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Abstract Skin lesion analysis using standard camera images has received limited
attention from the scientific community due to its technical complexity and scarcity
of data. The images are privy to lighting variations caused by uneven source lighting,
and unconstrained differences in resolution, scale, and equipment. In this chapter, we
propose a framework that performs illumination correction and feature extraction on
photographs of skin lesions acquired using standard consumer-grade cameras. We
apply a multi-stage illumination correction algorithm and define a set of high-level
intuitive features (HLIF) that quantifies the level of asymmetry and border irregularity
about a lesion. This lighting-corrected intuitive feature model framework can be
used to classify skin lesion diagnoses with high accuracy. The framework accurately
corrects the illumination variations and achieves high and precise sensitivity (95 %
confidence interval (CI), 73.1–73.5 %) and specificity (95 % CI, 72.0–72.4 %) using a
linear support vector machine classifier with cross-validation trials. It exhibits higher
test-retest reliability than the much larger state-of-the-art low-level feature set (95 %
CI, 78.1–79.7 % sensitivity, 75.3–76.3 % specificity). Combining our framework with
these low-level features attains sensitivity (95 % CI, 83.3–84.8 %) and specificity
(95 % CI, 79.7–80.1 %), which is more accurate and reliable than classification using
the low-level feature set.
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Introduction

Melanoma is the most deadly form of skin cancer and is caused by the development
of a malignant tumour of the melanocytes [42]. It was estimated that 76,250 men
and women were diagnosed with melanoma in 2012 and 9,180 men and women died
of it in the US alone [31]. One in five Americans are expected to be diagnosed with
melanoma in their lifetime [54]. One of the most alarming facts about melanoma
is that it is the most common form of cancer for young adults [30] and it is one
of the few cancers where the incidence rate is increasing for men [34]. Fortunately,
the five-year survival rate is 98 % if the lesion is extracted while the cancer is still
confined to its primary location. However, the five-year survival rate decreases to
15 % if the cancer has spread to remote parts of the body [31].

Some clinical tools exist that can assist dermatologists diagnose skin lesions.
For example, the Asymmetry, Border irregularity, Colour variation, and Diameter
(ABCD) rubric serves as a guide for dermatologists to check skin lesions in a sys-
tematic manner [41, 50]. However, expert dermatologists using the ABCD rubric
with a dermatoscope (a specialized tool that optically magnifies and enhances skin
structures) reported a sensitivity of 76.0–87.7 % and a specificity of 61.0–77.8 %
[5]. Furthermore, only 48 % of US fellows of the American Academy of Dermatol-
ogy reported using a dermatoscope [25]. Recent developments include melanoma
detection using standard camera images [1, 8, 9], but there is still much room for
technological advances.

This chapter presents a systematic framework to analyse and assess the risk of
melanoma using dermatological photographs taken with a standard consumer-grade
camera. The framework consists of illumination preprocessing and feature extraction,
and is validated using a simple malignancy classification scheme. The preprocess-
ing step consists of a multi-stage illumination modeling algorithm. The proposed
features that are extracted are high-level intuitive features (HLIF) describing lesion
asymmetry and border irregularity. The segmentation is obtained using a manually-
drawn ground-truth border and an existing classification algorithm is used. Automatic
segmentation is not discussed here.

The first step in the proposed framework is a preprocessing step, where the image
is corrected for illumination variation. This preprocessing step serves to improve
performance of the subsequent steps. Illumination correction tries to remove illumi-
nation variation, such as shadows, so that healthy skin is a more consistent colour
throughout the photograph. Since the lesion is typically a darker colour than the sur-
rounding healthy skin, a segmentation algorithm may misclassify shadows as lesion.
The illumination correction can improve the classification algorithm by standardiz-
ing features reliant on underlying pixel values. For example, features that rely on
lesion colour are affected by shadows.

Once an image has been preprocessed, features are extracted and used to clas-
sify the image as “malignant” or “benign”. The quality of this feature set is very
important in differentiating the two classes. Furthermore, it is generally preferable
to project the image into a low-dimensional feature space, since high-dimensional
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feature spaces are usually associated with larger computational cost and possibly var-
ious classification problems such as overfitting and the curse of dimensionality. In
the proposed framework, we extract HLIFs that were designed specifically to model
a human-observable characteristic. These features may take more effort to design
than low-level features, but we show in the experimental results that classification
accuracy improves dramatically by integrating HLIFs with low-level features.

The rest of the chapter is organized as follows. A literature review of existing
methods and algorithms is presented in “Background”. The multi-stage illumination
modeling algorithm is described in “Illumination Correction Preprocessing”. A set
of high-level intuitive features for describing skin lesions is presented in “Feature
Extraction”. Experimental results of the proposed unified framework are shown in
“Results” and conclusions are drawn in “Conclusion”.

Background

The problem of diagnosing cutaneous cancer has received more attention from the
technical community in recent years. Unlike classical medical imaging modalities
that produce an image using dedicated equipment (e.g., magnetic resonance imaging
and X-ray), skin diagnosis is performed using visual information. This workflow
poses more difficult computer vision problems as there is no standard modality with
which data is captured.

