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Fusing Sorted Random Projections for Robust
Texture and Material Classification

Li Liu, Paul W. Fieguth, Member, IEEE, Dewen Hu, Yingmei Wei, and Gangyao Kuang

Abstract— This paper presents a conceptually simple,
and robust, yet highly effective, approach to both texture
classification and material categorization. The proposed system
is composed of three components: 1) local, highly discriminative,
and robust features based on sorted random projections (RPs),
built on the universal and information-preserving properties
of RPs; 2) an effective bag-of-words global model; and 3) a
novel approach for combining multiple features in a support
vector machine classifier. The proposed approach encompasses
the simplicity, broad applicability, and efficiency of the three
methods. We have tested the proposed approach on eight popular
texture databases, including Flickr Materials Database, a highly
challenging materials database. We compare our method
with 13 recent state-of-the-art methods, and the experimental
results show that our texture classification system yields the
best classification rates of which we are aware of 99.37% for
Columbia–Utrecht, 97.16% for Brodatz, 99.30% for University
of Maryland Database, and 99.29% for Kungliga Tekniska
högskolan-textures under varying illumination, pose, and scale.
Moreover, the proposed approach significantly outperforms the
current state-of-the-art approach in materials categorization,
with an improvement to classification accuracy of 67%.

Index Terms— Data fusion, kernel methods, materials textures,
random projection (RP), rotation invariance, support vector
machines (SVMs), texture classification.

I. INTRODUCTION

TEXTURE is a fundamental characteristic of the appear-
ance of virtually all natural surfaces and constitutes a

powerful visual cue. Texture classification plays an important
role in the computer vision and pattern recognition, and has
a wide range of applications including content-based image
retrieval, medical image analysis, remote sensing, industrial
inspection, document segmentation, and terrain classification
for mobile robot navigation [1]–[3].
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The field of texture classification has moved toward the
challenging problem of classifying real world textures with
3-D variations, with the variations due to imaging environment
changes, including both geometrical and photometric.
Consequently, more challenging texture databases, such as the
Columbia–Utrecht (CUReT) database [4], became popular in
which a texture class became a set of images corresponding
to a single physical sample, captured under a variety of
imaging conditions in the laboratory.

More recently, researchers have been working to push
texture classification into everyday materials imaged in real-
world contexts. Specifically, efforts are being made to extend
texture classification to material recognition, the accurate
classification of entire material categories with each category
having many different physical material samples [6], [7].

Frequently, the problem of material categorization has
been treated as a texture classification problem. However,
the material–texture distinction is tricky and the two tasks
are somewhat different: the notion of a category is the key.
The texture classification task used in much of the literature
is essentially to match an unseen image to the other (training)
images obtained from the same physical sample. In material
classification, categories group similar items, but similarity
does not imply a same sample, rather to broad high-level
categories, such as paper, plastic, fabric, and wood. Moreover,
often it is not even clear where boundaries between categories
should necessarily be drawn. There exist relatively few image
databases that focus on materials, with recent examples,
including Kungliga Tekniska högskolan-textures under
varying illumination, pose, and scale (KTH-TIPS2) [8], [9]
and the Flickr Materials Database (FMD) [6]. KTH-TIPS2
has four physical samples photographed in various pose,
illumination, and scale conditions, however, it contains rather
few physical samples in each material category. Instead,
the recently created FMD was designed for the material
categorization problem, possesses a significant number of
categories and images, and presents a substantial challenge to
classification.

In this paper, we propose to investigate these two problems
of texture classification and material categorization under a
common kernel-based discriminative framework. Recently, the
bag-of-words (BoWs) approach has emerged to become the
dominant paradigm for texture classification [8], [11]–[16],
[21]–[23]. The key components in building a BoW-based
classification system includes:

1) local texture features;
2) nonlocal statistical representation of local features;
3) an effective classifier;
4) a suitable similarity measure used within the classifier.
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It is generally agreed that local highly discriminative
yet robust texture features play the more important
role [11]–[13], [15], [23] and many kinds of local texture
descriptors have been proposed, such as Leung and Malik
filter bank [10], 8 maximum responses (MR8) [12], Gabor,
local binary pattern (LBP) [15], Patch [13], scale-invariant
feature transform (SIFT) [23], rotation-invariant feature trans-
form (RIFT) [11], spin (SPIN) [11], random projection
(RP) [16], and sorted RP (SRP) [17]. With no single feature
necessarily capturing all of the relevant local information,
some sort of feature combining seems relevant.

Of the possible features to combine, the strongest are
the random features proposed in [16] and [17]. In [16],
RPs were developed, a universal, information-preserving,
dimensionality-reduction technique to project from the image
patch domain to a compressed space without loss of salient
information. The method is very simple, and yet was shown to
outperform patch features, LBP, and various filter bank-based
methods. The rotation sensitivity of the RP approach led
to further work in which Liu et al. [17] proposed SRP
features, for rotation-invariant texture classification, which
demonstrated striking classification performance.

This paper investigates the problem of fusing multiple SRP
feature channels for the purposes of efficient image level
texture classification and material categorization, problems
possessing significant intra-class variability. The proposed
approach represents images as distributions (signatures1 or
histograms) of SRP features and learns a support vector
machine (SVM) classifier with kernels based on selecting
effective measures for comparing distributions, and using
multiple kernel learning (MKL) as an effective method for
combining the base kernels.

In this paper, we show how texture classification and
material categorization can be simultaneously addressed
within a robust combined SRP framework, and reach the
following conclusions.

1) Fused SRP features do lead to an increase in classifi-
cation accuracy, so clearly the different SRP features
possess complementary information.

2) In contrast to the excellent comparative study of [23],
the histograms-χ2-SVM framework is more efficient
and effective than the signatures-earth mover’s distance
(EMD)-SVM framework.

3) The large intra-class variation in the FMD material
database has a devastating effect on the performance
of other texture classification techniques, however, the
proposed approach gives excellent material categoriza-
tion performance on the FMD database, significantly
better than the state of the art. Experiments clearly
show the effectiveness of the proposed model selection
strategy.

