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A Bayesian theoretic approach to multi-scale

complex phase order representations
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Abstract—This paper explores a Bayesian theoretic approach
to constructing multi-scale complex phase order representations.
We formulate the construction of complex phase order represen-
tations at different structural scales based on scale space theory.
Linear and nonlinear deterministic approaches are explored, and
a Bayesian theoretic approach is introduced for constructing
representations in such a way that strong structure localization
and noise resilience is achieved. Experiments illustrate its po-
tential for constructing robust multi-scale complex phase order
representations with well-localized structures across all scales
under high noise situations. Illustrative examples of applications
of the proposed approach is presented in the form of multimodal
image registration and feature extraction.

Index Terms—Bayesian, complex phase order, registration,
feature extraction

I. INTRODUCTION

A powerful approach for structural analysis of visual data

that has garnered attention in the research community is the

concept of local phase, which has been shown to provide

important structural information about a scene [1], [2], [3].

A particularly interesting tool based on the concept of local

phase for extracting structural information from visual data is

the idea of complex phase order [1], [2], [4], whose motivation

stems from the theory that the degree of order amongst local

phase across multiple complex scales has a strong correspon-

dence to perceptual structural significance within visual data.

This theory is reinforced by physiological evidence showing

that the human vision system show strong response to visual

data with high complex phase order [2]. Besides the biological

ties to the human vision system, complex phase order allows

for the capturing of structural characteristics of visual data

largely independent of intensity, making it well suited for

constructing illumination invariant structural representations

of the visual data. Given these benefits, complex phase order

has become used in a number of different image processing

and computer vision applications such as image focus assess-

ment [5], [6], face recognition [7], [8], segmentation [9], [10],

[11], and registration [12].

In particular, the problem of multimodal image registration

is an important problem to tackle using complex phase order,

as it has been shown to be a valuable tool in medical

image processing given the variety of medical applications

ranging from computer-assisted surgery [13] to clinical disease

analysis [14], [15]. Multimodal image registration has become

particularly important in the medical community given the rise

in multimodal disease analysis, where imaging data acquired
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using different medical imaging modalities (e.g., magnetic

resonance (MRI), computed tomography (CT), and ultrasound)

provide different anatomical and functional information about

the human body that can, when combined, significantly im-

prove the detection of various diseases such as cancer [15],

[16]. Some of the main challenges when dealing with multi-

modal image registration include intensity mapping differences

due to differing image modalities, illumination and contrast

inhomogeneities, and the presence of noise. Many of these

issues remain important challenges in the development of

multimodal image registration methods, particularly the issue

of noise.

Despite the usefulness of complex phase order as a powerful

tool in computer vision applications, there are some inherent

limitations that calls for further study and exploration on

the topic. First, complex phase order represents all structural

information within the visual data together as a single en-

tity, making the separation and analysis of differently scaled

structural characteristics difficult to achieve. For example, in

the application of skin lesion segmentation, it is very useful to

separate unwanted fine scale structures such as body hair from

the large scale structures such as lesions to improve lesion

segmentation accuracy. Second, despite advances made to

reduce noise sensitivity [4], [12], the computation of complex

phase order continues to suffer significant degradation under

high noise scenarios.

In this study we propose a novel multi-scale approach to

constructing complex phase order representations. We formu-

late the construction of complex phase order representations

at different structural scales using scale space theory. We then

introduce a novel approach for obtaining representations using

a Bayesian theoretic framework that provide strong structure

localization and noise resilience. Such a multi-scale extension

of complex phase order representations is of great interest

given the potential for facilitating robustness in a variety of

computer vision tasks.

The paper is organized as follows. An overview on complex

phase order is described in Section II. The concept of multi-

scale complex phase order representations is described in

Section III. A Bayesian theoretic approach to constructing

multi-scale complex phase order representations is described

in Section V. Experimental results comparing the different

multi-scale complex phase order representations is presented

in Section VI. An illustrative example of the Bayesian theo-

retic approach being applied to multimodal image registration

is presented in Section VII. Finally, an illustrative example

of the Bayesian theoretic approach being applied to feature

extraction is presented in Section VIII.
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II. COMPLEX PHASE ORDER

Let f = f(x) denote the visual data. For each pixel in

f , we wish to compute the complex phase φs,θ(x) at each

scale s and orientation θ. To achieve this, we first construct

a multi-scale complex wavelet representation of f , denoted

as F , using a complex wavelet transform such as the dual-

tree complex wavelet transform [17] and Log-Gabor complex

wavelet transform [18], consisting of α scales and β orienta-

tions. In our implementation, the over-complete, un-decimated

Log-Gabor complex wavelet transform proposed by Fischer et

al. [18] was performed on f over β = 6 orientations (0o, 30o,

60o, 90o, 120o, and 150o) and α = 4 scales (wavelengths

of 3,9,27, and 81 pixels were used to maintain a two octave

bandwidth), although the dual-tree complex wavelet transform

may also be used.