The majority of the melanoma detection methods in the literature analyse images
acquired using dermoscopy [21], also known as epiluminescence microscopy (ELM)
or the unfortunate similarly-named “dermatoscopy”. Dermoscopy is a non-invasive
technique whereby the dermatologist uses a handheld dermatoscope to visually
analyse the skin. Dermatoscopes optically magnify the area of interest, and most
can elucidate sub-surface structures by applying a dermoscopic oil on the skin or,
more recently, employing light cross-polarization. These produce images with stan-
dardized lighting conditions, and show sub-surface microstructures of the epidermis.
However, it has been reported that only 48 % of American Academy of Dermatology
fellows use dermatoscopes [25]. There is, therefore, a large demand for methods that
analyse images taken without a dermatoscope.

Our framework’s workflow is summarized in Fig. 1. We present a literature review
of preprocessing, feature extraction, and classification methods in the following sec-
tions, as it pertains to our framework.

Illumination Correction Preprocessing

Most illumination correction algorithms are not specific to skin lesion photographs
and can be applied to any scene. Histogram equalization adjusts the distribution
of pixel intensities, minimizing illumination variation globally [47]. Other algo-
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Fig. 1 Workflow of the proposed melanoma decision support framework

rithms correct for local illumination variation. These algorithms typically assume
a multiplicative relationship between illumination and reflectance components. The
estimated illumination component is estimated and used to find the reflectance com-
ponent. The illumination component is assumed to be low-frequency, while the high-
frequency detail is in the reflectance component. Using this assumption, there are
many different algorithms that estimate illumination. One of the earliest is the Retinex
algorithm, which uses a set of Gaussian filters of different sizes to remove detail and
to estimate illumination [27, 36]. Morphological operators [49], bilateral filters [24],
Monte Carlo sampling [53] and total variation [16] approaches have also been used
to estimate illumination.

Other methods involve correction algorithms that are specific to images of skin
lesions. Earlier algorithms enhance images taken with a dermatoscope to better sep-
arate lesion pixels from healthy skin. These algorithms include colour calibration
[29] and normalization [33] to improve lesion classification or contrast enhancement
[13, 46] to improve segmentation.

Recent work focuses on correcting photographs of skin lesions acquired using
standard digital cameras to improve segmentation and classification. Work by Cav-
alcanti et al. [10] apply morphological operators to estimate the illumination com-
ponent. The initial estimate of illumination is used to fit a parametric surface using
the illumination intensities in the four corners of the photograph. The reflectance
component is estimated using the parametric surface. Initial work on the correction
algorithm outlined in this chapter was initially presented by Glaister et al. [28].

Feature Extraction and Classification

Most existing feature sets have been designed to model the ABCD criteria using
dermoscopic images. Lee and Claridge propose irregularity indices to quantify the
amount of border irregularity [37]. Aribisala and Claridge propose another border
irregularity metric based on conditional entropy [6]. Celebi et al. propose shape,
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colour, and texture features with rationale, and using a filter feature selection method
[12]. Colour features are primarily taken either in the RGB space (usually mean
and standard deviation of the three channels), or a perceptually-uniform CIE colour
space. Good overviews of existing features can be found in [35, 39].

Features designed to analyse dermoscopic images may not necessarily be suitable
for the noisy unconstrained environment of standard camera images. Some work has
been done to identify suitable features for standard camera images [1, 8, 9], however
the focus of these methods has primarily been in the preprocessing and segmentation
stages, resulting in large sets of low-level features. For example, Cavalcanti and
Scharcanski [9] propose the same low-level feature set as Alcon et al. [1] with a few
minor adjustments. Amelard et al. proposed the first set of high-level asymmetry and
border irregularity features that were modeled assuming standard camera images
[3, 4], which are used in this chapter.

Most of the methods use existing classification schemes, such as support vector
machines (SVM), artificial neural networks (ANN), decision trees, and k-nearest
neighbour (K-NN) [35]. Ballerini et al. designed a hierarchical classification system
based on K-NN using texture and colour features to classify different types of non-
melanoma skin lesions with 93 % malignant-versus-benign accuracy and 74 % inter-
class accuracy [8]. Piatkowska et al. achieved 96 % classification accuracy using a
multi-elitist particle swarm optimization method [44]. Thorough reviews of existing
classification schemes can be found in [35, 39].

Some emphasis has been placed on constructing content-based image retrieval
(CBIR) frameworks for recalling similar lesions. These methods rely on constructing
a representative feature set that can be used to determine the similarity of two images.
Ballerini et al. extracted basic colour and texture features such as colour mean,
covariance, and texture co-occurrence matrix calculations, and used a weighted sum
of Bhattacharyya distance and Euclidean distance to find visually similar lesions [7].
Celebi and Aslandogan incorporated a human response matrix based on psychovisual
similarity experiments along with shape features to denote similarity [11]. Aldridge
et al. designed CBIR software and experiments which showed with high statistical
significance that diagnostic accuracy among laypeople and first-year dermatology
students was drastically improved when using a CBIR system [2].

There has been some work done to extract melanin and hemoglobin information
from skin images. The melanin and hemoglobin information can be very useful in
trying to identify the stage and type of the lesion. All of the proposed methods rely
on various physics-based models of the skin to characterize the reflectance under
some assumptions about the absorption, reflectance, and transmission of the skin
layers. Work primarily led by Claridge explores using multispectral images using
spectrophotometric intracutaneous analysis to analyse melanin, hemoglobin, and
collagen densities [19, 40]. Claridge used a physics-based forward parameter grid-
search to determine the most feasible skin model parameters assuming standardized
images [17]. Tsumura et al. used an independent component analysis (ICA) scheme
to decompose the image into two independent channels, which they assumed are
the melanin and hemoglobin channels [51]. D’Alessandro et al. used multispectral
images obtained using a nevoscope and used a genetic algorithm to estimate melanin
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and blood volume [20]. Madooei et al. used blind-source separation techniques
using a proposed corrected log-chromaticity 2-D colour space to obtain melanin
and hemoglobin information [38].