4) The extensive experimental results demonstrate that
the proposed approach can effectively classify texture
images under a variety of conditions, producing

1A signature summarizes a feature distribution in the form of a set of cluster
centers together with the fractional cluster weights indicating the relative size
of each cluster.

consistently good classification results, including what
we believe to be the best reported results for the
CUReT, Brodatz, KTH-TIPS, University of Maryland
Database (UMD), and FMD databases.

This paper is organized as follows. In Section II, we give a
brief review of background and related work. In Section III,
we present the proposed combined SRP approach in detail.
In Section IV, methods are developed which maximize the
material classification performance and minimize the num-
ber of models used to characterize the material categories.
In Section V, we evaluate the proposed approach against
various state-of-the-art alternatives on commonly used texture
and material databases. Our preliminary work published
in [24] and [25] acted as a basis for this research. Our work
in [24] and [25] only deals with the texture classification prob-
lem, however, the current paper also addresses the much more
challenging problem of material recognition. Moreover, in this
paper, methods are developed which minimize the number of
models used to characterize the various material classes.

II. BACKGROUND AND RELATED WORK

A. Texture Classification
Texture classification methods can loosely be divided into

two categories: the one is a sparse approach that first detects
certain salient regions in a given image and then applies local
descriptors, such as SIFT, RIFT, and SPIN to describe the
selected regions [11], [23], [26]; the other is a dense approach
that extracts local features pixel-by-pixel over the input
image [10], [12]–[16]. Relative to dense methods, sparse
approaches are complex, produce relatively high-dimensional
features, and lack stability. Therefore, the dense approach is
more common and widely studied [10], [12]–[20].

As more challenging texture classification problems have
been studied, researchers have built richer representations by
combining multiple types of complementary texture descrip-
tors. Ojala et al. [15] proposed to combine two complementary
operators, LBP and variance, as a more powerful approach
for rotation-invariant texture classification. Liao et al. [27]
proposed an improved texture method by combining dominant
local binary pattern and Gabor filters. Lazebnik et al. [11]
developed a sparse affine-invariant texture representation
which first applies two complementary local region detectors
to detect salient local texture regions and then uses two
different local descriptors, SPIN and RIFT, both of which are
high dimensional, to extract local texture features. Following
the work of Lazebnik et al. [11], Zhang et al. [23] presented
an approach by combining three local descriptors, SIFT,
RIFT, and SPIN, claiming better performance over single
descriptor. Xu et al. [28] designed a multifractal spectrum
(MFS) approach by combining local features of intensity
and first- and second-order Gaussian derivatives. Finally, a
state-of-the-art material categorization method [6] combines
multiple features including texture, color, shape, and edge
features in a Bayesian framework.

B. Material Categorization
Material recognition is closely related to, but different from,

texture recognition. Unlike the more developed field of texture
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classification, there exists relatively little work in the field
of material categorization, surprising given how important
material understanding is for humans and how important it
must become for intelligent robot vision [29].

Material perception has been studied by modeling the under-
lying reflectance properties of materials using the bidirectional
reflectance distribution function and bidirectional texture func-
tion [4], [30]. Material recognition and object recognition are
often perceived as closely related problems and their solutions
share many properties in common [23]. Other interesting
examples, in which material and object recognition interact,
include the work of [31] and [32].

Unlike some other visual recognition tasks in computer
vision, it is difficult to find good, reliable features for material
recognition, therefore, the state of the art in material recogni-
tion [6] combines a rich set of seven low- and mid-level fea-
tures that capture various aspects of material appearance with
their proposed augmented latent Dirichlet allocation (aLDA)
method. Nevertheless, this method achieves a classification
rate of only 45% on the newly published challenging mate-
rial benchmark database FDM, clearly demonstrating the
limitation of current methods. Sharan [7] have established
that human being can recognize material categories reliably,
quickly in challenging conditions, and that categorization
performance cannot be explained by simple, low-level cues
like color or texture. It is therefore of significant interest
to explore questions regarding the best features for material
recognition.

C. Random Projection

RP has become a widely used method for dimensionality
reduction, and has been shown to have promising theoretical
properties: it is a general data reduction technique, such that
the choice of RP matrix does not depend upon the data in any
way, and RPs have been shown to have special promise for
high-dimensional data clustering.

The key idea of RP arises from the Johnson–
Lindenstrauss (JL) lemma [33], [34], which states that
a set D of d points in R

n×1 with n typically large can be
linearly projected into a lower dimensional Euclidean space
R

m using a random orthonormal matrix, while approximately
preserving the relative distances between any two of these
points. Subsequent research [35], [40] simplified the proof
of the above result by showing that such a projection can be
generated using an m×n matrix �, whose entries are randomly
drawn from certain probability distributions [35], specifically
including the Gaussian distribution [35], [40]. In recent years,
the JL lemma has found numerous applications that include
the compressed sensing (CS) problem [36], searching for
approximate nearest neighbors in high-dimensional Euclidean
space and dimension reduction in databases [35], and learning
mixtures of Gaussians [34].

The information-preserving and dimensionality-reduction
power of RP is firmly demonstrated by the theory of
CS [37], [38], which has grown out of the surprising realiza-
tion that for sparse and compressible signals, a small number
of linear nonadaptive measurements in the form of RPs can
capture most of the salient information in the high-dimensional

signal and allow for accurately reconstruction. The basic
problem in CS is to design a stable measurement matrix to
obtain the minimal number of linear nonadaptive measure-
ments that allows for stable reconstruction of the original
signal [37]–[39]. A sufficient condition for stable reconstruc-
tion of the original signal [39] is that the measurement
matrix obeys a condition known as the restricted isometry
property (RIP).2 Baraniuk et al. [40] give a simple technique
for verifying the RIP property for random matrices that under-
lies CS, clearly illustrate that the RIP can be thought of as a
consequence of the JL lemma, and that any distribution that
yields a satisfactory JL-embedding will also generate matrices
satisfying the RIP. As a consequence, random Gaussian
projections approximately preserve pairwise distances in the
dataset.