After the complex wavelet transform, each point x in F is

represented by a set of αβ complex wavelet responses Υs,θ(x),
which can be expressed by

Υs,θ(x) = As,θ(x) exp [jφs,θ(x)] , (1)

where As,θ(x) and φs,θ(x) are the complex amplitude and

phase, respectively, and can be expressed by

As,θ(x) =

√

(

f(x) ∗ Je
s,θ

)2

+
(

f(x) ∗ Jo
s,θ

)2

, (2)

and,

φs,θ(x) = tan−1

(

f(x) ∗ Je
s,θ

f(x) ∗ Jo
s,θ

)

, (3)

where Je
s,θ and Jo

s,θ are the even- and odd-symmetric Log-

Gabor quadrature pairs.

Given the complex phase φs,θ(x), the complex phase order

R(x) can now be computed at each pixel to quantify the degree

of complex phase alignment across all scales. In the original

formulation by Morrone and Owens [1], the complex phase

order R(x) was quantified based on the normalized weighted

summation of cosine-weighted complex phase deviations from

the mean complex phase φ̄θ (x) across all scales,

R(x) =

β
∑

θ=1

α
∑

s=1
As,θ(x)Λ(x)

β
∑

θ=1

α
∑

s=1
As,θ(x)

, (4)

where,

Λ(x) = cos
(

φs,θ(x)− φ̄θ(x)
)

. (5)

This approach to computing complex phase order has been fur-

ther extended by Kovesi [4] to improve response sensitivity as

well as robustness to noise using a hard thresholding approach,

and subsequently improved using a bilateral soft-thresholding

approach by Wong et al. [12] to maintain a continuous measure

for complex phase order. Given that it improves upon previous

measures, we will employ the complex phase order measure

proposed by Wong et al. [12] as defined by

R(x) =

β
∑

θ=1

α
∑

s=1
Wθ(x)As,θ(x)Λ(x)

β
∑

θ=1

α
∑

s=1
As,θ(x)

, (6)

where Wθ(x) is the bilateral weighting function for orientation

θ. The bilateral weighting function can be expressed as a

product of a weighting function Wν(x) related to non-zero

summations in uniform regions and a weighting function

Wτ (x) related to the distribution of amplitude across scales,

Wθ(x) = Wν(x)Wτ (x), (7)

where Wν(x) controls noise penalization in uniform regions

based on the median of the summations of phase deviations

over the visual data ¯̟ ,

Wν(x) =
1

1 + exp [ζ( ¯̟ −̟(x))]
, (8)

where ζ is the Wν gain factor, ̟(x) =
β
∑

θ=1

α
∑

s=1
Wθ(x)As,θ(x)Λ(x), ¯̟ = median (̟(x)|∀x ∈ f),

and Wτ (x) controls penalization based on an estimate of how

evenly distributed complex amplitude is across scales [4],

Wτ (x) =
1

1 + exp

[

ǫ

(

c− 1 +Amax,θ(x)/
α
∑

s=1
As,θ(x)

)] .

(9)

where c is the frequency where Wτ = 0.5, ǫ is the Wτ gain

factor, and Amax is the maximum amplitude across the scales.

The parameters c = 0.4 and ǫ = ζ = 10 are used as described

in [12], as they were found empirically to provide strong

results across a variety of image types. A MR volume and its

corresponding complex phase order representation is shown

in Fig. 1. The structural characteristics of the MR volume

are well captured in the complex phase order representation,

making it useful as the underlying representation or energy

functional for computer vision tasks such as segmentation and

registration.

Unfortunately, current formulations of complex phase order

representation suffer from two major limitations, as shown

in Fig. 2. First, noticeable structural degradation is exhibited

in the complex phase order representations at high levels of

noise, with representations constructed above σ = 16% largely

unusable for many computer vision tasks due to significant

structural degradation. This is due to the fact that under

high levels of noise it is difficult to distinguish noise from

visual detail using the thresholding scheme, hence resulting

in important structural characteristics being removed as well.

Second, the large-scale and fine-scale structural characteristics

are integrated as a single entity, making it difficult to separate

and analyze differently-scaled structural characteristics in the

visual data. These two limitations motivate us to explore

multi-scale approaches to producing complex phase order

representations for robust computer vision applications.



Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

WONG 3

Fig. 1. A MR volume and its complex phase order representation. It can
be observed that the structural characteristics of the MR volume are well
captured.

Fig. 2. The complex phase order representations of an axial slice from a MR
volume under different noise scenarios (σ shown in terms of percentage of the
dynamic range). The complex phase order representations suffer significant
structural degradation under high noise scenarios.

III. MULTI-SCALE COMPLEX PHASE ORDER

REPRESENTATIONS

One approach to addressing the two main limitations asso-

ciated with the complex phase order representation described

in Section II is to extend it into a multi-scale representation

through the use of scale space theory. Scale space theory is

a widely-used, powerful framework for handling the inherent

multi-scale nature of visual data by representing visual data

across multiple scales, with an increasing amount of fine-

scale structures removed at each successive scale. One of the

motivations for scale-space theory stems from the idea that,

given no prior information about the scale of structures in the

visual data, the only reasonable course of action is to represent

the visual data at multiple pre-determined scales [19]. In scale

space theory as first formalized by Witkin [20] and Koenderink

and Van Doorn [21], visual data f(x) is represented as a

single-parameter family of derived visual data Lt(x), where t
is a scaling parameter that defines the scale of details being

represented. At each scale t, all structures in the visual data

smaller than a particular spatial size as governed by t are

suppressed at the corresponding scale-space level. As such,

scale space theory allows for the separation of structural char-

acteristics at different scales, including noise, thus addressing

the limitations.