Illumination Correction Preprocessing

The proposed framework first corrects for illumination variation using the multi-
stage algorithm outlined in this section. The illumination correction algorithm uses
three stages to estimate and correct for illumination variation. First, an initial non-
parametric illumination model is estimated using a Monte Carlo sampling algorithm.
Second, the final parametric illumination model is acquired using the initial model
as a prior. Finally, the parametric model is applied to the reflectance map to correct
for illumination variation. The three stages are outlined in this section.

Initial Non-parametric Illumination Modeling

The first stage involves estimating the initial non-parametric illumination model.
This stage is required to estimate illumination robustly in the presence of artefacts,
such as hair or prominent skin texture. Certain assumptions are made about the illu-
mination in the dermatological images. The images are assumed to have been taken
inside a doctor’s office, in a controlled environment and beneath overhead lights.
This means that the illumination model does not need to account for sudden changes
in lighting conditions. Instead, the illumination will change gradually throughout an
image. Illumination variation is assumed to be produced by white lights, so the cor-
rection algorithm does not need to correct colour variation. Finally, a multiplicative
illumination-reflectance model is assumed [36]. In this model, the V (value) channel
in the HSV (hue-saturation-value) colour space [48] is modeled as the entry-wise
product of illumination i and reflectance r components. After applying the logarith-
mic operator, this relationship becomes additive (1).

v(x, y) = i(x, y) × r(x, y)

vlog(x, y) = ilog(x, y) + rlog(x, y) (1)

To estimate the illumination map i , the problem can be formulated as Bayesian
least squares (2), where p(ilog|vlog) is the posterior distribution.

îlog = argmin
ilog

{
E

(
(ilog − îlog)

2)|vlog

}

= argmin
ilog

{∫
(ilog − îlog)

2 p(ilog|vlog)dilog

}
(2)
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Fig. 2 Sample posterior distribution p̂
(
ilog|vlog

)
, built from pixels accepted in the set �. Each

stacked element corresponds to a pixel sk in �, where the height is α(sk |s0) and bin location is sk

To estimate the posterior distribution, a Monte Carlo posterior estimation algo-
rithm is used [15]. A Monte Carlo estimation algorithm is used to avoid assuming
a parametric model for the posterior distribution. In this Monte Carlo estimation
strategy, candidate samples are drawn from a search space surrounding the pixel of
interest s0 using a uniform instrumental distribution. An acceptance probability α is
computed based on the neighbourhoods around the candidate sample sk and pixel
of interest s0. The Gaussian error statistic used in this implementation is shown in
(3). The parameter σ controls the shape of the Gaussian function and is based on
local variance and hk and h0 represent the neighbourhoods around sk and s0 respec-
tively. The term λ in the denominator normalizes the acceptance probability, such
that α(sk |s0) = 1 if the neighbourhoods around sk and s0 are identical. The elements
in the neighbourhoods are assumed to be independent, so the acceptance probability
is the product of the probabilities from each site j .

α(sk |s0) =
∏

j

1
2πσ exp

[
− (hk [ j]−h0[ j])2

2σ2

]

λ
(3)

The candidate sample is accepted with a probability of α into the set � for esti-
mating p(ilog|vlog). The selection and acceptance process is repeated until a desired
number of samples were found in the search space. The posterior distribution is esti-
mated as a weighted histogram, using α as the weights associated with each element.
A sample histogram is shown in Fig. 2. The estimate of the log-transformed illumi-
nation map îlog is calculated using (2), as outlined in [26]. The initial illumination
estimate î is acquired by taking the exponential of îlog . An example of an image with
visible illumination variance is shown in Fig. 3a and the associated non-parametric
illumination model is shown in Fig. 3b.
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Fig. 3 Methodology to estimate illumination map: a original image of a skin lesion, where the top
edge is noticeably darker than the bottom edge; b illumination map determined via non-parametric
modeling using Monte Carlo sampling; c segmentation map found using Statistical Region Merging;
d regions included in the subset of skin pixels, where pixels black in colour are not classified as
normal skin; e new illumination map determined by using (d) as a prior to the quadratic surface
model; f resulting corrected image using the multi-stage illumination correction algorithm

Final Parametric Illumination Modeling

The initial non-parametric illumination model results in an estimate of the illumi-
nation variation in healthy skin, but does not properly model illumination near the
lesion. Instead, the initial model identifies the lesion as a shadow. Using the initial
model to correct the image would result in a significant bright spot around the lesion,
which is obviously undesirable. To better model the illumination, a second stage is
added, which results in a parametric model of illumination that uses the initial illumi-
nation pixel values. The parametric model can adequately estimate the illumination
variation because illumination is assumed to change slowly throughout the image.
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The subset of pixels that are used to fit the parametric surface correspond to healthy
skin in the original image.

To find the subset of healthy skin pixels, the original image is segmented into
many regions. The segmentation algorithm used in this implementation is Statistical
Region Merging [43]. The resulting segmented image is shown in Fig. 3c, where
each region is represented as a single colour. Any regions that touched 20 × 20
pixel regions in the four corners of the image are considered part of the “healthy
skin” class. While this method does not yield a perfect segmentation of the healthy
skin and lesion classes, only an estimate of healthy skin pixels is required for fitting
the parametric model. The regions that are considered ‘healthy skin” are shown in
Fig. 3d.