D. Kernel SVM Classification

Discriminative and robust texture features appear as the
most important fact contributing to superior texture classifi-
cation performance [1], [2], however, given a good texture
feature the key is to find a suitable classifier. SVM are cur-
rently the most popular classifier in BoW due to its robustness
against large feature vectors [41].

The provable success of SVM for image classification and
object recognition motivates the study of its potential in texture
classification. Although SVM have previously been used in
texture classification [8], [42], they have been limited to a
single kernel, and the success of SVM in these cases is often
dependent on the choice of a good kernel.

Because a great many texture features have been proposed,
with no method obviously outperforming the others, some
aspect of combining features seems relevant. Recent advances
in MKL have positioned it as an attractive tool for tackling
many learning tasks. The idea of combining descriptors has
been explored [9], [11], [23], [43] in texture classification and
material categorization. The method of Varma and Garg [43] is
based on MKL, where they attempted to learn optimal combi-
nations of local texture features and where they demonstrated
better classification performance. However, there is little
evidence that the multiple features used by Varma and Garg
represent complementary information about texture.

III. MULTIPLE SRP CLASSIFIERS

A. Local Texture Feature Extraction: SRPs

The local SRP features, as shown in the left panel of Fig. 1,
were first proposed in [17] for rotation-invariant texture clas-
sification. The SRP takes the sorted raw pixel intensities
[Fig. 1(a)] or intensity differences [SRP Radial-Diff and SRP
Angular-Diff in Fig. 1(b) and (c)] in a circular neighborhood
to form a feature vector x (i.e., xCirc, �Rad, or �Ang), which
is then transformed to a lower dimensional vector y = �x by

2For each integer k, define the isometry constant δk of a matrix � as the
smallest number such that (1 − δk)‖x‖2

l2
≤ ‖�x‖2

l2
≤ (1 + δk)‖x‖2

l2
holds

for all k-sparse vectors. If 0 < δk < 1, matrix � is said to satisfy the RIP
condition of order k. A vector x is said to be k-sparse if it has at most k
nonzero entries [39].
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Fig. 1. Overall framework for the proposed approach. Left panel: extracting SRP features on an example local image patch of size 7 × 7. (a) Sorting pixels.
(b) and (c) Sorting pixel differences. Right panel: architecture of combining multiple SRP features: we start with three base descriptors and compute the
corresponding BoW features hc, hr , ha , and associated distance functions (e.g., χ2). The BoW histogram features and distance functions are then kernelized
to yield base kernels matrices Kc, Kr , and Ka . Given the base kernels, the combined descriptor’s kernel is approximated such as K∗ = ωc K c +ωr K r +ωa K a ,
where ω denotes the weights corresponding to each base kernel. The optimization is carried out in an SVM framework so as to achieve the best classification
on the training set.

a RP matrix � whose entries are independently sampled from
a zero-mean, unit-variance normal distribution.

Specifically, as shown in Fig. 1(a), the xCirc feature extracted
from a local neighborhood of size (2a +1)×(2a +1) centered
at pixel x0,0 is defined as

xCirc = [
x0,0, sor t

([
xc

1,0, . . . , xc
1,p1−1

])
, . . . ,

sor t
([

xc
a,0, . . . , xc

a,pa−1

])]T (1)

where {xc
r,i }pr −1

i=0 denotes the values of the pr neighbors of
x0,0 on a circle of radius r , as shown at the top of Fig. 1.
Those locations which do not fall exactly in the center of a
pixel are estimated by interpolation. The function sor t (·) sorts
the inputs in nondescending order. Similarly, the sorted radial
and angular difference features, �Rad and �Ang, as shown
in Fig. 1(b) and (c), are computed as

�Rad = [
sor t

(
�Rad

1,0 , . . . ,�Rad
1,p1−1

)
, . . . ,

sor t
(
�Rad

a,0 , . . . ,�Rad
a,pa−1

)]T (2)

�Ang = [
sor t

(
�

Ang
1,0 , . . . ,�

Ang
1,p1−1

)
, . . . ,

sor t
(
�

Ang
a,0 , . . . ,�

Ang
a,pa−1

)]T (3)

where �Rad
r,i = xc

r,i − xc
r−1,i , �

Ang
r,i = xc

r,i − xc
r,i−1, xc

r,i , and
xc

r−1,i correspond to the gray values of pairs of pixels of the
same radial direction.

Ojala et al. [15] proposed the LBP descriptor, which is
based signed differences, but which contains less textural
information than the SRP. The motivations in using intensity
difference descriptors are as follows.

1) Its computational simplicity, in contrast to SIFT, RIFT,
and SPIN descriptors [11], [23].

2) Its gray scale invariance, very attractive in situations
where the gray scale is subject to changes due to
varying illumination conditions, but maintaining contrast
sensitivity.

3) The signed difference space is even sparser than the
patch space, and thus allows the use of RP.

4) Pairwise pixel interactions carry important structural
information, and both short- and long-range interactions
are relevant.

Since the intensity-based SRP feature and difference-based
SRP features are somewhat similar to the SPIN and RIFT
descriptors, motivated by the work of Lazebnik et al. [11]
and Zhang et al. [23] who proposed combining those
descriptors which capture complementary information, we
propose to combine the three SRP descriptors for tex-
ture classification, with the expectation that combined SRP
features would be richer and more robust than a single
one.
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B. Global Representation: Histograms Versus Signatures

Given some number of local random features extracted
from local texture patches, the key to effective texture
classification is to represent the feature distributions to learn
the nonlocal behavior of the texture, for which there are
two basic methods: histograms and signatures. We wish to
compare these approaches.

Let D = {{Ic,t }T
t=1}C

c=1 denotes the whole texture dataset,
with C distinct texture classes and each class having T texture
samples. Let Yc,t = {y

c,t,i
}i denotes the random feature vector

set extracted from the corresponding texture sample Ic,t , and
let Yc = {{y

c,t,i
}i }T1

t=1 denotes the random feature vector set
extracted from all the training samples available for class c,
where T1 is the number of training samples per class.