Inspired by this, one can define a multi-scale complex phase

order representation, denoted as Rt(x), as

Rt(x) =

β
∑

θ=1

α
∑

s=1

Wθ,t(x)As,θ,t(x)Λt(x)

β
∑

θ=1

α
∑

s=1

As,θ,t(x)

, (10)

where,

As,θ,t(x) =

√

(

Lt(x) ∗ Je
s,θ(x)

)2

+
(

Lt(x) ∗ Jo
s,θ(x)

)2

,

(11)

and,

φs,θ,t(x) = tan−1

(

Lt(x) ∗ Je
s,θ(x)

Lt(x) ∗ Jo
s,θ(x)

)

. (12)

IV. DETERMINISTIC APPROACHES

Given the formulation of the multi-scale complex phase

order representation in Section III, we will now explore

the representation construction problem from a deterministic

perspective. Deterministic multi-scale strategies for construct-

ing multi-scale representations based on scale space theory

generally fall into one of two categories: i) linear approach,

and ii) nonlinear approach.

A. Linear approach

In the linear approach to multi-scale representations based

on scale space theory, visual data is decomposed into a family

of derived visual data based on a linear scale space operator.

The most common linear approach is the Gaussian scale space

approach first formalized by Witkin [20] and Koenderink and

Van Doorn [21]. Given visual data f(x), the linear scale space

representation Lt(x) is defined as the convolution of L0(x) =
f(x) and an isotropic Gaussian weighting function Ht,

Lt(x) =

∫

a

Ht(a)f(x− a)da, (13)

Ht(a) =
n
∏

i=1

1√
2πt

exp

[

−a2i
2t

]

. (14)
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The main advantage of the linear approach is its computational

and theoretical simplicity. Furthermore, the properties and

characteristics of linear scale space theory has been well-

studied [22], [23], [24].

The multi-scale complex phase order representation using

the linear approach (Eq. (13)) of a slice from a MR volume

are shown in Fig. 3. There are two observations that can

be made that illustrate the fundamental limitation of multi-

scale complex phase order representations constructed using

the linear approach. First, the large-scale structures at coarse

scales are poorly localized when compared to their true

locations in the original visual data. Second, much of the

corner information exhibited in the original visual data is lost

at coarse scales. This makes extracting meaningful structural

information at coarse scales for computer vision tasks very

challenging. The significant structural degradation exhibited

in the representation constructed using a linear approach is

largely due to the fact that the linear scale space operator

diffuses information in an isotropic fashion, regardless of

the underlying characteristics of the visual data. As such,

information from different structures are combined together,

thus resulting in the poor structure localization and corner

destruction.

Fig. 3. Multi-scale complex phase order representation using a linear
approach (Eq. (13)) of a slice from a MR volume at different scales. The
large-scale structures at coarse scales are poorly localized when compared to
their true locations in the original visual data.

B. Nonlinear approach

To address the limitations of the linear approach in Sec-

tion IV-A, a new class of nonlinear approaches was intro-

duced [25], [26], [27], [28], [29]. In the nonlinear approach

to computing multi-scale representations using scale space

theory, visual data is decomposed into a family of derived

visual data based on a nonlinear scale space operator. Given

that the limitations of the linear approach stem largely from

the structure delocalizing and distorting nature of isotropic

diffusion, a majority of existing nonlinear approaches extend

from the isotropic diffusion in a non-linear fashion to better

localize meaningful structural information at coarse scales.

Given a non-linear diffusion coefficient ct(x), the generalized

diffusion equation can be expressed as,

∂L

∂t
= ct(x)∇2L+∇ct(x) · ∇L, (15)

where ∇ is the gradient.

One of the most popular nonlinear approaches is that

proposed by Perona and Malik [25], which proposed the use

of a non-negative conduction coefficient in Eq. (15) that is a

function of the gradient,

ct(x) = exp

[

−
(∇Lt(x)

κ

)2
]

. (16)

where κ is the diffusion constant. This conduction coefficient

possesses two important behavioral characteristics. First, the

conduction coefficient preserves structures by limiting dif-

fusion when the gradient is large, thus improving structural

localization. Second, the conduction coefficient promotes in-

traregion smoothing by allowing for greater diffusion along

the direction(s) perpendicular to image gradient, thus promotes

structural separation between adjacent scales.

The multi-scale complex phase order representations based

on the nonlinear approach for a slice from a MR volume

are shown in Fig. 4. The structures are noticeably better

localized when compared to the linear approach at coarse

scales. Unfortunately, the structures at the coarser scales starts

to become delocalized and the corner information becomes

lost as with the case of the linear approach. This structural

degradation at coarser scales is largely due to the fact that the

nonlinear approach relies entirely on information within a local

neighborhood, which is insufficient for maintaining structural

detail at the coarser scales.

Given that the major limitations of the deterministic ap-

proaches are associated with the limitations of using just

information within a local neighborhood, one is motivated to

explore alternative multi-scale approaches that is able to utilize

information throughout the entire visual data to provide better

structural localization at coarse scales and greater resilience to

noise.