The final illumination model î ′ is estimated as a parametric surface (4) with
coefficients c1 to c6, which is fit to the initial illumination values î corresponding to
pixels in the “healthy skin” subset S using maximum likelihood estimation (5). The
final parametric illumination model is shown in Fig. 3e.

i ′(x, y) = c1x2 + c2xy + c3 y2 + c4x + c5 y + c6 (4)

î ′ = argmax
î ′

∏
(x,y)∈S

P(î(x, y)|î ′(x, y)) (5)

whereP(î(x, y)|î ′(x, y)) i.i.d. N (î ′(x, y),σ2)

Reflectance Map Estimation

The reflectance map is calculated by dividing the V channel v from the original image
in the HSV colour space by î ′. The reflectance map r̂ replaces the original V channel
and is combined with the original hue (H) and saturation (S) channels. The resulting
image is corrected for illumination. An example of a corrected image is shown in
Fig. 3f.

Feature Extraction

Once the image has been preprocessed, descriptive features are extracted to describe
the lesion as a vector of real numbers. One of the most prominent clinical methods for
diagnosing a skin lesion is using the ABCD rubric [41, 50], where the dermatologist
looks for signs of asymmetry, border irregularity, colour variations, and diameter.
However, this is done in a very subjective manner, and results in discrete categorical
values. For example, the score assigned to a lesion’s asymmetry is determined by
identifying whether the lesion is asymmetric across two orthogonal axes chosen by
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the dermatologist, resulting in a score A ∈ {0, 1, 2} [50]. This type of subjective
visual analysis leads to large inter-observer bias as well as some intra-observer bias
[5]. We aim to create continuous high-level intuitive features (HLIFs) that represent
objective calculations modeled on a human’s interpretation of the characteristic.

High-Level Intuitive Features

A “High-Level Intuitive Feature” (HLIF) is defined as a feature calculation that has
been designed to model a human-observable phenomenon (e.g., amount of asym-
metry about a shape), and whose score can be qualitatively intuited. As discussed
in “Background”, most skin lesion features are low-level features. That is, they are
recycled mathematical calculations that were not designed for the specific purpose
of analysing a characteristic of the lesion shape.

Although designing HLIFs is more time-consuming than amalgamating a set of
low-level features, we show in “Results” that the discriminative ability of a small set
of HLIFs is comparable to a large set of low-level features. Since the HLIF set is
small, the amount of required computation for classification decreases, and the risk
of overfitting a classifier in a highly dimensional space is reduced, especially with
small data sets.

In the next two sections, we describe nine HLIFs to evaluate the asymmetry and
border irregularity of a segmented skin lesion. These HLIFs are designed to model
characteristics that dermatologists identify. This work is described in detail in [3, 4],
so we limit our analysis here to a general overview of the features.

Asymmetry Features

Dermatologists try to identify asymmetry with respect to shape or colour to indi-
cate malignancy. These visual cues result due to the unconstrained metastasis of
melanocytes in the skin.

HLIF for Colour Asymmetry

Asymmetry with respect to colour can be quantified by separating the lesion along an
axis passing through the centre of mass (centroid) such that it represents the maximal
amount of colour asymmetry. This “maximal” axis was found iteratively. First, we
calculate the major axis of the lesion. The major axis is that which passes through the
centroid and describes the maximal variance of the shape. The lesion image was then
converted to the Hue-Saturation-Value (HSV) space so we can use the illumination-
invariant hue measure to analyse the colours. The normalized hue histograms of both
sides of the axis were smoothed using a Gaussian filter for robustness and were then
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compared to generate the following HLIF value:

f A
1 = max

θ

{
1

2

nbins∑
i=1

|H θ
1 (i) − H θ

2 (i)|
}

(6)

where H θ
1 and H θ

2 are the normalized smoothed hue histograms according to the
separation axis defined by rotating the major axis by θ, and nbins is the number of
discretized histogram bins used for binning hue values (we used 256 bins). Notic-
ing that f A

1 ∈ [0, 1], f A
1 can be intuited as an asymmetry score ranging from 0

(completely symmetric) to 1 (completely asymmetric).
Figure 4 depicts an example of this calculation. The lesion has a dark blotch on

one side of it, rendering it asymmetric with respect to colour, which is reflected in
the calculated value of f A

1 = 0.3866.

HLIF for Structural Asymmetry

Making the observation that symmetry can usually not be found in highly irregular
shapes, we express the segmented lesion as a structure and analyse its simplicity.
Fourier descriptors apply the Fourier series decomposition theory to decompos-
ing some arbitrary shape into low-frequency and high-frequency components. In
particular, the points on the shape border are mapped to 1D complex number via
F : (x, y) �→ x + iy, where i is the complex number. The Fourier transform is
performed on this set of complex numbers. We can then compare a low-frequency
(“simple”) reconstruction with the original shape to determine the amount of asym-
metry due to shape irregularity.

