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A Bayesian Information Flow Approach to Image Segmentation
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Abstract

A novel Bayesian information flow approach is pre-
sented for accurate image segmentation, formulated as
a mazimum a posteriori (MAP) problem as per the pop-
ular Mumford-Shah (MS) model. The model is solved
using an iterative Bayesian estimation approach con-
ditioned on the flow of information within the image,
where the flow is based on inter-pizel interactions and
intra-region smoothness constraints. In this way, a lo-
calized and accurate Bayesian estimate of the under-
lying piece-wise comstant regions within an image can
be found, even under high noise and low contrast situa-
tions. Ezperimental results using 2-D images show that
the proposed Bayesian information flow approach is ca-
pable of producing more accurate segmentations when
compared to state-of-the-art segmentation methods, es-
pecially under scenarios with high noise levels and poor
contrast.

1 Introduction

Image segmentation has always been a fundamental
problem of great interest in the field of computer vi-
sion. The success of many high level image processing
algorithms such as image analysis [5], surveillance [6],
robotic vision and navigation is highly dependent upon
the accuracy of image segmentation algorithms. The
pixels of an image are often grouped into number of
clusters based upon either some region similarity or dis-
continuity criterion, however there is substantial over-
lap between these two criteria [14, 15].

Among several existing segmentation techniques [2,
3, 4, 13, 7, 16, 11, 14, 15, 10], Mumford-Shah’s [7]
(MS) method is a theoretical segmentation model and
have been approximated by many researchers [1, 3]
for practical segmentation proposes. MS introduced
a global model for representing segmented images as
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piece-wise constant regions. The main difficulty with
using the Mumford-Shah approach lies in the complex-
ity of solving the global Mumford-Shah model. To ad-
dress this issue, Chan and Vese [3] proposed a sim-
plified Mumord-Shah model which approximates the
Mumford-Shah model using two piece-wise constant re-
gions, and employs a level set framework to solve for
the constant regions. Unfortunately, the Chan-Vese
model suffers from the computational expensive re-
initialization [3] problems due to the fact that the opti-
mization process is carried out in a level set framework.
To overcome the problem associated with Chan-Vese
model while finding a global optimum for the Mumford-
Shah model, Bresson et al. [1] proposed FAC (fast ac-
tive contour), a fast global optimization approach for
solving the Chan-Vese model without using the level
set framework. Hence, FAC does not suffer from the
same initialization problems faced by [3]. However,
since FAC utilizes a global model, it often fails to seg-
ment small homogeneous regions within larger regions.
Existing literature to solve MS model are sensitive to
local minima, not able to handle embedded topology,
not able to identify small regions and complicated to
implement.

To address the problems associated with the exist-
ing MS model based image segmentation methods, a
novel Bayesian information flow (BIF) based technique
to solve the MS model is proposed, which is the main
contribution of this paper. The BIF is designed specifi-
cally to avoid the issues associated with re-initialization
and poor separation of small regions faced by existing
region-based approaches. The BIF approach solves the
Mumford-Shah model using an iterative Bayesian esti-
mation approach to obtain the piecewise constant re-
gion. The concept of Bayesian insulation is introduced
to adaptively control the flow of information based on
the underlying information in the image with continu-
ity on slope as a prior, and is integrated into a Bayesian
linear least squares estimation framework to approxi-
mate the piecewise constant regions of a given image.
The BIF can be interpreted as a scale space represen-
tation of an image, where the last scale represents the
piece-wise smooth segmented region of the given image.
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The paper is organized as follows. Section 2 pro-
vides a summary of the Mumford-Shah model. In Sec-
tion 3, the image segmentation problem is formulated
in a Bayesian sense. An iterative Bayesian estimation
approach to solving the image segmentation problem
is described in Section 4. The BIF theory is formalized
in Section 5. A comparative analysis between BIF and
two state-of-the-art methods is performed and experi-
mental results are described in Section 6.

