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ABSTRACT

Markov random fields (MRFs) and conditional random fields
(CRFs) are influential tools in image modeling, particularly
for applications such as image segmentation. Local MRFs
and CRFs utilize local nodal interactions when modeling,
leading to excessive smoothness on boundaries (i.e., the
short-boundary bias problem). Recently, the concept of fully
connected conditional random fields with stochastic cliques
(SFCRF) was proposed to enable long-range nodal interac-
tions while addressing the computational complexity associ-
ated with fully connected random fields. While SFCRF was
shown to provide significant improvements in segmentation
accuracy, there were still limitations with the preservation
of fine structure boundaries. To address these limitations,
we propose a new approach to stochastic clique formation
for fully connected random fields (G-SFCRF) that is guided
by the structural characteristics of different nodes within the
random field. In particular, fine structures surrounding a node
are modeled statistically by probability distributions, and
stochastic cliques are formed by considering the statistical
similarities between nodes within the random fields. Experi-
mental results show that G-SFCRF outperforms existing fully
connected CRF frameworks, SFCRF, and the principled deep
random field framework for image segmentation.

Index Terms— Stochastic Cliques, SFCRF, Guided
Stochastic Cliques, CRF, Segmentation, Fully connected

1. INTRODUCTION

Interactive image segmentation [1, 2] has garnered a lot of re-
cent interest. The goal is to label each pixel in the image as
either foreground or background (i.e., foreground/background
segmentation) based on user-marked areas inside the object of
interest and background that often act as initial seed points to
guide the segmentation process. One strategy that has proven
to be effectiveness for tackling this segmentation problem is
the use of random fields [3, 4, 5]. In such work, the image seg-
mentation problem is formulated as a Maximum A Posteri-

This work was supported by the Natural Sciences and Engineering Re-
search Council of Canada, Ontario Ministry of Research and Innovation, and
the Canada Research Chairs Program.

(a) Image (b) PD (c) G-SFCRF

Fig. 1. An example of an object with fine and complex bound-
aries. (b) shows the result of principle deep random field (PD)
and (c) demonstrates the result of proposed framework (G-
SFCRF) in foreground/background segmentation.

ori (MAP) problem [6], incorporating defined interactions be-
tween neighboring pixels as the prior information via random
fields as well as incorporating the likelihood of each pixel to
all predefined labels. Image segmentation problems are com-
monly modeled using a pairwise Markov random field (MRF)
or a conditional random field (CRF) utilizing the local neigh-
borhood interactions (i.e., four or eight closest nodes) [3].

A challenge with using local MRFs/CRFs for image seg-
mentation is that they are mainly restricted to short-range
connections, resulting in excessive smoothness in the im-
age segmentations [4, 7] (i.e., the short-boundary bias prob-
lem). Although expanding the clique structure to higher-order
cliques [5, 8] have been introduced to address this problem,
these methods fail to preserve fine structure boundaries. Fig-
ure 1 shows an example of an image containing an object
with very fine and complex boundaries, where local MRFs
and CRFs have high difficulty handling.

An approach that can tackle the short-boundary bias prob-
lem was proposed by Krähenbühl and Koltun [9], who intro-
duced a new framework using fully connected random fields
to take advantage of all connectivities in the CRF model. This
new framework addressed the computational complexity of
the fully connected random fields (FCRFs) by using specific
potential functions and incorporating a new data structure (i.e,
Permutohedral lattice) [10]. Further extensions [11, 12, 13]
to the concept was proposed to relax assumptions and limi-
tations associated with [9]. However, the efficient inference
frameworks based on FCRF have specifically made use of a
Gaussian feature function, which can be limiting for segment-
ing fine and complex boundaries as one of the advantages of
CRFs is the ability to use arbitrary feature functions.

An alternative approach to tackle the short-boundary bias



problem was proposed by Jegelka and Bilmes [14] and Kohli
et al. [15] (known as principled deep framework), which re-
solved the short-boundary bias problem (i.e., the excessive
smoothness over boundaries) by changing the cost of the
edges that constitute a cut in the segmentation. The proposed
models penalized the number of types of label discontinu-
ities instead of penalizing the number of label discontinuities
(which is used in regular CRFs). However, these methods
exhibit limitations when segmenting fine or complex bound-
aries.

Recently, Shafiee et al. [16] proposed a new efficient in-
ference framework based on the concept of fully connected
random fields with stochastic cliques (SFCRF). Clique for-
mation takes place stochastically based on a probability dis-
tribution as defined by the spatial distance and pixel-wise sim-
ilarity between any given two nodes in the random field. As
SFCRF only considers pixel-wise similarity and spatial dis-
tance, clique formations do not account for fine structures
(usually distributed throughout an image) in the model. As
such, an extended framework that accounts for elongated, fine
structures can potentially yield great benefits when dealing
with fine structure boundaries.