First, since we must use the discretized Fourier transform, the lesion border was
uniformly sampled at a fixed rate to ensure the same decomposition in the frequency
domain across all images. The Fast Fourier Transform (FFT) was then applied, and
only the two lowest frequency components were preserved. These two frequencies
represent the zero-frequency mean and the minimum amount of information needed
to reconstruct a representative border. The inverse FFT was applied on these two
frequencies to reconstruct a low-frequency representation of the lesion structure.
Comparing this shape with the original is ill-advised, as this would yield a metric
that is more suitable for border irregularity. Instead, we applied the same procedure
to reconstruct a structure using k frequencies, were k is some small number that
reconstructs the general shape of the lesion. This shape is compared to the original
shape to generate the following HLIF calculation:

f A
2 = area(Sk ⊕ S2)

area(Sk
⋃

S2)
(7)

where Sk and S2 are the k-frequency and 2-frequency reconstructions of the original
lesion shape. This feature value can be intuited as a score representing the general
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Fig. 4 Example of the design of f A
1 by comparing the normalized hue histograms of both sides

of the separation axis. The red bars represent the original binned histogram of hue values, and
the blue line represents these histograms smoothed by a Gaussian function (σ = 2 bins), which
allows us to compare hue histograms robustly. In this example, f A

1 = 0.3866, representing a lesion
with asymmetric colour distributions. a Image separated by the axis that produces maximal hue
difference. b Normalized hue histogram of the left side of the lesion. Note the prominence of blue
pixels along with the red ones in the histogram due do the dark blotch in the image. c Normalized
hue histogram of the right side of the lesion. Note the prominence of red pixels in the histogram in
correspondence with the image. d Absolute difference of the two hue histograms. The amount of
blue and lack of red pixels in the first histogram are reflected by the two “humps” in the difference
histogram

structural variations. We found empirically that linearly sampling the border with
1000 points and setting k = 5 yielded good results.

Figure 5 depicts an example of this calculation. Notice how the lesion has a very
abnormal shape that does not seem to contain any symmetry. The logical XOR
(Fig. 5b) captures this structural variation, and the calculation represents the dark
area with respect to the union in Fig. 5c.
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Fig. 5 Example of the design of f A
2 by comparing a baseline reconstruction of the lesion (magenta)

with a low-frequency reconstruction (green) that incorporates the structural variability, it any exists.
In this example, f A

2 = 0.1609, representing a structurally asymmetric lesion. a Original lesion,
and reconstruction using 2 (pink) and 5 (green) frequency components. b Logical XOR of the two
reconstructions (dark area). c Union of the two reconstructions (dark area)

HLIF for Asymmetric Areas

Cavalcanti and Scharcanski propose the following four HLIFs as a measure of area
asymmetry [9]:

• f8 : (B1 − B2)/A with respect to L1
• f9 : (B1 − B2)/A with respect to L2
• f10 : B1/B2 with respect to L1
• f11 : B1/B2 with respect to L2

where L1, L2 are the major and minor axes of the lesion, and B1, B2 are the areas of
each side of L1 or L2. No explicit constraint exists on the relative sizes of B1 vs B2.
Thus, for very asymmetric shapes, { f8, f9} can either before positive or negative,
and { f10, f11} can be large or small. For clarity, we add the following constraint to
the features:

f A
3 = (A1 − A2)/A with respect to L1, (8)

f A
4 = (A1 − A2)/A with respect to L2, (9)
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Fig. 6 Example of the design of { f A
3 , f A

4 , f A
5 , f A

6 } by comparing the areas to each side of the
lesion’s major and minor axes. Notice that the red area appears much larger than the green area
when separated by the minor axis. In this example, f A

3 = 0.0052, f A
4 = 0.1560, f A

5 = 0.0105,
f A
6 = 0.3698, representing a structurally asymmetric lesion about the minor axis. a Original lesion.

b Major axis (L1). c Minor axis (L2)

f A
5 = (A1 − A2)/A2 with respect to L1, (10)

f A
6 = (A1 − A2)/A2 with respect to L2 (11)

such that:

A1 = max {B1, B2} ,

A2 = min {B1, B2}

where B1, B2 are as before. This way, { f A
3 , f A

4 } represent the positive difference in
areas with respect to the total area, and { f A

5 , f A
6 } represent the positive difference in

areas with respect to the smaller area.
Figure 6 depicts an example of this calculation. When this lesion is separated by

the minor axis which passes through the centroid, the red area is much larger than
the green area, indicating a large amount of structural asymmetry, which is reflected
in the scores f A

4 = 0.1560 and f A
6 = 0.3698.

Border Irregularity Features

Clinically, border irregularities are usually defined by spiky non-uniform pigmen-
tation. Benign lesions usually have relatively smooth borders that form an oval-like
shape. We therefore want to design features to capture this “spiky” nature.

HLIF for Fine Irregularities

One indicator of the malignancy of a lesion is the amount of small spiky deviations
from a theoretical smooth border. We therefore wish to quantify the degree to which a
lesion border contains these fine irregularities. To do so, it seems natural to compare
the border to a “smoothed” version of itself, thus preserving the overall structure and
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capturing the spikes. This can be accomplished using morphological operations. In
particular, given an arbitrary shape and a structuring element, morphological closing
tends to smooth over abrupt exterior peaks. Conversely, morphological opening
tends to smooth over abrupt internal peaks. If the morphological operation yields
any changes to the original shape due to abrupt structural elements, the modified
shapes will have a different area than the original. These areas are compared to
generate the following HLIF calculation:

f B
1 = Aclosed − Alesion

Alesion
+ Alesion − Aopened

Alesion
(12)

where Alesion is the area of the original lesion shape, and Aclosed and Aopened are the
areas of the modified shape under the specific morphological operations. The sum of
the two normalized areas indicates the level of fine irregularities in a lesion’s border.