V. BAYESIAN THEORETIC APPROACH

To explore alternative approaches for constructing multi-

scale complex phase order representations, let us study the

construction of multi-scale representations within a Bayesian

theoretic framework. One can view the relationship between

a scale representation Lt(x) and the visual data f(x) as an

additive relationship, which can be expressed by

f(x) = Lt(x) +Nt(x), (17)

where Nt(x) is the scale residual, and L0(x) = f(x). As

the scaling parameter t increases, the energy associated with

the scale residual Nt increases while the energy associated

with the scale representation Lt decreases. Based on Eq. (17),

the problem of constructing multi-scale representations can



Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

WONG 5

Fig. 4. Multi-scale complex phase order representation using a nonlinear
deterministic approach (Eq. (15)) of a slice from a MR volume at different
scales. The structures are noticeably better localized at coarse scales when
compared to the linear approach. Unfortunately, the structures at the coarser
scales starts to become delocalized and the corner information becomes lost
as with the case of linear approach.

be viewed as a series of inverse source separation problems,

where each problem involves separating a scale representation

Lt(x) from the scale residual Nt(x) given the visual data f(x).
One possible strategy of solving this series of inverse source

separation problems is to estimate Lt(x) at each scale using

a Bayesian theoretic framework.

Let X be a set of sites into a discrete lattice L and x ∈ X
be a site in L. Let Lt = {Lt(x)|x ∈ X}, f = {f(x)|x ∈ X},
and Nt = {Nt(x)|x ∈ X} be random fields on X , with Lt(x),
f(x), and Nt(x) taking on values representing the state at site

x and scale t, observation at site x, and residual at site x and

scale t, respectively. Based on the relationship expressed in

Eq. (17), we model the source separation problem at scale t
as a Bayesian least squares problem [30],

L̂t(x) = argmin
Lt(x)

{

E

[

(

Lt(x)− L̂t(x)
)2

|f(x)
]}

. (18)

Within this Bayesian least squares problem formulation, the

optimal estimate of the representation Lt(x) can be computed

as the conditional expected value of Lt(x) given f(x), denoted

as E(Lt(x)|f(x)) [30],

L̂t(x) = E(Lt(x)|f(x)) =
∫

Lt(x)p(Lt(x)|f(x)) dLt(x),
(19)

where L0(x) = f(x), and can be solved in practice via

numerical integration [31]. The main challenge to computing

the conditional expected value E(Lt(x)|f(x)) as formulated

in Eq. (19) is the computation of the posterior distribution

p(Lt(x)|f(x)). In practice, one approach to computing an

empirical approximation of the posterior distribution is to

utilize all samples from f within a small local neighborhood

around site x. However, this can lead to a poor approximation

of p(Lt(x)|f(x)) due to two main limitations:

1) High sample proximity bias: Given that the samples used

are obtained from a small local neighborhood around

x, the approximation of p(Lt(x)|f(x)) becomes overly

biased towards samples within very close proximity to

x. This can lead to poor structural localization in the

constructed multi-scale complex phase order represen-

tations as the information within a local neighborhood

is insufficient for maintaining structural detail at the

coarser scales.

2) High noise sensitivity: Given that the number of samples

used to approximate p(Lt(x)|f(x)) is very small given

that only information within a local neighborhood is

used, the approximation of p(Lt(x)|f(x)) is highly

sensitive to the presence of noise, which can result

in poor noise resilience in the constructed multi-scale

complex phase order representations.

Given that both issues associated with the existing deter-

ministic approaches are due to the limitations of using only

information within a local neighborhood, one is motivated to

extend the approximation of p(Lt(x)|f(x)) to utilize infor-

mation from the entire f . However, using the entire f can be

very computationally demanding. Here, we instead compute

a Bayesian approximation of p(Lt(x)|f(x)) using a rejection

sampling approach, where random samples are drawn from f
and used to compute the approximation. The main advantage

of such an approach is that it allows for computationally

efficient approximation of p(Lt(x)|f(x)) while still attaining

similar benefits of using information from throughout the

entire visual data.

A. Rejection Sampling

The proposed rejection sampling strategy for approximating

p(Lt(x)|f(x)) can be described as follows. First, we draw

a random pixel position ξ from an instrumental distribution,

q(ξ|x), given as

q(ξ|x) =
exp

[

−
∣

∣x− ξ
∣

∣

2 (
σ2(ξ)− σ2(x)

)2
]

∑

ξ

exp
[

−
∣

∣x− ξ
∣

∣

2 (
σ2(ξ)− σ2(x)

)2
] , (20)

where σ2(·) is the variance of the local neighborhood around x
and | · | is the Euclidean distance. The distribution q(ξ|x) takes

care of the proximity to position x and the statistical similarity

between the two positions measured by the difference of corre-

sponding σ2(·). The instrumental distribution q(ξ|x) promotes

the drawing of samples that are within closer spatial proximity

and have higher statistical similarity, which are more likely to

share useful information related to x.

While the instrumental distribution q promotes samples with

higher statistical similarity and closer spatial proximity to x,

there is no guarantee that the samples have high data similarity.