1) Histogram Framework: A global texton dictionary learn-
ing process is needed, so a set of random feature vectors
Yc, aggregated over training samples from texture class c,
are clustered by k-means, resulting in K cluster centers
Wc = {w c,k}K

k=1 which are the so-called textons. The textons
learned from the C classes form the global texton dictionary
W = {{w c,k}K

k=1}C
c=1. A histogram h c,t of compressed textons

is learned for each particular training sample Ic,t by labeling
each feature vector extracted from its pixels with the closest
texton. The texture class then is represented by a set of
normalized histogram models Hc = {h c,t }t , corresponding
to the training samples of that class. A classifier needs only
to be able to assess the degree of dissimilarity between two
histograms, for example, using a χ2 statistic

D(h1, h2) = 1

2

∑

k

[h1(k) − h2(k)]2

h1(k) + h2(k)
. (4)

2) Signature Framework: In contrast to the histogram
approach, the signature framework has no global texton dic-
tionary learning stage. Instead, each image is represented as a
signature Sc,t = {(pc,t,i , u c,t,i )}K

i=1, which is learned for each
training sample Ic,t by clustering only Yc,t = {y

c,t,i
}i , where

K is the number of clusters, u c,t,i is the center of the ith
cluster, and pc,t,i is the cluster frequency vector by counting
how many of the pixels belong to cluster u c,t,i . The EMD is
used to measure the dissimilarity between signatures that are
compact representations of distributions. The EMD between
two signatures S1 = {(pi , ui )}K1

i=1 and S2 = {(q j , v j )}K2
j=1 is

defined as

D(S1, S2) =
∑K1

i=1

∑K2
j=1 f̂i j d(ui , v j )

∑K1
i=1

∑K2
j=1 f̂i j

(5)

where d(ui , v j ) is the so-called ground distance between
cluster centers ui and v j , for which we use the Euclidean
distance, and f̂i j is the optimal flow, which can be determined
by solving a linear programming problem. While the EMD
works very well on signatures it should not, in general, be
applied to histograms. Small histogram invalidate the ground
distance as the bin centers are rather far, while computing the
EMD on large histograms can be very slow.

To compare the performance of the histogram and signature
frameworks, Table I shows the classification results for the

TABLE I

CLASSIFICATION ACCURACY (%) OF DIFFERENT KERNELS FOR THE SRP

RADIAL-DIFF FEATURE ON FIVE TEXTURE DATASETS. FOR THE

HISTOGRAM-BASED CLASSIFIERS, THE NUMBER OF TEXTONS K

USED PER CLASS ARE 10, 40, 40, 10, AND 40, RESPECTIVELY,

WHILE FOR THE SIGNATURE-BASED CLASSIFIERS K = 40.

THE NUMBER OF TRAINING SAMPLES PER CLASS

ARE 46, 20, 20, 3, AND 41, RESPECTIVELY.

THE TESTED PATCH SIZE IS 13 × 13 FOR

ALL DATABASES

SRP Radial-Diff feature, results which are representative of
other tested features. In contrast to the previous findings
in [23], we can see that the histogram framework performs
consistently and significantly better than the signature
framework. Furthermore, the signatures framework with the
EMD measure is time consuming, becoming computationally
prohibitive when the number of texture classes and the number
of codewords increases [44]. Motivated by these results, the
rest of this paper employs the histogram framework.

C. SVM Classification

The benefits of SVM for histogram-based classification has
clearly been demonstrated in [8], [9], [23], and [45]. SVM
was originally designed for binary classification, however, the
texture classification problem is multiclass, for which there are
two basic strategies: one-against-one and one-against-other.
Hsu and Lin [46] showed one-against-one, which trains a
classifier for each possible pair of classes, to be more suitable
for practical use, therefore, the one-against-one technique is
used in this paper.

Based on two-class SVM, our multiclass texture classifi-
cation problem is constructed by cascading multiple standard
two-class SVM classifiers. Given a texture classification
problem involving C textures, each two-class SVM classifier
is trained via two distinct types of texture images, meaning
that there are C(C − 1)/2 two-class SVM classifiers.

Our features for classification are bag-of-visual-words
histograms {hi }i of the texture images. In a two-class case,
say classes k and l, let hkl

i be a histogram feature vector
and zkl

i ∈ {−1,+1} its class label. After a training phase a
new sample, h, is assigned to one of the two classes by the
following decision function:

f kl (h) = sgn

⎛

⎝
∑

k∈�kl

αkl
i zkl

i K(h, hkl
i ) + bkl

⎞

⎠

where �kl is the set of support vector indices, K(h, hkl
i )

the kernel, αkl
i , i ∈ �kl the learned weight of hkl

i , and bkl
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Fig. 2. Comparison of SVM and NNC across different databases. The classification accuracy is plotted as a function patch size for the SRP Radial-Diff
feature on four texture databases: (a) CUReT, (b) KTH-TIPS, (c) UIUC, and (d) UMD. The number of training images per class is 46, 41, 20, and 20,
respectively. The number of textons K used per class is 10, 20, 40, and 40, respectively. The results convincingly argue that SVM consistently outperforms
NNC.

a learned threshold parameter. After all C(C −1)/2 classifiers
are constructed, a plurality voting strategy is used to assign
the feature histogram to a class.

For the histogram framework we apply two types of kernels:
Gaussian radial basis function (RBF) kernel K(hi , h j ) =
exp(−γ ‖hi − h j ‖2) and the χ2 kernel K(hi , h j ) =
exp(−γ D(hi , h j ), where D(hi , h j ) is defined in (4).

Fig. 2 shows the experimental results of the SRP Radial-
Diff feature on four popular and challenging texture databases,
with the purpose of comparing SVM with a nearest neighbor
classifier (NNC). From our experiments, we observe that the
SVM approach significantly and consistently outperforms
NNC across all tested datasets, suggesting that SVM are
superior to NNC in texture classification, consistent with
previous findings [8], [9], [23] that favor the use of SVM for
texture classification.