Figure 7 depicts an example of this calculation. The red border denotes the result-
ing area from the morphological operation. notice how morphological closing pro-
duces a larger area that fills in the gaps from extreme irregularities of the border, and
morphological opening produces a smaller area that crops these extreme irregulari-
ties.

HLIF for Coarse Irregularities

Another indicator of the malignancy of the lesion is the amount of structural devia-
tion from a standard circular shape. This shape is influenced by the non-linear spatial
reproduction of melanocytes in the skin. We can use Fourier descriptors again to char-
acterize these coarse irregularities. In particular, we can compare a low-frequency
reconstruction of the lesion shape to the original lesion shape. These two shapes
will differ significantly if the lesion has a varying border. We capture this informa-
tion by comparing the perimeters of the two shapes to generate the following HLIF

Fig. 7 Example of the design of f B
1 by comparing the areas resulting from morphological closing

and opening. The red borders denote the resulting area from the respective morphological operation.
Notice how the morphological closing fills in the white areas that are present due to the external
spikes of the border, and morphological opening crops those spikes. In this example, f B

1 = 0.3063
representing a border with abrupt spikes. a Morphological closing. b Morphological opening
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Fig. 8 Example of the design
of f B

2 by comparing the
perimeters of the original
(red) and low-frequency
reconstructed (blue) borders.
Notice how the reconstructed
border follows the general
shape of the lesion, but does
not take into account the large
amounts of irregularity. In
this example, f B

2 = 0.24951
representing a border with
coarse irregularities

calculation:

f B
2 = |Plesion − Plow|

Plesion
(13)

where Plesion and Plow are the perimeters of the original and low-frequency recon-
struction of the lesion.

Figure 8 depicts an example of this calculation. The reconstructed (blue) border
follows the general shape of the original lesion border (red), however it does not
account for the coarse irregularities present in the actual border.

HLIF for Comparing Against Average Malignant Lesion

Over time a doctor will start to recognize malignant lesions based on the visual
similarity to previously diagnosed cases. We can model this “learning” procedure by
comparing a new case against the average malignant lesion border found across the
training data. To perform this comparison, we must be able to compare the Fourier
descriptors in a translation-, scale-, rotation-invariant manner. Given a set of Fourier
coefficients C = {C0, C1, . . . , CN−1}, Fourier descriptor normalization is performed
using the following three steps [52]:

1. Translation Invariance: set the first Fourier component (i.e., the DC component)
to 0 (C∗

0 = 0).
2. Scale Invariance: divide each k −1 Fourier coefficient by the complex magnitude

of the second Fourier coefficient (C∗
k = Ck|C1| ).

3. Rotation/Point-Order Invariance: consider only the real-valued complex magni-
tude of each Fourier component (C∗

k = |C∗
k |).

For each image in the training set, we sampled the border at a fixed rate (1,000
points on the border using linear interpolation produced good results), applied this
normalization process, and computed the average normalized Fourier coefficients
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across these images to obtain C̄∗ = {C̄∗
0 , C̄∗

1 , . . . , C̄∗
N−1}, where C∗

k = |Ck/|C1||.
This “average malignant” frequency representation is compared to a new case using
the sum of squared differences to generate the following HLIF calculation:

f B
3 =

N−1∑
u=0

(|C∗
u | − |C̄∗

u |)2 (14)

where C∗ = {C∗
0 , C∗

1 , . . . , C∗
N−1} is the normalized set of Fourier coefficients for a

new lesion image. Intuitively, the feature value corresponds to the amount of deviation
from the “typical” malignant lesion.

Figure 9 depicts an example of this calculation. Note that the frequency compo-
nents of the average malignant lesion (computed from the training data) and the
extracted frequency components of the new lesion’s border are quite similar, even in
log space. This represents a “typical” malignant lesion in terms of structure.

Results

We validated the proposed framework in two phases using publicly accessible skin
lesion images. First, we validated the resulting photographs after applying the ini-
tial illumination correction preprocessing algorithm. The photographs before and
after correction were compared visually. We then tested the complete framework
by extracting the HLIFs and low-level features from the corrected photographs and

Fig. 9 Example of the design of f B
3 by comparing the frequency components of a lesion to the

computed average malignant frequency components via sum of squared differences. This will give
a low value for cases that look like a standard malignant lesion, based on training data. In this
example, f B

3 = 0.0087, representing a typical malignant case. a Example melanoma lesion shape.
b Log-frequency components of the average malignant lesion in the training data (red) and the
example lesion on the left (blue). Log-space was used for visualization only
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performing classification using a linear SVM model. This allowed us to validate the
separability of the proposed framework’s feature space.

Data and Setup

Our data set comprises 206 standard camera images which were taken in com-
pletely unconstrained and varying environments. These images were obtained from
the Dermatology Information System [22] (43 malignant melanomas, 26 nevi) and
DermQuest [23] (76 malignant melanomas, 61 nevi). Each image contains a single
lesion of interest, which was manually segmented by the authors. In order to ensure
rotation- and scale-invariance, each image was automatically rotated and scaled such
that the major axis of the lesion lies parallel to the horizontal axis, and the lesion
bounding box fit within a 200 × 200 rectangle prior to feature extraction. The test
infrastructure was implemented in MATLAB.