To further improve the likelihood of high data similarity,

the data similarity between the sample ξ drawn from the

instrumental distribution q and x is then evaluated based on

the cumulative Gaussian-weighted squared gradient between

the local neighborhoods Nx and Nξ,
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∇N (ξ, x) =
∑

N

H(N ) ·
(

f(Nξ)− f(Nx)
)2

, (21)

where H is the Gaussian kernel, and high values of ∇N
indicate low data similarity. Based on Eq. (21), the sample

ξ is employed for the approximation of p(Lt(x)|f(x)) if

∇N (ξ, x) < τ, (22)

where τ is the rejection constant. The rejection sampling

process is repeated until an upper bound for sampling q
has been reached, resulting in the final set of m samples

ξ
1
, . . . , ξ

m
for approximating p(Lt(x)|f(x)).

B. Importance weighted posterior approximation

After the m samples ξ
1
, . . . , ξ

m
are drawn during the re-

jection sampling process, p(Lt(x)|f(x)) can be approximated

based on an importance weighted approximation approach,

where the approximation of p(Lt(x)|f(x)) can be formulated

as the following weighted histogram,

p(Lt(x)|f(x)) =
∑m

i=1 wt(ξi|x)δ(f(x)− f(ξ
i
))

∑m

i=1 wt(ξi|x)
, (23)

where δ is the Dirac delta and wt(ξ|x) is a importance weight-

ing function indicating the contribution of ξ on the approxi-

mation process. The importance weighting function wt(ξ|x)
should achieve three important goals. First, the weighting

function should maintain structural localization and avoid

structural degradation at coarse scales. Second, the weighting

function should provide good effective noise resilience such

that the resulting multi-scale complex phase order represen-

tation is minimally influenced by the presence of noise at all

scales. Third, the weighting function should remove structural

information from the image in a monotonic fashion as the

scale increases. As such, the importance weighting function

used in approximating p(Lt(x)|f(x)) for the construction of

the multi-scale complex phase order representation needs to

be designed to achieve all three goals.

Recall that to maintain structural localization and avoid

structural degradation at coarse scales while suppressing noise

at fine scales, a nonnegative exponential conduction coefficient

(Eq. (16)) was introduced in the nonlinear approach proposed

by Perona and Malik [25]. Interpreting the conduction coeffi-

cient as an importance weighting function, the contribution of

a sample ξ to the approximation of p(Lt(x)|f(x)) is propor-

tional to the gradient. Inspired by this conduction coefficient

while motivated to further improve structural localization and

noise resilience, an importance weighting function wt(ξ|x)
is employed based on the concept of squared neighborhood

gradient ∇N ,

wt(ξ|x) = exp

[

−
(∇N (ξ, x)

ϕt

)]

, (24)

where the neighborhood squared gradient ∇N is defined as

the cumulative Gaussian-weighted squared gradient between

the local neighborhoods Nx and Nχ as defined in Eq. (21),

and ϕ is the diffusion multiplier constant.

Based on the m samples ξ
1
, . . . , ξ

m
drawn and the im-

portance weighting function wt(ξi|x) from Eq. (24), an

approximation of p(Lt(x)|f(x)) is computed according to

Eq. (23), which is then used to compute Lt(x) according to

Eq. (19). Finally, Rt(x) is computed according to Eq. (10).

The pseudo-code for the proposed Bayesian theoretic approach

to constructing multi-scale complex phase representations is

presented in Algorithm 1.

Algorithm 1 Proposed approach

Require: Given f(x), t = 0
1: L0(x) = f(x).
2: Compute R0(x) according to (10).
3: repeat

4: t = t+ 1.
5: k = 0.
6: repeat

7: k = k + 1.
8: Draw a random sample ξ based on q(ξ|x) (20).
9: Reject sample if (22) is not met. Otherwise accept into set of

samples.
10: until k = kmax

11: Based on the accepted samples, estimate p(Lt(x)|f(x)) according to
(23).

12: Compute Lt(x) according to (19).
13: Compute Rt(x) according to (10).
14: until t = tmax

15: return R(x).

The multi-scale complex phase order representations based

on the Bayesian theoretic approach for a slice from a MR

volume are shown in Fig. 5, with the upper bound for sampling

kmax set to a maximum of 100 iterations. The structures

are significantly better localized using the Bayesian theoretic

approach when compared to the linear and nonlinear deter-

ministic approaches at coarse scales. This improved structural

localization at coarser scales is largely due to the fact that

the Bayesian theoretic approach takes advantage of the global

information within the visual data to better maintain structural

detail at the coarser scales.

VI. EXPERIMENTAL RESULTS

The goal of this section is to investigate the effectiveness

of the proposed Bayesian theoretic approach to constructing

multi-scale complex phase order representations with strong

structural localization and noise resilience. To achieve this

goal, a number of experiments using visual data volumes

acquired from the NLM Visible Human Project, with example

slices from each test volume shown in Fig. 6. For comparison

purposes, multi-scale complex phase order representations

were also constructed using the linear deterministic approach

described in Section IV-A and the nonlinear deterministic

approach described in Section IV-B, with all parameters set

based on their respective literatures. Furthermore, for the

Bayesian theoretic approach, the upper bound for sampling

kmax was set to a maximum of 100 iterations, ϕ = 0.02, and

τ was set based on the median local variance (τ = 1
2σmed

2)

as it was shown to produce strong multi-scale representations

during testing. Finally, the local neighborhoods used are 9×9

rectangular neighborhoods.
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Fig. 5. Representation constructed using Bayesian theoretic approach
(Eq. (19)) of a slice from a MR volume at different scales. The structures
in the representations constructed using the Bayesian theoretic approach
are significantly better localized at coarse scales when compared to that
constructed using the linear and nonlinear deterministic approaches.