Extending upon [16], we propose a new framework for
stochastic clique formation in fully connected random fields
(called G-SFCRF) to better deal with fine structure bound-
aries. The probability distribution corresponding to the for-
mation of stochastic cliques is guided by learned fine struc-
ture models at each node of the random field. Specifically, the
probability of stochastic clique formation between two nodes
is guided by the statistical similarity between two nodes,
which is determined by the KL-divergence of the correspond-
ing fine structure models.

2. METHODOLOGY

The foreground/background image segmentation problem is
formulated as a MAP problem where the underlying graph
is a fully connected conditional random field with stochastic
cliques (SFCRF):

P (Y |X) =
1

Z(X)
exp(−ψ(Y,X)) (1)

ψ(Y,X) =

n∑
i=1

ψu(yi, X) +
∑
ϕ∈C

ψp(yϕ, X) (2)

where Y is the state set (i.e., segmentation result) given the
measurement set X (i.e., input image), Z(X) is the normal-
ization constant, and ψ(·) is the combination of the unary
potential function ψu(·) and the pairwise potential function
ψp(·). The unary potential encodes the likelihood model of
each random variable yi and its corresponding measurement,
while the pairwise potential represents the relationship be-
tween random variables in a clique structure ϕ ∈ C, where
C is the set of all stochastic clique structures. The underlying
graph in the random field is fully connected while the pairwise

clique structures incorporated in the inference procedure are
specified stochastically. Any pair of nodes can form a clique
based on a probability distribution.

In [16], the probability distribution incorporates two fac-
tors: i) spatial distance, and ii) color similarity. Therefore,
closer nodes have a higher probability of forming clique
connectivities than far nodes, and similar nodes construct
clique connectivities with higher probability than dissimilar
nodes. While such an approach provides good modeling per-
formance for general coarser structure boundaries, it does not
provide an accurate clique formation for complex and fine
structure boundaries for a number of reasons. First, using
only pixel-wise similarity to guide stochastic clique forma-
tion does not take into account the fine structures surrounding
each node and the fine structures were not considered when
determining the probability of stochastic clique formation.
As a result, the constructed underlying graph did not rep-
resent the relationships between nodes with highly similar
fine structures, and leads to smoothing over fine structures
in the segmentation results. Second, the use of a spatial
distance between two nodes, while appropriate for larger,
coarser structures, can be limiting for modeling complex,
fine, elongated structures (as seen in Figure 1).

To overcome these issues, we propose a new stochastic
clique formation framework where fine structures around
each node are modeled via probability distributions, and the
statistical similarity between these fine structure models are
used to guide the formation of stochastic cliques. The new
framework can form a graph where nodes with similar struc-
tural characteristics around the nodes have a high probability
of forming cliques.

Guided Stochastic Clique Formation. The fine struc-
tures surrounding each node are modeled by a probability dis-
tribution based on the measurements in a neighborhood cen-
tered on the node.

To form clique connectivities, every possible pair of nodes
is compared based on their corresponding fine structure mod-
els. Figure 2 shows the underlying graph created by this
framework. As fine structures surrounding nodes are mod-
eled by distribution functions, the KL-divergence is used to
assess the statistical similarity between each pair of nodes via
their associated distributions:

KL
(
Si||Sj

)
= Silog

(Si

Sj

)
(3)

where KL(·) is the KL-divergence between two distributions
Si and Sj , and Si and Sj are the fine structure models of
nodes i and j in the random field, respectively. A high KL-
divergence corresponds to low statistical similarity. Since
a relatively small neighborhood of measurements is used to
model the surrounding fine structures for a given node, the
underlying probability distribution is assumed to be a Gaus-
sian distribution to simplify the model. As such, the closed



Fig. 2. An illustration of the proposed framework. The clique
connectivities for node i are stochastically formed by com-
paring a probability distribution modeled on the surrounding
fine structures (i.e., Si) to probability distributions modeled
on the fine structures surrounding other nodes, such as Sj for
node j. Since the fine structures {Si, Sj} corresponding to
two nodes i and j are similar, the probability of connected-
ness is higher than that for two nodes i and k, where Si and
Sk are completely different.

form of (3) is

KL
(
Si||Sj

)
=

(µi − µj)
2

2σ2
j

+
1

2
·
(σ2

i

σ2
j

− 1− log
(σ2

i

σ2
j

))
(4)

where Si = N (µi, σ
2
i ) and Sj = N (µj , σ

2
j ) are the Gaussian

distributions of the fine structure models of nodes i and j, re-
spectively. The proposed structure similarity measure KL(·)
is combined with the pixel intensity similarity measure (used
by Shafiee et al. [16]) to formulate the stochastic clique prob-
ability distribution PC(i, j), which can be expressed by:

PC(i, j) =
exp(−KL(Si||Sj)) · exp(E(i, j))

γ
(5)

where E(·) encodes the pixel intensity similarity-measure,
and γ is the sparsity factor that specifies the expectation of the
number of clique connectivities. It can be seen that PC(i, j)
stochastically favors nodes with similar fine structures and
pixel intensities. As such, the set of all stochastic clique struc-
tures C can be defined by

C =
{
(i, j)|PC(i, j) ≥ û

}
(6)

where û is a randomly generated number from U(0, 1), a uni-
form distribution over the unit interval.

The proposed approach provides a SFCRF where nodes
surrounded by similar fine structures are connected in the un-
derlying graph. Thus, each node is usually affected by other
nodes with similar structure and pixel intensity properties,
and reduces the amount of smoothing produced by the penalty
function. As a result, the proposed method better preserves
the fine structure boundaries in the image segmentation.

3. RESULTS & DISCUSSION

The performance of the proposed guided clique formation ap-
proach within the SFCRF framework was compared with dif-
ferent state-of-the-art CRF inference frameworks for the task
of interactive image segmentation. The CSSD dataset [17]
was utilized to compare all methods, and consists of 200 nat-
ural images with manually annotated ground truth segmen-
tation. Furthermore, a new dataset1 composed of 20 natural
images with very fine structures was created to evaluate the
ability of the tested algorithms in preserving complex and fine
structure boundaries during segmentation. The images were
selected from the MSRA dataset [18]; therefore, we named
the subset of images as MSRA-FS.
Competing Algorithms. The proposed guided SFCRF (G-
SFCRF) framework was compared against different CRF
frameworks:

• Fully-connected CRF (FCRF) [9] A fully-connected
CRF with an efficient inference by use of Gaussian po-
tential functions and permutohedral lattice [19].

• Principled deep random field (PD) [15] A new
penalty function implemented based on a hierarchi-
cal framework.

• SFCRF [16] A fully-connected CRF with stochastic
cliques based on a distance-intensity stochastic clique
formation strategy.

The same unary potentials were used in all methods and
were computed via five-component Gaussian mixture models
trained on the pixel color intensities within each seed region
(i.e., foreground, background).

The FCRF was evaluated with the standard deviations of
the Gaussian pairwise potential function set as (3, 3) and its
weight was 5; the standard deviations of the bilateral poten-
tial function were (20, 20, 0.08) with the weight of 10, where
the first two values show the spatial standard deviation and
the last one is the color standard deviation (i.e., the image dy-
namic range is [0, 1]). The contrast-dependent Potts pairwise
potential used in PD method was selected similarly to [15]
where σ was the mean of the color gradients of the image and
λ = 1.5 and θ = 0.0005. Both SFCRF frameworks (SFCRF
and the proposed G-SFCRF) were evaluated with the same
rate of clique formation, with the expected number of cliques
for each node set to 80.

To assess the methods quantitatively, F1-scores were ap-
plied to both the segmentation region and boundary:

F1 = 2 · Pr.Re
Pr+Re , Pr = TP

TP+FP , Re = TP
TP+FN

where TP , FN , and FP are the number of true positives,
false negatives, and false positives, respectively.

1The dataset is publicly available at
http://www.eng.uwaterloo.ca/ mjshafie/MSRA-FS.html



Image GT FCRF [9] PD [15] SFCRF [16] G-SFCRF
Fig. 3. Example segmentation results produced on the MSRA-FS and CSSD datasets. As can be seen, the proposed G-SFCRF
method provides strong preservation capabilities for very fine structure boundaries.

Region F1-Score: The conventional region F1-score was
evaluated based on the region-of-interest specified by
the ground truth images, and compared the methods
generally.

Boundary F1-score: Boundary accuracy was used to com-
pare algorithms with respect to preserving fine structure
boundaries. Motivated by [20], the extracted boundary
of the ground truth was assumed as the positive class
with all other pixels specified as the negative class. The
distance tolerance of 1 pixel was used in the calcula-
tion of this evaluation measure. Thus, the boundary de-
tected by the algorithm was considered to be a true pos-
itive if it was within 1 pixel of a ground-truth boundary.

The two F1-scores were applied based on [21], where the F1-
scores were computed for the biggest object in the image.