2 Background

Image segmentation can be considered as the opti-
mization of a non-convex energy functional, which typ-
ically consists of a measurement term and a prior term.
The Mumford-Shah (MS) model [7] represents an im-
age as a set of disjoint piece-wise constant regions. The
total energy EMS of the model can be expressed as

EMS:OL//mfdeAw/ / |u’|2dA+’y)1§ds,
Q

a\c c
(1)
where Q C RY is an open set representing the im-
age domain, f is the observed image, u is the underly-
ing piece-wise constant segmented image, u’ is the first
derivative of u, C' is the boundary of the segmented re-
gions, and parameters «, 5 and -y are positive weighting
constants. The first term of (1) is generally referred to
as the data fidelity term and can be considered as the
observation for f. The second term of (1) represents
the smoothness constraints and can be interpreted as
the prior model for v given f. Finally, the third term
of (1) asserts a penalty on boundary arclength, forcing
boundary smoothness by minimizing the total bound-
ary length. Given these three terms, the MS model
provides the theoretical basis for the segmentation of

an image into a set of piece-wise constant regions.

Although MS is a very appealing theoretical model,
from a practical perspective the minimization of (1) is
very challenging. While simplifications have been made
by Chan and Vese [3] and Bresson et al. [1] to reduce
complexity and to allow for faster convergence rates,
re-initialization [3] and poor segmentation of small ho-
mogeneous regions [1] problems still exist. The goal of
the proposed work is to alleviate these issues through
the use of a Bayesian approach to essentially solve the
MS minimization problem to account for both local
and global characteristics of the image. This is accom-
plished through the novel concept of Bayesian informa-
tion flow in a scale space frame work.
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3 Problem Formulation

Let X denote a set of sites within a discrete lattice
Land x € X. Let F = {F,|lx € X}, U ={U,|x € X}
and V = {V,|r € X} denote random fields on X, where
F,, U,, and V, are random variables taking on val-
ues representing the observation state, piece-wise con-
stant state, and high frequency state, respectively, at
site . Let f = {fz]z € X}, u = {u,|z € X}, and
v = {vz|z € X} denote realizations of F', U, and V
respectively. Assuming a scale separation of u and v
on the basis of degrees of smoothness as implied by re-
spective priors s, ~ N(0, Py), v¢—1 ~ R(0, 1), the
set of observations f can be decomposed into a piece-
wise constant state us, and a set of high frequency
states V = {v1,v2,...,00}

o0
f=tus —|—Zvi.
i=1

The high frequency states play an important role in
multi-scale based image analysis and can be used in
scale-space analysis, key feature extraction and denois-
ing, however in the context of image segmentation, the
underlying goal is to solve for u, given f. To estimate
Uso given f, we can formulate the problem in a contin-
uous domain from a Bayesian sense as a maximum a
posteriori (MAP) problem,

(2)

3)
Where the posterior distribution p (u|f) can be defined

(4)

Uso = argmaxp (ulf).
u

p(ulf) <p(u) p(flu)

—~—  ——
prior measurement
In the context of active contours [1, 3, 2], (4) can be
re-expressed, by taking the log on both sides of (4), as

—log (p (ulf)) o< (—=log (p (u))) + (—log (p (f|u))),

Total energy

External energy

()
where —log (p (f|u)) is the external energy or data fi-
delity term as defined by

~tog(p(flu) =a [ [lu=fPaa
Q

Internal energy

(6)

—log (p (u)) is the internal energy and, in the context
of active contours [1, 3, 2, 12], is defined as

—log (p (u)) =
2
51//‘u/‘2dA+62// u QdA—f—’y ?{ds ,
aQ\c Q\c c

(7)



where v’ and v” are the first and second central deriva-
tives of w. Omitting the second order term from (7)
makes (5) similar to the MS model (1) such that

EMS

log (p (ul)) - (8)
Therefore, minimizing EM* or —log (p (u|f)) is equiv-
alent to maximizing (4). One of the main issues asso-
ciated with solving the MAP problem posed in (3) is
that there is, in general, no closed form solution. An
approximate solution to (3) can be obtained by assum-
ing

f =t +V, us ~R(0,Py),V ~ X(0,X), 9)
and then, by applying a Bayesian linear least square
estimation to (9), an estimate of us [9] can be repre-
sented as

R _ TN R

oo = (P'+ 271 271, (10)
The main problem in obtaining @ from (10) is that
we do not know P,, and ¥. Therefore, we are adopt-
ing an iterative approach to estimate o, by enforcing
an adaptive smoothness prior P;_; and identity noise
covariance matrix ¥ at each iteration.