Fig. 6. Sample slices from the test volumes.

A. Structural Localization

Since one of the main goals for the design of the multi-

scale complex phase order representation is to maintain strong

structural localization, it is important to study the localization

of structures at different scales. Given the multi-scale complex

phase order representations constructed using the three tested

methods, it is necessary to design a measure of structural

localization in order to perform a quantitative analysis between

the different methods. To achieve strong structural localization,

the locations of structures at any given scale should also

coincide with their locations in the lowest scale. Therefore,

intuitively, all structural information at a particular scale that

does not exist at the lowest scale is considered a result of

structural delocalization. Motivated by this, an effective mea-

sure of structural delocalization, ǫ, for a multi-scale complex

phase order representation at a particular scale t can be defined

as the cumulative structural significance of structures that

do not coincide with existing structures at the lowest scale,

normalized by the quantity of total structures at the lowest

scale,

ǫ (t) =

∑

x,R0(x)=0

Rt(x)

∑

x

{R0(x) > 0} . (25)

This can be interpreted as the proportion of structural

information in scale space that do not have a correspondence

in the original image. The structural delocalization ǫ of the

multi-scale complex phase order representations for the test

sets at different scales t are shown in Fig. 7. The structural de-

localization of the multi-scale complex phase order represen-

tations constructed using the linear and nonlinear deterministic

approaches increases significantly as scale increases. On the

other hand, the structural delocalization of the representations

constructed using the Bayesian theoretic approach remains

relatively low and constant at all scales for all test sets.

What this means is that the Bayesian theoretic approach

provides multi-scale complex phase order representations with

improved structural localization at all scales when compared

to the other two approaches.

The multi-scale complex phase order representations of

the PMR test set at different scales are shown in Fig. 8

respectively. The structural characteristics are significantly

better localized in the multi-scale complex phase order rep-

resentations produced using the Bayesian theoretic approach

at coarse scales when compared to that produced using the

linear and nonlinear deterministic approaches. This improved

structural localization at coarser scales is largely due to the

fact that the Bayesian theoretic approach takes advantage of

the global information within the visual data to better preserve

the true location of structures at the coarser scales.

B. Noise Sensitivity

To study the effects of noise on the multi-scale complex

phase order representations, additive Gaussian noise was ap-

plied with standard deviations of σ = {8%, 16%, 22%, 25%}
to the test sets. To provide a quantitative assessment of

the noise sensitivity of the multi-scale complex phase order

representations at fine scales, the peak signal-to-noise ratio

(PSNR) and the mean Structural Similarity (MSSIM) [32]

were measured between the complex phase order represen-

tations at scale t = 1 with and without noise. The noise

sensitivity analysis was performed at scale t = 1 for two main

reasons. First, the influence of noise on representations are

most prominent at fine scales, thus making it representative

of the noise resilience of a multi-scale complex phase order

representation. Second, the structural localization at that scale

remains similar across all approaches, thus allowing for a fair

comparison of noise sensitivity between the different multi-

scale complex phase order representations. The PSNR and

MSSIM results for the complex phase order representation

described in Section III is shown as a baseline reference.

The PSNR and MSSIM results for the test sets are shown

in Fig. 9. The PSNR and MSSIM is noticeably higher for
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Fig. 7. Plots of the structural delocalization ǫ of the multi-scale complex phase order representations for the test sets (Fig. 6) at different scales.

the multi-scale representations for all noise scenarios than the

baseline reference complex phase order representation, thus

illustrating the gain in noise resilience when multi-scale rep-

resentations are used. Furthermore, the PSNR and MSSIM of

the Bayesian theoretic approach is noticeably higher than the

linear and nonlinear deterministic approaches, hence demon-

strating improved noise resilience over the other approaches.

The multi-scale complex phase order representations of the

BMR image under the tested noise scenarios using linear and

nonlinear deterministic approaches, and the Bayesian theoretic

approach are shown in Fig. 10. While increasing structural

degradation is exhibited in all of the tested multi-scale complex

phase order representations as the level of noise increases,

the Bayesian theoretic approach is able to better preserve

structural detail at high noise levels when compared to the

other tested approaches.

VII. ILLUSTRATIVE APPLICATION: MULTIMODAL

REGISTRATION

Given that the proposed Bayesian theoretic approach to

constructing multi-scale complex phase order representation

allows for the capturing of structural characteristics of vi-

sual data largely independent of intensity, a computer vision

application that it is very well suited for is multimodal

image registration, where the goal is to align images acquired

under different conditions (e.g., different perspectives, lighting

conditions, imaging technologies, etc.) The multimodal regis-

tration problem can be formulated as a maximization problem,

Topt =argmaxT [Ψ (g(x), f(T (x)))] , (26)

where Topt is the optimal transformation that aligns f and

g, and Ψ(.) is the objective function. To incorporate the

multi-scale complex phase order representation described in

Section V into Eq. (26), we introduce the following multi-

scale complex phase representation (MCPR) objective function

based on the Geman-McClure statistics [33] between the

multi-scale complex phase order representations between f
and g,

Ψ(g(x), f(T (x))) = exp



−





γ
∑

t=1

∑

x

(Rg,t(x)− Rf,t(T (x)))2

χ2 + (Rg,t(x)− Rf,t(T (x)))2







 .