Since a key ingredient for the success of SVM is the kernel
function, which is often chosen by the user and represents a
heuristic element in our approach, to test the robustness of
SVM with respect to the kernel function we ran an exten-
sive set of experiments benchmarking three kernels, plus a
baseline comparison with χ2-NNC and EMD-NNC, as shown
in Table I. The tabulated results clearly show the histogram-
χ2-SVM to be the strongest method, therefore the rest of this
paper will focus on this context.

D. Combining Multiple SRP Features

We have made a case for SRP features over other texture
features, for histograms over signatures, and for SVM over
NNC, thus we are now in place to develop a combined
multiple SRP feature/SVM classifier, as shown in Fig. 1. To be
sure, there is an established literature on MKL [47], [48],
however, given that training a single-kernel SVM is already
computationally expensive, we have concerns regarding the
computational complexity of MKL methods. Instead, since
simple kernel combination methods are capable of reaching
the same classification accuracy as MKL [47], [48], we are
highly motivated to use such methods for texture classifica-
tion, therefore, in this paper, we propose a new method for
combining multiple random features.

Given F feature descriptors, we represent each texture
sample using F BoWs histograms. In this paper, we propose
to combine the normalized histograms hRad, hCirc, and hAng

for the corresponding SRP Radial-Diff, Circular, and Angular-
Diff features into a combined histogram hComb for each
texture image. We do have some freedom here because we
do not need to give equal weight to each histogram feature.
Similar to the strategy adopted in [49], we introduce a weight
vector ω > 0, so that the combined histogram is hComb =
[(ωr hRad)T (ωchCirc)T (ωahAng)T ]T . Instead of giving a fixed
weight to each histogram feature, we learn the weights ω
which give the best classification performance. Since the
distance between two histograms (single or combined) is
measured using the χ2 distance (4), the distance between two
combined histograms hComb

i and hComb
j is computed as

χ2(hComb
i , hComb

j
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)

(6)

where C is the number of texture classes and K is the number
of textons per class corresponding to some feature. Therefore,
by combining kernels calculated on each individual feature we
have

K∗(hComb
i , hComb

j

)

= [
Kr

(
hRad

i , hRad
j

)]ωr
[
Kc

(
hCirc

i , hCirc
j

)]ωc
[
Ka

(
hAng

i , hAng
j

)]ωa .

Equation (6) indicates that the weighting gives a linear com-
bination of the similarity between histograms computed from
different features, offering the capacity to give higher weights
to the more discriminative features during learning. Moreover,
it is a Mercer kernel and also has the capability to ignore
features which do not perform well.

We will first compare the performance of combinations of
two or three different features with that of a single feature in
the histogram framework, focusing on individual or combined
performance of the SRP Circular, Radial-Diff, and Angular-
Diff features. The kernel combination weights are learned by
cross validation, to find appropriate weights for fusing the
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Fig. 3. Classification rate versus number of training samples, comparing single and combined SRP results on three datasets: (a) CUReT, (b) UIUC, and
(c) and UMD. The corresponding classification accuracies achieved by the LBP [15] method are also included for comparison. Implementation parameters
involved are the same as those in Table II. In general, the combined approach (RCA) offers superior performance. All our SRP approaches outperform the
LBP method significantly and consistently.

SPR features. We begin with an initial weight distribution,
and then separately and sequentially adjust each individual
weight, and repeat the process until no further improvement
can be attained. Such a scheme is to ensure that the resulting
fused kernel achieves the best performances. However, based
on our investigation, we find that the weights in the combining
scheme defined in (6) and (7) can be kept fixed in this section,
since the same weights can give very good results. However,
varying the weights in (6) and (7) will be used later, in the
more challenging material categorization task.

Fig. 3 and Table II show results for various datasets and
as a function of the number of training examples, compar-
ing the combined descriptors with the best single descriptor
SRP Radial-Diff. The results achieved by the LBP method
proposed in [15] are also included for comparison. What is
clear from both the table and the figure is that, uniformly
across all datasets and across all degrees of training data, the
combined classifiers outperform the single one, implying that
there is some degree of complementarity in the SRP features.
The combination of all three descriptors, the SRP-RCA classi-
fier, is our proposed choice. Moreover, all our SRP approaches
outperforms the LBP method significantly and consistently.

IV. MODEL SELECTION

Many samples may be redundant or irrelevant because
some of the training samples might not be responsible for
the classification of the testing images. It is essential and
indispensable to select a subset of training images that is most
relevant to classification. Model selection methods select a
subset of examples from the original training data, removing
noisy, redundant, and both kinds of samples. We wish to
obtain a representative training set with a reduced size, when
compared with the original, and with a similar or even higher
classification accuracy for new incoming data. In our case,
an image is represented as a BoW histogram model, which
may be thought of as a point in the feature space, therefore,
the models for a particular texture (material) class simply
consist of a set of points in the feature space. In our tests,
so far the number of models was the same as the number of
training images, however, not all training models are respon-
sible for good classification performance, therefore, it may be
convenient to discard irrelevant training models. The key issue,

TABLE II

COMPARING SINGLE AND COMBINED SRP FEATURES: THE SUBTABLES

SHOW A COMPARISON OF SINGLE AND COMBINED SRP RESULTS, WITH

COMBINATIONS OF SRP RADIAL-DIFF (R), SRP CIRCULAR (C), AND

SRP ANGULAR-DIFF (A); THE PATCH SIZES USED ARE 13 × 13, 13 × 13,

9 × 9, 9 × 9, AND 11 × 11 FOR DC , DKT, DUIUC, DUMD, AND DCRot ,

RESPECTIVELY. THE NUMBER OF TEXTONS K USED PER CLASS ARE 10,

40, 100, 40, AND 10, RESPECTIVELY. THE WEIGHTS USED ARE SET AS

ωr = ωc = ωa = 0.5. THE RESULTS GIVEN BY THE LBP [15] ARE ALSO

INCLUDED AS A BASELINE. (a) CURET (92 SAMPLES PER CLASS IN

TOTAL). (b) KTHTIPS (81 SAMPLES PER CLASS IN TOTAL). (c) (UIUC)

(40 SAMPLES PER CLASS IN TOTAL). (d) UMD (40 SAMPLES

PER CLASS IN TOTAL). (e) CURETROT (92 SAMPLES

PER CLASS IN TOTAL)

then, is how to find a reliable number of models appropriate for
each class. No prior information is available to help answering
this question.