4 Iterative Bayesian Estimation

One approach to solving (10) is to first decom-
pose (2) into u; and vy, t € [1, 00]. Consider a scale sep-
aration between v and v based on an adaptive smooth-
ness prior as follows:

’lAJ,t,1 :Ut—l-’l}t, Ut NN(O,Pt),Ut NN(O,Et) (11)
An iterative estimation strategy based on a Bayesian
linear least squares approximation [9, 8] is employed
on (11), to estimate u; as follows:

i = (P 4+ 1)y, (12)
where P;_1 is the smoothness on u; at iteration ¢, and
the identity matrix I is the covariance of the high fre-
quency state v¢. One of the issues associated with solv-
ing the problem using a Bayesian linear least squares
approximation is that u is inherently nonlinear due to
its piece-wise constant nature. Therefore we need a
prior P, that can model piece-wise constant regions
u, and hence we will not able to find the inverse of
P,_1. To address this issue, we introduce the concept of
Bayesian information flow for modeling the prior P;_;
to account for the nonlinear nature of w.
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Figure 1. Example of information flow. The circle,
embedded value, and arrow width represent the pixel
location, pixel intensity and amount of information
flow respectively. For clarity, flow is shown only for
pixels A, B, C, and D, which represent four impor-
tant concepts. Little information flows from pixel B
to pixel A due to large intensity dissimilarity between
them. Also, no information flow exists between the
pixels to the left of pixel A and pixel A itself since
they belong to different regions. A boundary with no
information flow is an insulation boundary. Pixel B is
an isolated point and under this circumstance, there
is significant information flow from the surrounding
pixels into pixel B since the intensity of pixel B can be
considered as noise. The way that rough boundaries
are handled is illustrated in pixel C, where the infor-
mation from the pixels to the left of pixel C do not
flow into pixel C even though pixel C is more similar
to the left side pixel than the pixels on right and top
of it to prevent the formation of a rough boundary.



5 Bayesian Information Flow Theory

The challenge with solving the aforementioned
Bayesian estimation problem to account for the inher-
ent nonlinear nature of u lies in modeling the prior P;_1
such that u can be approximated by a set of piece-wise
linear functions. In general, the exact prior knowledge
of the objects in an image is not known a priori. There-
fore, a more intuitive and common approach is to uti-
lize continuity in slope and curvature of image intensity
and object boundary as prior constraints, as done by
Chan and Vese [3] and Bresson et al. [1]. The key issue
associated with relying solely on these prior constraints
is that they do not account well for the nonlinear na-
ture of u and as such result in poor inter-region sepa-
rability. This ineffective inter-region separability often
generates over and under segmented regions.

To address the important issue of poor inter-region
separability, we shall introduce the theory of Bayesian
information flow. The underlying concept of Bayesian
information flow is to adaptively control the flow of in-
formation within an image such that inter-region sepa-
rability is preserved during the iterative estimation pro-
cess. Intuitively, based on the criteria of inter-region
separability, the flow of information between two pixels
should increase as the intensity similarity between the
pixels increases, as intensity similarity is a good indi-
cator of intra-region pixels. Furthermore, intuitively,
there should be no flow of information between pixels
from different regions. Motivated by these intuitions,
the concept of information flow can be illustrated as
shown in Fig. 1. Little information flows from pixel B
to pixel A due to large intensity dissimilarity between
them. Also, no information flow exists between the
pixels to the left of pixel A and pixel A itself since they
belong to different regions. The boundary that restricts
no information flow will be referred to as an insulation
boundary. Isolated points are handled as demonstrated
by pixel B, where all neighboring points are different
from itself. Under this circumstance, there is signif-
icant information flow from the surrounding pixels of
pixel B into pixel B since the intensity of pixel B can be
considered as noise. Handling of boundary smoothness
is illustrated by pixel C, where the information from
the pixels to the left of pixel C do not flow into pixel
C even though pixel C is more similar to left side pixel
than the pixels to the right and above of it.