(27)

To study the performance of the proposed MCPR

objective function under more complex scenarios, volumetric

registration using 9 real patient MR-CT brain volume data

sets from the Whole Brain Atlas [34] (WBA) was performed

under different scenarios. The MR volumes are 256×256×23
voxels, with a slice thickness of 5mm. The CT volumes are

downsampled to the same voxel dimensions. A summary of

each test data set is given below.

1) Test 1: MR/PD-CT, 63 year-old male.

2) Test 2: MR/T2-CT, 63 year-old female.

3) Test 3: MR/T2-CT, 45 year-old female.

4) Test 4: MR/T2-CT, 23 year-old female.

5) Test 5: MR/PD-CT, 42 year-old female.

6) Test 6: MR/PD-CT, 75 year-old male.

7) Test 7: MR/T2-CT, 22 year-old male.

8) Test 8: MR/T2-CT, 55 year-old male.

9) Test 9: MR/T2-CT, 71 year-old female.

For testing the objective functions, the following volumetric

registration algorithm was used. Given the optimization prob-

lem for multimodal image registration described in Eq. (26),

a sequential quadratic programming approach [35] is then
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PSNR

MSSIM

Fig. 9. Plots of the PSNR for the test sets under different noise scenarios. The PSNR and MSSIM are noticeably higher for the multi-scale representations
for all noise scenarios than the baseline reference complex phase order representation, thus illustrating the gain in noise resilience. Furthermore, the PSNR
and MSSIM of the Bayesian theoretic approach are noticeably higher than the linear and nonlinear deterministic approaches.
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Fig. 10. The multi-scale complex phase order representations of the BMR image under the tested noise scenarios. When compared to the complex phase
order representations shown in Fig. 2, it can be observed that the Bayesian theoretic approach provides significantly better noise robustness at high noise
levels while maintaining strong structural detail preservation.

employed to solve the problem, where the estimated trans-

formation T̂ at iteration k can be defined as

T̂k = T̂k−1 + γk−1dk−1, (28)

where γ is a non-negative step size and d is the step direc-

tion calculated by solving a quadratic subprogram involving

Ψ [35]. The pseudo-code for registering two volumes f and

g is presented in Algorithm 2.

Algorithm 2 Volumetric Registration

Require: Given T0 = I , k = 0
1: repeat
2: Compute Ψ(g(x), f(Tk(x))) (27).
3: k = k + 1.
4: Estimate T̂k (28).
5: until △Ψ < ǫconvergence

6: return T̂k .

For evaluation purposes, the normalized mutual information

(NMI) [36], the complex phase order likelihood (CPOL) [12],

and MCPR objective functions were tested. NMI was im-

plemented using smoothed histograms computed with 100

intensity bins as specified by Mellor and Brady [37]. Trilinear

interpolation was used in all experiments. All tests were

performed on an Intel Core 2 Duo 1.67 GHz PC with 2 GB of

RAM and implemented using MATLAB, with the registration

time of MCPR was approximately 4 minutes.

A. Registration under Noise-free Conditions

The first set of tests studies the registration accuracy using

NMI, CPOL, and MCPR under geometric distortion scenarios.

Each test data set was distorted using 30 randomly generated

affine transformations, based on the random perturbation of

translation coefficients up to ±30mm and all other coefficients

up to ±0.1, resulting in a total of 270 test cases. Since the

test image sets used were previously aligned, the gold-standard

transformations are known for all 270 test cases. Registration

accuracy for all methods is evaluated quantitatively based on

the fiducial registration error (FRE), which in our case can

be defined by the root-mean-square error of 60 fiducial points

within the region of interest. Furthermore, since the test image

sets used were previously aligned and thus corresponding

locations on the images are known, the fiducial points were
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Fig. 8. The multi-scale complex phase order representations of the PMR test
set at different scales. The structural characteristics are significantly better
localized in the multi-scale complex phase order representations produced
using the Bayesian theoretic approach at coarse scales when compared to that
produced using the linear and nonlinear deterministic approaches.

chosen randomly using a computerized random point genera-

tion algorithm within the regions of interest in the test images

as not to bias the tests towards any of the tested similarity

measures.

The registration results for all nine test data sets, totalling

270 test cases, are summarized in Table I. Both CPOL and

MCPR were capable of achieving noticeably lower FRE when

compared to NMI for all test cases. One contributing factor to

this difference in registration error when compared to NMI is

that the intensity relationships between the tested MR and CT

volume data sets are highly complex and nonlinear, making

NMI highly non-convex and difficult to optimize. On the

other hand, the structural relationships between the volume

data sets is significantly more straightforward, making CPOL

and MCPR more straightforward to optimize. Furthermore,

MCPR produced lower FRE when compared to CPOL for all

test cases. Sample registration results using MCPR for Test

1 shown in Fig. 11. Visually, MCPR was capable of provid-

ing accurate registration results. These experimental results

demonstrate the effectiveness of the MCPR objective function

for performing non-rigid multimodal image registration on CT

and MR images.

TABLE I
FIDUCIAL REGISTRATION ERRORS (FRE) OF NMI, CPOL, AND MCPR

FOR THE 9 DATA SETS. A TOTAL OF 30 RANDOM DISTORTIONS IS TESTED

FOR EACH DATA SET, FOR A TOTAL OF 270 TEST CASES.

