5], w(-) resembles a simple hat
function centered between b,,,;,, and b4z, the minimum and
maximum of LDR intensity values.

The spatial relationships between pixels in the HDR im-
age are modeled by a fully connected conditional random
field where the clique connectivities are constructed based on
the stochastic clique framework proposed by [14]:

C={(,7)1u =1} @)

where C'is the set of all pairwise cliques and 1, ;) repre-
sents the stochastic clique indicator (SCI) function. The SCI
encodes a stochastic function that determines if two nodes can
construct a clique in the random field based on its underlying
probability distribution. The underlying probability distribu-
tion of the SCI is based on the spatial similarity and color
intensity similarity of two nodes in the random field:
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where E,4(-) and E.(-) represent spatial distance and color
dissimilarity between two nodes, respectively; v encodes the
sparsity of the conditional random field and r is a random
number selected from a uniform distribution over the unit in-
terval.

The motivation to utilize the long-range clique connec-
tivities is to address the smoothing problem associated with
local random fields while compensating underlying noise of
the HDR image by incorporating more information in the
computation procedure. The proposed approach is a uni-
fied framework which reconstructs the HDR image while
compensating the associated noise. As shown in Figure 2,
long-range interaction connectivities are incorporated into
the model by applying the stochastic clique formation. The
proposed framework provides more appropriate clique inter-
actions and reduces the computational complexity associated
with long-range clique connectivity in conditional random
fields via the sparse nature of stochastic cliques. The clique
interactions are formed by considering the similarity between
its associated nodes, allowing for the SFCRF framework to
model the underlying noise of LDR images implicitly.

3. RESULTS

3.1. Experimental Setup

A Canon T3i DSLR camera was used to capture bracketed im-
ages with ISO 6400 to increase the amount of ISO noise seen
in the LDR images. The proposed framework was evaluated
under different situations; reported here as demonstration are
three scenes including a Macbeth Colorchecker chart, an out-
door scene of a tree, and an indoor scene of a stack of books.
The standard Colorchecker was utilized to compare methods
quantitatively. The averaged of signal-to-noise (SNR) ratio

Fig. 2: The proposed SFCRF framework to estimate a HDR
map. All LDR images, {l1,...,1;,}, are considered as the
measurements which the actual HDR map value for each pixel
is estimated by use of corresponding LDR values while con-
sidering the pixel within its neighbors. Each node such as ¢
can be connected to other nodes (i.e., ¢ or k) in the random
field by a chance based on their similarity.

of all blocks in the Colorchecker board is reported as quan-
titative analysis. The camera parameters for each scene is
summarized in Table 1 and the sequence of bracketed im-
ages of the Colorchecker is shown in Figure 3. Since De-
bevec’s original HDR reconstruction algorithm [5] was ap-
plied as the unary potential this method was evaluated as the
comparison method. The Debevec’s algorithm was applied
by use of Banterle’s MATLAB implementation [15], where
the camera response function is computed using the original
MATLAB code from Debevec’s paper. The Mantiuk tonemap
operator [16], implemented in the open source software ‘Lu-
minance HDR’ [17], was used to tonemap the HDR image
back to the LDR domain for display. The choice of tonemap-
ping operator was simply for illustrative purposes.

3.2. Experimental Results

Figure 4 shows a zoomed in view of a patch of the Macbeth
Colorchecker results after HDR reconstruction and tonemap-
ping. As seen the proposed method estimated the pixel inten-
sities much more homogeneously in the smooth regions com-
pared to the standard method [5]. The average SNR across all
colour patches and colour channels is calculated in the radi-
ance domain after HDR reconstruction, where the proposed
method shows a higher average SNR by 1.9 dB. Higher noise
was observed in underexposed areas; in the blue patch the
proposed SFCRF method shows a higher SNR of about 9.5
dB.

The reconstructed HDR images of an outdoor and indoor
scene are shown in Figure 5. The reported results demonstrate
that the proposed method is able to compute the correct HDR
image while preserving boundary details and addressing the
associated ISO noise of the image. Referring to the tree scene,
a zoomed in view of a building corner is shown where the
standard HDR reconstruction method shows noticeable noise
in the sky, giving a ‘spotty’ look. The proposed method shows
a much smoother view of the sky while maintaining the build-
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Fig. 3: The bracket images (LDR) corresponding to the Colorchecker with different exposure times.
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ing edge. The zoomed in view of the book scene illustrates
the SFCRF HDR computation framework can preserve very
fine boundary structures as well as compensate non-stationary
noise in the image.

Debevec [5] (SNR: 4.85 dB) Zoomed Region (6 dB)

SFCRF-HDR (SNR: 6.72 dB) Zoomed Region (15.5 dB)

Fig. 4: The HDR estimated result of the proposed SFCRF-
HDR framework (bottom) compared to Debevec & Malik [5]
approach (top) on Colorchecker board. The reported SNR
on the left is the averaged SNR of all colour patches in the
ColorChecker (not just the four patches shown). Shown on
the right is the blue patch with its corresponding SNR.
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Fig. 5: Example of the estimated HDR images of natural scenes by the SFCRF-HDR compared to the Debevec & Malik
method [5]. The first and third columns demonstrate the whole scene and the second and fourth columns shows the zoomed
regions.

Table 1: Camera Settings for Bracketed Image Capture

Camera: Canon T3i ISO: 6400 Aperture Size: 5.0
Scene Exposure Times (seconds)
ColorChecker | 1/4096, 1/2048, 1/512, 1/128, 1/64
Tree 1/1600, 1/400, 1/100
Books 1/4000, 1/1000, 1/250

4. DISCUSSION

In this paper we present a new HDR reconstruction frame-
work that extends upon existing HDR reconstruction meth-
ods to reduce noise in HDR images given bracketed images
succumbed to high ISO noise. We showed that the HDR ra-
diance map can be inferred by using a SFCRF approach and
modelling the LDR images as noisy observations. Results
demonstrated that the proposed method is able to significantly
reduce noise in the HDR images, especially in underexposed
areas, while preserving edge boundaries. Our method allows
photographs to be taken at higher ISO settings and faster shut-
ter speeds with reduced noise. Future work include modelling
external light sources in the conditional random field model
and autonomously learning the noise characteristics depend-
ing on the exposure time.
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