Based on the aforementioned Bayesian information
flow theory in conjunction with the prior constraints,
the prior P;_; can be expressed as [8]

P =k(LTL), (13)

where L is a penalty matrix (penalty on non-smooth
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region) and is represented as:

2
}dA.

et = [ [ 4|5 R ey Lot g L
H ox Oy Ox? Oy?
(14)
In discrete format L can be decomposed as:
L = [Ly; Ly; Lyy; Lyy) - (15)
Where L, can be expressed as:
1 -1 0 0 0
o 1 -1 -~ 0 O
L.=1. . . T )
0o 0 O 1 -1

Ly, Ly and Ly, and can be expressed in the simi-
lar fashion. The x is the information flow matrix that
controls the flow of information between pixels and ac-
counts for nonlinearity in u by putting insulation be-
tween the boundary of the objects. To determine k, we
first compute the potential information flow x* from
site (a,b) to site (4,;) can be expressed as

K’;‘,j (a7b) = k .

exp(— |fz',j —Ua,b|>a (17>

where k- is a normalization constant to make &7 ; in
the range [0,1]. Based on the distribution of the po-
tential information flow 7 ;, the insulation threshold
T is defined to determine the information flow x; ; to
prevent the flow of information from unwanted mea-
surements to the considered measurement as shown in
Fig. 1,

Hi,j (a, b) = {

For implementation purposes, the insulation threshold
T is defined by the median of the image variance, which
is calculated by first computing the variance of local re-
gion by sliding a window of 12 x 12, and then taking
the median among all the computed local variance. To
accommodate for boundary constraints, the BIF ap-
proach defines two additional constraints:

K7 (a,b) if K (a,b) < T

0 (18)

otherwise,

1. An isolated point should be merged with its sur-
rounding neighbors, i.e.,

Hi’j =1if V(K,Z"j) = O, (19)

. In cases where some elements of x;; are zero,
a smoothness criterion is employed to evaluate



Figure 2. Ilustration of Bayesian information flow
based image segmentation for a synthetic image con-
taminated with additive Gaussian noise. The contin-

uous surface plot of the image along with the seg-
mented piece-wise constant region (three self-similar
segmented regions) are plotted for demonstration of
BIF. It can be observed that BIF is able to identify
three constant regions for the three distinct objects
and one constant region for the background, while
perfectly preserving inter-region separability.

which neighbor elements are influencing the cur-
rent measurement. Let N and N, denote the set of
neighbor elements having non-zero and zero values
of k;; respectively. The influence of X and X, on
the current measurement, s; and s, respectively,
can then be computed as the integral of the poten-
tial information flow k* normalized by arc-length,

Jr; R s AR
N l*C
§1=———, Sg = —f—. (20)
ds ds
! !
The value k; ; can then be determined as,
Rij = 1-— Ri,j if S1 < Sg (21)

An illustration of Bayesian information flow as applied
to a synthetic image contaminated with additive Gaus-
sian noise is shown in Fig. 4, which is displayed as
a surface plot to better illustrate the convergence to
constant regions. The BIF approach is able to identify
three constant regions for the three distinct objects and
one constant region for the background, while perfectly
preserving inter-region separability. The algorithm for
the BIF is provided in Algorithm. 1. Note that com-
puting (P~} + 1) ! for a large image is not feasibility
due to computational and numerical reasons. There-
fore, BIF uses a modified conjugate gradient technique
to solve (12).
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Algorithm 1 [u;] = Function BIF(f)

lzt:(),ﬁt:f,t:t—&-l,ﬁt:O

2: Compute the L matrix using (15)

3: while Ut 75 Up—_q do

4:  Compute the information flow matrix .
5. Compute P from (13)

6. Compute @ = (P4 + 1) iy (12)

7 t=t+1

8: end while

6 Experiments

The goal of this section is to investigate the effec-
tiveness of the proposed BIF segmentation approach at
producing well-localized and accurate segmentations.
To achieve this goal, a set of experiments is performed
involving the segmentation of synthetic images and real
clinical images that are shown in the first column of
Fig. 4. The set of synthetic images consists of two im-
ages depicting rice and stone respectively (rows 1 and 2
of Fig. 4), and are designed to test BIF’s ability to deal
small homogenous regions in the presence of varying il-
luminance. The set of real clinical images consists of
two different computed tomography (CT) head images
(rows 3 and 5 of Fig. 4), and a positron emission tomog-
raphy (PET) head image (row 4 of Fig. 4). This set of
clinical images are designed to test the BIF method’s
ability to handle real world data with complex embed-
ded regions (in the case of the CT images) and a large
number of artifacts (in the case of the PET image).

For comparison purposes, two state-of-the-art im-
age segmentation methods were also evaluated. The
tested segmentation methods include the fast region
based global minimization approach proposed by Bres-
son et al. [1], denoted as FAC, and the level set active
contour without re-initialization approach proposed by
Chunming et al. [4], denoted as LS. FAC was chosen
as it shares the same underlying Mumford-Shah model
as BIF and thus provides a good comparison of dif-
ferent approaches to solving Mumford-Shah. LS was
chosen as it addresses the shortcomings related to re-
initialization faced by level-set methods. All tested
segmentation methods were implemented using the pa-
rameters proposed in the respective papers. For all
experiments the value of 8, was set to be 1.