Table 1 shows the quantitative comparisons of the tested
methods in terms of the region F1-score and the boundary
F1-score. The F1-scores were reported for two datasets:
CSSD and MSRA-FS. It can be observed that the proposed
guided stochastic clique formation (G-SFCRF) led to a better
underlying graph, resulting in a more accurate segmentation
than the previous SFCRF framework with respect to both the
region-based and boundary-based F1-scores. The proposed
framework also outperformed the PD method, which is re-
garded as the state-of-the-art in random field-based image
segmentation approaches, and performed comparably to the
FCRF approach in terms of the F1-scores. However, a vi-
sual assessment shows that the proposed method preserves
boundaries and fine structures better than the FCRF approach.

Figure 3 shows examples of segmentation results pro-
duced by the tested methods for both datasets (CSSD and
MSRA-FS). It can be observed that the proposed method is

Table 1. Quantitative comparison of the proposed G-SFCRF
method and other frameworks via F1-scores. G-SFCRF
shows good performance in the segmentation of the image
into foreground and background, as reported by the region
F1-score, while preserving the fine structured boundaries, as
shown by the boundary F1-score.

FCRF [9] PD [15] SFCRF [16] G-SFCRF
Region F1-score

CSSD 0.8582 0.8314 0.8643 0.8664
MSRA-FS 0.9162 0.8493 0.9102 0.9171

Boundary F1-Score
CSSD 0.4658 0.4708 0.4717 0.4991
MSRA-FS 0.5806 0.4453 0.5166 0.5851

capable of preserving very fine structure boundaries. This is
especially evident in the segmentation results for the sheep,
eagle, and red door image examples.

4. CONCLUSION & FUTURE WORK

In this work, we proposed a new framework to guide the
stochastic clique formation for fully connected conditional
random fields for the purpose of preserving fine structure
boundaries in image segmentation. Reported results show
that the new framework can preserve very fine structure
boundaries and outperform other state-of-the-art CRF infer-
ence frameworks for the tested datasets. Future work includes
the investigation of other distributions to model the fine struc-
ture surrounding nodes in the random field more accurately
for differen types of images.
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[9] P. Krähenbühl and V. Koltun, “Efficient inference in
fully connected CRFs with gaussian edge potentials,”
in Advances in Neural Information Processing Systems
(NIPS), 2011.

[10] A. Adams, J. Baek, and M. Davis, “Fast high-
dimensional filtering using the permutohedral lattice,”
in Computer Graphics Forum, 2010.

[11] K. Ristovski, V. Radosavljevic, S. Vucetic, and
Z. Obradovic, “Continuous conditional random fields
for efficient regression in large fully connected graphs,”
in Conference on Artificial Intelligence (AAAI), 2013.

[12] Y. Zhang and T. Chen, “Efficient inference for fully-
connected CRFs with stationarity,” in Conference

on Computer Vision and Pattern Recognition (CVPR).
IEEE, 2012.

[13] S. Zheng, M. Cheng, J. Warrell, P. Sturgess, V. Vineet,
C. Rother, and P. Torr, “Dense semantic image segmen-
tation with objects and attributes,” in International Con-
ference on Computer Vision (ICCV). IEEE, 2014.

[14] S. Jegelka and J. Bilmes, “Submodularity beyond sub-
modular energies: coupling edges in graph cuts,” in
Conference on Computer Vision and Pattern Recogni-
tion (CVPR). IEEE, 2011.

[15] P. Kohli, A. Osokin, and S. Jegelka, “A principled deep
random field model for image segmentation,” in Con-
ference on Computer Vision and Pattern Recognition
(CVPR). IEEE, 2013.

[16] M. J. Shafiee, A. Wong, P. Siva, and P. Fieguth, “Ef-
ficient bayesian inference using fully connected condi-
tional random fields with stochastic cliques,” in Inter-
national Conference on Image Processing (ICIP). IEEE,
2014.

[17] Q. Yan, L. Xu, J. Shi, and J. Jia, “Hierarchical saliency
detection,” in Computer Vision and Pattern Recognition
(CVPR). IEEE, 2013.

[18] M. Cheng, N. Mitra, X. Huang, P. Torr, and S. Hu,
“Global contrast based salient region detection,” Trans-
actions on Pattern Analysis and Machine Intelligence
(TPAMI). IEEE, 2014.

[19] A. Adams, J. Baek, and M. Davis, “Fast high-
dimensional filtering using the permutohedral lattice,”
in Computer Graphics Forum, 2010.

[20] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik, “Con-
tour detection and hierarchical image segmentation,”
Transactions on Pattern Analysis and Machine Intelli-
gence (TPAMI). IEEE, 2011.

[21] S. Alpert, M. Galunm, R. Basri, and A. Brandt, “Im-
age segmentation by probabilistic bottom-up aggrega-
tion and cue integration,” in Computer Vision and Pat-
tern Recognition (CVPR). IEEE, 2007.