LIU et al.: FUSING SRPs FOR ROBUST TEXTURE AND MATERIAL CLASSIFICATION 489

Fig. 4. Projection on the first two principal components (PCs) of the BoW histograms of the SRP Radial-Diff feature are shown for all images in (a) 61
classes in the CUReT database, (b) 25 classes in the UIUC database, (c) 25 classes in the UMD database, and (d) 10 classes in the FMD database. The colors
and the marker types indicate the various texture/material categories. Clearly, the FMD material samples are the most difficult to separate.

TABLE III

SUMMARY OF TEXTURE DATASETS USED IN OUR EXPERIMENTS

Many machine learning techniques have been
developed [50] to reduce the number of models in a
classification algorithm. Our model selection problem is
closely related to the well-known problem [50] of prototype
or instance selection. Much work has been done on prototype
selection to reduce the training set, to reduce the effect of
noise on accuracy, and to obtain the same or even better
classification ability compared with using the whole training
set. It is beyond the scope of this paper to comprehensively test
model selection approaches; our goal is to investigate whether
model selection can improve classification performance.

A formal specification of the model selection problem
follows: let HTr and HTe denote the training models set and the
testing models set, respectively, with each set having NTr and
NTe models. Let HS ⊂ HTr be the subset of selected models
resulting from the execution of a model selection algorithm;
then, we classify a new model hnew from HTe acting over HS

instead of HTr. Inspecting the plots in Fig. 4, it is apparent that
the FMD is more challenging than the CUReT, University of
Illinois at Urbana-Champaign (UIUC), and UMD texture data-
bases, so for this reason we chose the FMD material database
as the basis for developing and evaluating model selection.

Informative models can be derived from training samples
in various ways. A method for finding prototypes can be
categorized as cluster-based learning algorithms, in which
prototypes are not samples per se, but can be derived as the
weighted averages of samples. Whereas we propose to develop
a greedy algorithm, designed to maximize the classification
accuracy, while minimizing the number of models used, with
decremental and incremental searches for a subset HS of BoW
models to keep from training set HTr.

A decremental search [50] begins with the training model
set HS = HTr, and then searches iteratively for instances

to remove from HS , on the basis of the one for which the
classification accuracy decreases the least when it is dropped.
We investigate model reduction in a SVM framework. Models
are selected from the training set HTr and classification
results reported only on the testing set HTe. This iteration is
repeated until no more models are left. Note that the proposed
model selection algorithm is constrained to select models only
from the training set and classification performance is being
reported on the test set. This emulates the setup of Cula and
Dana [5] and Varma and Zisserman [12], where the model
reduction algorithm has access to both training and test images
for each texture class. However, it must be emphasized that
in real world classification, the test set is not available for
inspection to the training set. Nevertheless, as we will show
later in the experiment section, there is a significant level of
difference between the performance of the model selection
algorithm on one hand and the proposed fused SRP approach
on the other. An incremental search [50] can also be proposed,
beginning with an empty subset HS , and iteratively adding
instances in HTr to HS based on the criterion that the model
is chosen to be the one for which the classification accuracy
increases the most when it is added.

Although the decremental search implies a higher computa-
tional cost than incremental algorithms, the main disadvantage
with the incremental approach is that the feature decisions are
based on little information, and indeed our experimental tests
in the context of texture classification showed the decremental
approach to significantly outperform incremental, and so we
will adopt the decremental approach in this paper.

V. EXPERIMENTAL EVALUATION

In this section, we test the proposed approach against eight
public benchmark databases, as summarized in Table III,
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Fig. 5. Image samples from the KTHTIPS2b database: each row shows one example image from each of four samples of a category.

for texture classification and material categorization, compar-
ing our results to the current state of the art.

A. Datasets and Experimental Setup

For texture classification, we have performed extensive
evaluation on seven popular texture databases. For material
categorization, we have used the challenging FMD materials
database from Massachusetts Institute of Technology. All the
eight datasets are summarized in Table III and described in
the following.

For CUReT, we use the same subset of images as [12], [13],
[16], and [17]. The texture appearances vary significantly from
one to the next due to being captured under different illumina-
tions and viewing directions. The CUReTRot dataset is newly
generated from CUReT by rotating each sample according
to a randomly generated angle, helping to validate rotation
invariance. For Brodatz [51], we use the same dataset as [11],
[17], and [23]. The UIUC database [11] has been designed
to require local invariance. Textures are acquired under sig-
nificant scale and viewpoint changes, arbitrary rotations, and
uncontrolled illumination conditions. The UMD database [22]
has each image downsampled to 240 × 320 using bilinear
interpolation. The KTH-TIPS database [8] extends CUReT
by imaging new samples of ten of the CUReT textures at a
subset of the viewing and lighting angles used in CUReT, but
over a range of scales. Although KTH-TIPS is designed to be
combined with CUReT in testing, we follow Zhang et al. [23]
in treating it as a stand-alone dataset.

The KTHTIPS2b [8], [9] is a more challenging database
dealing with classifying images from unseen physical samples
of materials. It contains four samples of 11 different materials
shown in Fig. 5, each sample imaged at nine different scales
equally spaced logarithmically over two octaves, and 12 light-
ing and pose setups, totaling 4572 images. However, there is
almost no rotation changes in this database. For the exper-
iments on KTHTIPS2b, we follow the training and testing
scheme used in [8] and [9]. We perform experiments training
on one, two, or three samples; testing is always conducted
only on unseen samples.

The FMD created in [6] selects photos from Flickr as
samples for common material categories. This database con-
tains 10 common material categories, as shown in Fig. 6.
The images capture a wide range of appearances within

Fig. 6. Ten material categories in the FMD [6]. The FMD database captures
a range of appearances within each material category.