6.1 Experiment 1: Segmentation Results

In the first set of experiments, BIF, LS [4], and
FAC [1] were used to segment the sets of synthetic im-
ages and real clinical images (Fig. 4). Visually, the
segmentation results produced using BIF (2" column
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Figure 3. An illustration of convergence rate of BIF based image segmentation for five images. The y- axis represents
the iteration-to-iteration mean square error (MSE) in intensity. MSE decreases in an exponential manner and plateaus

after around 125 iterations for all cases.

Table 1. Execution Time (ET) (in seconds) of BIF,
FAC [1], and LS [4].

y | BIF [ FAC| LS |

Rice 75 | 50 | 891
Stone 240 | 170 | 1721
CT2 (Head) | 89 | 64 | 948
PET (Head) | 80 | 49 | 876
CT1 (Head) | 77 | 45 | 905

of Fig. 4) are better localized and more accurate than
the other tested methods. In the case of the rice im-
age (1°' row of Fig. 4), the BIF method was able to
segment each of the individual grains of rice with high
accuracy, while the FAC method misses several grains
of rice and the LS method produces very poor segmen-
tation results. In the case of the stone image, both
BIF and FAC are able to segment each of the individ-
ual stones, while LS produces the worst results of the
tested images as LS is not able segment the individ-
ual stones as stones are packed very tightly together,
and thus is treated as a single object from a topolog-
ical perspective by LS. In the case of the PET head
image, the individual regions are segmented with good
locality and inter-region separability using BIF, while
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FAC and LS perform poorly. In particular, LS had
significant problems dealing with the dominant streak-
ing artifacts. This illustrates the effectiveness of BIF
even under artifact-laden scenarios. Finally, in the case
of the CT head images, BIF correctly segments small
homogeneous regions when compared to the other two
methods. For example, much of the embedded objects
in the image is missed by FAC, while completely ig-
nored by LS. These experiments demonstrate the effec-
tiveness of BIF at providing accurate and well-localized
segmentations under different imaging conditions.

6.2 Experiment 2: Convergence

In the second set of experiments, we empirically
study the convergence rate of BIF to understand its
convergence rate. The mean square error (MSE) at
each iteration compared to the previous iterations over
300 iterations for the five test images and for three set
of additive Gaussian noise with variance of 0, 0.001,
and 0.005 (with a dynamic range of [0,1]) is calcu-
lated. The iteration-to-iteration MSE (intensity dif-
ference between previous and current iteration) with
respect to the iteration number performed for the test
images with additive Gaussian noise with variance of
0.005 are shown in Fig. 3 (for other test cases the re-
sults were similar). As expected, the change in MSE
decreases in an exponential manner as the iteration



Original image FAC [1] LS [4]
Figure 4. Performance of BIF compared to other methods across two synthetic and three real-world clinical images.

First column shows the original image. 27%,37%, and 4*" columns illustrates the segmentation result of BIF, FAC [1]
and LS [4].
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number increases. In all cases, the MSE plateaus after
125 iterations, indicating that fast convergence rates
can be achieved using BIF.

Furthermore, a quantitative analysis of the execu-
tion time of BIF compared to FAC and LS is provided
in Table. 1. An unpaired two-tailed t-test was per-
formed on BIF and LS when compared to FAC. The
two-tailed p-values of BIF and LS compared to FAC
are 0.4 and 0.001, respectively, implying that the exe-
cution time of BIF is statistically insignificant and the
execution time of LS is statistically extremely signifi-
cant when compared to that of FAC.

7 Conclusions and Future Work

This paper proposed a novel image segmentation
algorithm based on Bayesian information flow (BIF)
approach for accurately segmenting an image into
number of piece-wise constant regions. BIF solves
the Mumford-Shah model by employing an iterative
Bayesian estimation technique with an information
flow prior to robustly identify the piecewise constant
regions of an image. The performance of BIF compared
to other two state-of-the-art segmentation techniques
is demonstrated on several natural and synthetic im-
ages. BIF provided better segmentation performance
among its peers. Future research will involve extending
BIF to multiple dimensions.
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