Illumination Correction Results

After applying the illumination correction algorithm, the images were compared
visually to the original images. The images were also compared visually to the
Cavalcanti et al. illumination correction results. Figure 10 shows a set of images
for comparison. To allow for a fair comparison between corrected and uncorrected
images, the dynamic range of the V channel intensities were normalized.

In Fig. 10a–e, there is a visual improvement between the corrected and uncorrected
images. Furthermore, in Fig. 10a, the framework‘s correction algorithm performs
better than the Cavalcanti et al. algorithm for correcting illumination variation. This is
because the correction algorithm uses a much larger subset of pixels in the parametric
illumination model. The Cavalcanti et al. algorithm only uses pixels in the four
corners, whereas the framework‘s correction algorithm uses any regions that touch
the corners.

Figure 10f is an example of poor correction of illumination variation by both
algorithms. This occurs when the illumination is complicated and cannot be modelled
using a quadratic surface. For example, in Fig. 10f, the quadratic surface model is a
false assumption due to the large patch of dark hair in the top of the photograph. As
a result, the top left corner of the photograph becomes too bright.

Feature Extraction and Framework Classification Results

Upon applying the illumination correction algorithm, we extracted the asymmetry
and border irregularity HLIFs (see “Feature Extraction”) as well as Cavalcanti and
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Fig. 10 Examples of dermatological photographs corrected for illumination variation. First column
is the original photograph. Second column is the illumination correction results using the algorithm
outlined in [10]. Third column is the illumination correction result using the proposed framework‘s
multi-stage algorithm outlined in “Illumination Correction Preprocessing”. In (a–e), the illumination
variation is removed or reduced in the corrected image, while in (f), the illumination variation is not
reduced. Examples of dermatological photographs corrected for illumination variation, continued
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Scharcanski’s low-level standard camera feature set for comparison [9]. For conve-
nience, we use the following naming convention in the discussion:

• FC : Cavalcanti and Scharcanski’s low-level feature set.
• FHLIF : set of HLIFs from “Feature Extraction”.
• FT : Total combined feature set containing both of the above feature sets (FT =

FC
⋃

FH L I F ). Note that four features from FC are replaced by the HLIFs in
“Feature Extraction”.

Due to the small data set, leave-one-out cross-validation (LOO CV) trials were used
to calculate the success metrics.

Classification

We used a linear soft-margin SVM model [18] to calculate sensitivity, specificity,
and accuracy. We used the LIBSVM implementation of SVM [14]. Linear SVM
was chosen to emphasize the separability of the proposed framework‘s feature space
due to illumination correction and descriptive features, rather than emphasizing the
performance of an advanced classifier.

Parameter Optimization

For each feature set we found the optimal soft-margin constraint (c) and benign class
weight (w) using a grid-search algorithm. In particular, for each set of parameters
(c, w), we calculated the F-score [45] over 100 CV trials using randomized 80 %/20 %
splits of the data for training and testing, respectively. Recall the standard F-score
formula:

Fβ = (1 + β2)
precision × recall

β2 × precision + recall
(15)

where

precision = TP

TP + FP
(16)

recall = TP

TP + FN
(17)

accuracy = TP + TN

TP + FP + TN + FN
(18)

where TP, TN, FP, FN are the number of true positive (i.e., malignant), true negative
(i.e., benign), false positive, and false negative cases from classification. The F-score
measure is the weighted harmonic mean of the precision and recall. For stability of
the results due to the relatively restricted data set, we use β = 1 to calculate the
harmonic mean of precision and recall.
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The training and testing data points were chosen at random from the entire data
set for each iteration. In accordance with the authors’ suggestions [32], we varied
the value of c ∈ {2i |i = −5, . . . , 11} and w ∈ {2i |i = −3, . . . , 3}. Let (c∗, w∗) be
the parameter values that exhibit the highest F1 score. Upon determining (c∗, w∗),
we sub-sampled the parameter space {( 1

2 c∗, 1
2 w∗), (2c∗, 2w∗)} at ci = 20.15ci−1 and

wi = 20.5wi−1. The optimal parameter values found according to F1 in this sub-
sampling over 100 independent cross-validation trials with 80 %/20 % train/test split
were used in the classification.

Discussion

Table 1 shows that classification using the nine HLIFs exhibits higher test-retest
reliability as compared to classification using the 52 low-level features. In partic-
ular, although mean sensitivity (95 % confidence interval (CI), 73.1–73.5 %) and
specificity (95 % CI, 72.0–72.4 %) of the small HLIF set are slightly lower than the
sensitivity (95 % CI, 78.1–79.7 %) and specificity (95 % CI, 75.3–76.3 %) of the large
low-level set, classification using the HLIFs is much more reproducible as shown
through the more narrow confidence interval. This is a powerful observation, since
the HLIF set is only one-fifth the size of the low-level feature set. Since the features
are in a lower dimensional space, the cost of computation and curse of dimensionality
are not as pervasive as with the large low-level feature set.

Moreover, combining the HLIFs with the low-level features yields by far the
best results (95 % CI, 83.3–84.8 % sensitivity, 79.7–80.1 % specificity). Adding only
the nine HLIFs to the low-level feature set increases the number of features to 59,
but yields non-trivial sensitivity and specificity improvements while also increas-
ing reproducibility (i.e., decreasing standard deviation). This can be attributed to
the HLIFs’ ability to replicate human-observable phenomena in the data, whereas
using many low-level features to model a high-level characteristic introduces a lot of
variability in the measure, since the features were not designed specifically for the
intended purpose of diagnosing skin cancer.