TABLE IV

RP PROJECTING DIMENSIONALITY USED FOR THE CORRESPONDING

PATCH SIZES IN OUR EXPERIMENTS. THEORETICAL DETAILS FOR

DECIDING THE DIMENSIONALITY CAN BE FOUND IN [16]

each material category. Liu et al. [6] reported state-of-the-art
results by exploring a large set of heterogeneous features and
proposing an aLDA model to combine these features under a
Bayesian generative framework.

We will be performing a comparative evaluation of our
proposed combined SRP-SVM approach against 13 state-of-
the-art texture classification methods, as shown in Table VI,
with a detailed comparison with the following four state-
of-the-art methods, which have been shown to perform
better than other methods, based on the comparative study of
Zhang et al. [23].

1) The method of Caputo et al. [8], an extension of the
MR8 approach by Varma and Zisserman [12]. They use
the MR8 descriptor and SVM with a χ2 kernel for
classification.
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Fig. 7. Classification rate versus the number of training samples, comparing classification scores of the proposed combined SRP approach with those of the
state of the art methods as a function of the number of training samples on four texture datasets: (a) CUReT, (b) KTH-TIPS, (c) UMD, and (d) UIUC.

TABLE V

COMPARING THE PROPOSED APPROACH WITH STATE OF THE ART: THE

IMPLEMENTATION PARAMETERS ARE SAME AS THOSE IN TABLE II.

(a) CURET (92 SAMPLES PER CLASS IN TOTAL). (b) KTHTIPS

(81 SAMPLES PER CLASS IN TOTAL). (c) UIUC (40 SAMPLES

PER CLASS IN TOTAL). (d) UMD (40 SAMPLES

PER CLASS IN TOTAL)

2) The method of Lazebnik et al. [11], first characterizing a
texture using Harris-affine corners and Laplacian-affine
blobs, with two descriptors (SPIN and RIFT) used for

Fig. 8. Comparison with state-of-the-art methods on the KTHTIPS2b
database. Number of textons per class used is 100, and the patch size 11×11
is used. Results are original, except those of VZ-MR8, VZ-Joint, and LBP,
which are quoted from [8]. All results are obtained with SVM classification,
except those of ELBP [54] and oBIFs [56], which are obtained with NNC.

feature extraction. The NNC classifier with EMD is
used.

3) The method of Zhang et al. [23], based on the method
of Lazebnik et al. [11], combining three types of local
descriptors (SPIN, RIFT, and SIFT) and a kernel SVM
classifier with the EMD.

4) wavelet multifractal spectrum [22], based on a combi-
nation of wavelet transform and multifractal analysis.
It first performs scale normalization using the scale
estimated from local affine invariant Laplacian regions,
then computes the multiorientation wavelet pyramid and
wavelet leaders, finally computes the MFS vectors as
the global texture feature. An SVM classifier with RBF
kernel is used.
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TABLE VI

COMPARING THE CLASSIFICATION SCORES ACHIEVED BY THE PROPOSED SRP-RCA APPROACH WITH THOSE ACHIEVED BY 13 STATE-OF-THE-ART

METHODS ON FIVE DATASETS. SCORES ARE AS ORIGINALLY REPORTED, EXCEPT AS MARKED (∗), WHICH ARE TAKEN FROM IN [24]. THE

BRACKETED NUMBERS REPORT THE NUMBER OF TRAINING SAMPLES PER CLASS

Fig. 9. In the left panel, the projection of the first two PCs of the BoW histograms of the SRP Radial-Diff feature are shown for all images in the
11 categories of KTHTIPS2b. The colors indicate the various texture categories. Correspondingly, in the right panel, figures (a)–(k) provide more detail plots
for each category. The colors indicate the various samples in each category. (a) Aluminum foil. (b) Cork. (c) Wool. (d) Lettuce leaf. (e) Corduroy. (f) Linen.
(g) Cotton. (h) Brown bread. (i) White bread. (j) Wood. (k) Cracker.

1) Implementation Details: To make the comparisons as
meaningful as possible, for texture classification, we use the
same experimental settings as in [13], [16], and [17] and the
reader is referred to those papers for additional details. For
material categorization, the training and testing strategy is kept
the same as in [6]. The RP dimensions used in our experiments
are summarized in Table IV, and the rationale behind the RP
dimension selection can be found in [16].

Each sample is normalized to be zero mean, unit standard
deviation, and the extracted SRP vector is normalized via
Weber’s law. All results are reported over 50 random partitions
of the training and testing sets. Half of the samples per class
are randomly selected for training and the remaining half for
testing, except for DB, where three samples are randomly
selected as training and the remaining six as testing.

We use the publicly available LibSVM library [52]. The
values of the parameters C and γ of SVM are specified using
a grid search scheme. The parameters C and γ are searched
exponentially in the ranges of [2−5, 218] and [2−15, 28],

respectively, with a step size of 21 to probe the highest
classification rate.

B. Tests on Texture Databases

All results are taken directly from the original publications,
except that the results of Hayman on DC and of Lazebnik
on DKT are quoted from the recent comparative study of
Zhang et al. [23], and the results of Lazebnik with SVM on
DUMD from the work of Xu et al. [22].

Fig. 7 and Table V compare the classification performance
of our approach with that of state-of-the-art methods. Our
method outperforms competing approaches on DC, DK T , and
DUMD. On DUIUC our method outperforms when sufficient
training data are available.

Table VI presents a broader set of comparisons, comparing
our proposed approach with 13 others. Our approach scores
produces what we believe to be the best reported results on
the CUReT, Brodatz, KTH-TIPS, and UMD datasets, and
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TABLE VII

COMPARING SINGLE AND COMBINED SRP FEATURES ON THE FMD

DATABASE, FOR A 9 × 9 PATCH SIZE, NUMBER OF

TEXTONS PER CLASS K = 100

Fig. 10. Comparison of the best classification performance on the FMD.
All scores are as originally reported.

competitive performance on UIUC. We would like to point
out that all of the state-of-the-art methods were tested on only
a subset of the datasets, to some extent tuned to one or two.
Our single approach matches or outperforms each competing
method, even on its preferred dataset.

In terms of KTHTIPS2b, noting that there is only very
small rotation variation, we choose to fuse three unsorted
random features: RP, RP Radial-Diff, and RP Angular-Diff.
Fig. 8 shows the performance comparison of our approach
and several state-of-the-art methods.3 It can be observed
from Fig. 8 that our fused feature demonstrates superior
performance, significantly improving the state-of-the-art per-
formance for two training samples and three training samples.
However, unlike the results on other tested texture datasets, the
classification performance on the KTHTIPS2b database is still
far from satisfying. The plots for the KTHTIPS2b similar to
those in Fig. 4 are shown in Fig. 9. It can be observed from
Fig. 9 (the subfigure in the left panel) that the 11 material
categories form good clusters in the feature space. Since the
samples (with all their 108 images) are distributed over either
the training or the testing set, the classification would be easy
if the BoW features of all the four samples overlap (meaning
less intra-class variations) in the feature space. However,
inspecting the subfigures in the right panel of Fig. 9, we can
observe that some classes possess larger intra-class variations
than others. This is consistent with the observation from Fig. 5
that the variation in appearance between the samples in each
category is larger for some categories than others. It can be
observed from Figs. 5 and 9 that cork, for instance, contains
relatively little intra-category variation, whereas cracker and

3Varma and Zisserman (VZ)-MR8 [12], VZ-Joint [13], LBP [15], extended
local binary pattern [53], and basic image features [55].

Fig. 11. Classification rate as a function of the number of training images
selected by the greedy algorithm (decremental search) for the FMD. We can
observe that the classification accuracy by the greedy algorithm improves
significantly, while using, on average, fewer models. The patch size tested is
9 × 9; the number of textons learned per class is 100.

Fig. 12. Number of models selected for each category by the greedy
algorithm, while classifying all 10 materials.

wool exhibit significant intra-category variation. These sources
of intra-class variation provide a stern challenge indeed for
recognition.

C. Tests on Material Database

Given the huge range of image samples in the FMD, as
shown in Fig. 6, arguably any single feature, based on texture
or color, may not be sufficient [7], [29]. Instead, broad material
categorization may need multiple low-level cues in conjunction
with high-level object knowledge, the sort of cues that the
proposed BoWs method applied to combined random features
might provide.

To automatically choose the value of the weighting vector
ω in (6) that gives the best result in term of classification
performance, we learn the weights ωr , ωc, and ωa by cross
validation. We have opted to use a varying ω and to replace
one of its entries by an ascending series while keep other two
entries fixed. Starting from a low value, it is possible to check
every few iterations whether increasing this value provides a
better classification rate. In this scheme, the parameters and
are searched in the ranges of [0, 1], with a step size of 0.1 to
probe the highest classification rate. In other words, the values
of the parameters ωa , ωc, and ωa can be learned using a grid
search scheme.

Table VII presents the results on the FMD, comparing the
single and combined SRP descriptors and their combination.
In all cases, a combined approach outperforms individual
features. More significantly, Fig. 10 presents the best clas-
sification rates achieved by the proposed approach competing
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Fig. 13. PCA embedding of BoW histograms for the 50 training material images from the water class in two dimensions. The red dots represent the models
selected by greedy algorithm. The results illustrate that using a fewer number of models can improve performance and that the greedy algorithm is good at
removing outliers and redundant examples.

state-of-the-art methods. Both without combining (52.6% from
SRP-R) and with combining (53.2% from SPR-RCA) signif-
icantly outperform the 35.2% performance of the best single
feature (SIFT) reported in [6] with their aLDA approach, and
the best reported score of 44.6% from [6] in combining color,
texture, shape, and edge features with aLDA. According to
our experimental results we find foliage the easiest to classify
and metal the hardest, consistent with the findings from [6].

Although our proposed approach produces the highest
accuracy of 53.2% on FMD, this accuracy it is still much
lower than the rates which we saw for texture classification
in Table VI. As a final step, we test the proposed decremental
greedy search algorithm to boost classification performance
by focusing on the most relevant subset of features. Fig. 11
shows the results of classifying the FMD using the proposed
SRP-RCA approach. It is very interesting to note that the
classification accuracy obtained using seven training samples
per class can be the same as those obtained using all 50 train-
ing samples per class. The classification accuracies achieved
by more than seven training samples are all higher than the
classification score without the greedy approach; for example,
at 17 training samples per class we obtain a classification
accuracy of 67.2%, far higher than any other reported result.
The increase in performance indicates that using fewer models
can improve performance, meaning that the greedy algorithm
is good at rejecting noisy and redundant examples.

To obtain some insight into the proposed approach, Fig. 12
shows the number of training models selected per material
category for different average number of training samples
selected per class. Fig. 13 visualizes the selected training
samples for the water category (when on an average 17 training
images are selected and used for classification), showing the
rejection of outliers and redundant examples.

VI. CONCLUSION

In this paper, a very simple, robust, yet highly effective
approach has been proposed for texture classification and

material categorization. The proposed approach employs the
following:

1) the simplicity and universality of SRP random features
in using RP for information-preserving dimensionality
reduction;

2) the advantage of BoW in computational efficiency and
global invariance to environment changes;

3) the advantages of a simple strategy for combining mul-
tiple SVM kernels compared to complex MKL.

We have tested our approach on six popular and challenging
texture databases and one difficult material database. Based
on extensive experimental results on a wide variety of texture
datasets, our system yields the best classification rates of
which we are aware for CUReT, Brodatz, UMD, KTH-TIPS,
and FMD.

The proposed system is illumination and rotation invariant,
however, one limitation of the proposed system is that it
is not invariant to significant scale changes. Although work
has been reported on scale invariance [11], [22], [23], no
approach has been reported to handle scale changes of a large
magnitude. Given the flexibility of our proposed method, we
see research into scale-invariance as a promising direction for
future research.
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