Statistical Significance

We wish to investigate each feature’s ability to uniquely separate a malignant lesion
from a benign lesion. The t-test indicates whether there is enough statistical signifi-

Table 1 Comparing classification results of different feature sets over 100 cross-validation trials
see “Results” for feature set descriptions

Feature set # features Sensitivity (%) Specificity (%) Accuracy (%)
μ σ μ σ μ σ

FC 52 78.89 4.21 75.80 2.40 76.51 1.08
FHLIF 9 73.32 0.92 72.21 0.99 72.52 0.49
FT 59 84.04 3.67 79.91 0.98 81.26 1.31

μ mean, σ standard deviation
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cance to reject a null hypothesis about a population using data from a sample of that
population. In a two-sample t-test, the null hypothesis states that the means of two
normally-distributed populations are equal (H0 : Δμ = μ1 − μ2 = 0). A p-value
can be calculated using Δμ, which indicates probability that we can observe a test
statistic at least as extreme as the one observed assuming H0 is indeed valid.

Representing the populations as a particular feature’s scores across malignant
(population 1) or benign (population 2) cases, we seek to reject this null hypothesis
with a low p-value, thus showing that a particular feature’s scores are significantly
different between malignant and benign classes (i.e., the feature separates malignant
and benign cases well). We therefore assume that the population responses of the
malignant and benign cases follow a normal distribution. We use Welch’s t-test,
which assumes populations with different variances.

Table 2 summarizes the p-value scores for each HLIF using Welch’s t-test. That
is, for each feature, we set the null hypothesis H0 : Δμ = μm − μb = 0, where μm

and μb are the mean response values for malignant and benign feature scores. The
t-statistic is calculated as follows:

t = μm − μb√
s2
m

Nm
+ s2

b
Nb

, (19)

where sm, sb are the sample standard deviations of malignant and benign feature
scores, and Nm, Nb are the number of malignant and benign cases in the data set.
The associated p-value is the area under the normal curve to the right of the calculated
t-score.

Most of the p-values are relatively low, indicating a high ability to separate malig-
nant from benign. In particular, { f A

1 , f A
2 , f B

1 , f B
2 } seem to be very good predictors

of malignancy as indicated by their very low p-values. Recall that f A
3 and f A

5 are
the relative area differences with respect to the major axis. So, although these p-
values are high, it is probably worth keeping them in the feature set because they
complement the minor axis features f A

4 and f A
6 .

Sources of Error

Figure 11 provides some examples of false negative cases (i.e., misidentified malig-
nant cases) using the framework classification results. Using the FHLIF feature set
(Fig. 11a), we see lesions that have a fairly smooth and regular border, and most
are fairly symmetric as well. It appears as though the colour patterns would be the

Table 2 Performing Welch’s two-sample t-test on the set of HLIFs

HLIF f A
1 f A

2 f A
3 f A

4 f A
5 f A

6 f B
1 f B

2 f B
3

p-value < 0.0001 0.0340 0.7208 0.1215 0.6822 0.1372 0.0006 < 0.0001 0.3308
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Fig. 11 Classification false negative examples using each feature set. a False negatives using FHLIF .
b False negatives using FC . c False negatives using FT

primary characteristic in determining the malignancy, of which there are no features
in FHLIF . Using the FC feature set (Fig. 11b), we see lesions with varying colour
distributions and symmetries. It is therefore no surprise that using the FT feature set
(Fig. 11c) also misclassifies lesions with prominent colour patterns.

Figure 12 provides some examples of false positive cases (i.e., misidentified
benign cases) in the above classification results. Using the FHLIF feature set (Fig. 12a),
we see lesions that have asymmetric colour distributions and irregular borders, thus
being classified as malignant. However, similar to the false negative cases above,
their colour is fairly uniform, and could be an indicator of its benign nature. Using
the FC feature set (Fig. 12b), we see lesions with varying borders and some colour
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Fig. 12 Classification false positive examples using each feature set. a False positives using FHLIF .
b False positives using FC . c False positives using FT

asymmetry, although some appear symmetric, smooth border, and uniform colour,
making it peculiar that some were classified as malignant. However, by adding FHLIF

to this set, we see that the false positive cases of FT (Fig. 12c) are very suspicious
lesions, with irregular borders and strange symmetries.

Conclusion

In this chapter we have proposed a novel framework for aiding in the diagnosis of
skin lesions that uses lighting-corrected intuitive feature models. The multi-stage
preprocessing step correctly adjusted the illumination across the standard camera
image to ensure consistent analysis of that lesion. High-level intuitive features (HLIF)
that characterize asymmetry and border irregularity were extracted and combined
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with state-of-the-art low-level features. Designing HLIFs ensures that the feature
scores can be conveyed to the doctor with intuitive rationale, as they are modeled in
an intuitive manner.

Experimental results indicate that the illumination correction algorithm produces
photographs taken with standard cameras that have been better corrected for illumi-
nation variation compared to a state-of-the-art algorithm [10]. Furthermore, linear
classification using the small set of extracted HLIFs produces accurate and reliable
results compared to the large state-of-the-art low-level feature set, and when com-
bined with this large set we obtained improvements in sensitivity, specificity, and
test-retest reliability. This unified framework can be used along with segmentation
and advanced classification methods to provide a robust automatic diagnostic system
for analysing skin lesions.
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