Test Set FRE (mm)
NMI CPOL MCPR

Test 1 3.74±0.56 2.70±0.32 2.21±0.29
Test 2 3.91±0.50 2.24±0.37 2.09±0.34
Test 3 2.36±0.63 2.46±0.42 2.31±0.43
Test 4 3.64±0.49 2.19±0.35 2.08±0.27
Test 5 3.81±0.30 2.46±0.19 2.31±0.22
Test 6 3.71±0.47 2.59±0.27 2.40±0.28
Test 7 2.90±0.53 2.70±0.25 2.57±0.20
Test 8 3.35±0.55 2.48±0.29 2.39±0.23
Test 9 3.97±0.61 2.30±0.37 2.12±0.35

B. Registration under Noise

An important consideration in the design of an objective

function for image registration is that the objective function

should be robust to noise artifacts that can affect registration

accuracy. To study the effect of noise on the similarity mea-

sures, the set of tests conducted in Section VII-A for Test 1

were performed with the MR volumes contaminated by 5%,

10%, 15%, and 20% simulated Rician noise, resulting in a

total of 120 tests.

The registration results for the Test 1 under the various noise

levels, totalling 120 test cases, are summarized in Table II.

The FRE achieved using MCPR remained largely consistent

at all noise levels. On the other hand, the FRE achieved using

NMI rose significantly as noise levels increased, while the

FRE achieved using CPOL were noticeably higher than that

achieved using MCPR, particularly for high noise levels. This

difference in FRE can be primarily contributed to the noise

robust nature of the complex phase order representations used

in MCPR when compared to that used in CPOL, which suffers
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Before Registration MCPR

Slice 3

Slice 8

Slice 13

Slice 18

Fig. 11. Sample registration result from Test 1 using MCPR. For visu-
alization, slices from the volumes are shown. Contours extracted from the
CT volume are overlayed on the MR volume to visualize the quality of
registration. Visually, the MR volumes warped based on MCPR appear well
aligned with the CT volume.

significant degradation under high noise scenarios. Sample

registration results using NMI and MCPR for 20% simulated

Rician noise are shown in Fig. 12. Visually, MCPR is capable

of providing accurate registration results. These experimental

results demonstrate the robustness of MCPR to the presence

of noise artifacts.

VIII. ILLUSTRATIVE APPLICATION: ULTRASOUND

FEATURE EXTRACTION

Given that the proposed Bayesian theoretic approach to

constructing multi-scale complex phase order representation

Before Registration MCPR

Slice 3

Slice 8

Slice 13

Slice 18

Fig. 12. Sample registration result from Test 1 using MCPR under 20%
Rician noise. For visualization, corresponding slices from the volumes are
shown. Contours extracted from the CT volume are overlayed on the MR
volume to visualize the quality of registration. Visually, the MR volume
warped based on MCPR appears well aligned with the CT volume despite
noise.

allows for the capturing of structural characteristics under high

noise levels, another potential application is the extraction of

features from ultrasound imagery [38], [11], which is highly

contaminated by the presence of speckle noise. To illustrate

the potential of the proposed Bayesian theoretic approach for

extracting features from ultrasound imagery, Fig. 13 shows

the average multi-scale complex phase order representation

produced using the Bayesian theoretic approach across all

scales for a real-world ultrasound image of the prostate, which

exhibits heavy speckle noise contamination. It can be observed

that the structural characteristics of the prostate gland are



Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

WONG 13

TABLE II
FIDUCIAL REGISTRATION ERRORS (FRE) OF NMI AND MCPR FOR TEST 1 UNDER DIFFERENT RICIAN NOISE LEVELS FOR MR VOLUME. A TOTAL OF 30

RANDOM DISTORTIONS IS TESTED FOR EACH NOISE LEVEL, FOR A TOTAL OF 120 TEST CASES.

FRE (mm)
Rician noise 5% 10% 15% 20%

NMI 4.02±0.76 6.73±1.03 9.71±1.64 10.86±2.58
CPOL 2.80±0.41 2.76±0.52 2.93±0.66 3.57±0.95
MCPR 2.24±0.35 2.28±0.37 2.34±0.59 2.53±0.62

Fig. 13. Average multi-scale complex phase order representation across all
scales for a real-world ultrasound image of the prostate.

well captured using the proposed approach despite the high

speckle noise level, thus illustrating the noise robustness of

the proposed approach.

IX. CONCLUSIONS

In this work, a Bayesian theoretic approach to multi-

scale complex phase order representations was explored.

Experimental results illustrate the approach’s potential for

constructing multi-scale complex phase order representations

that exhibit strong structural localization and noise resilience,

as well as the effectiveness of the constructed multi-scale

representations for computer vision tasks such as multimodal

image registration. Future work involves investigating the

proposed approach for other image processing tasks such

image reconstruction and restoration, as well as other computer

vision tasks such as salient feature detection.

ACKNOWLEDGMENT

The authors would like to thank the Natural Sciences

and Engineering Research Council (NSERC) of Canada for

providing funds for this project.

REFERENCES

[1] M. Morrone and R. Owens, “Feature detection from local energy,”
Pattern Recognition Letters, vol. 6, pp. 303–313, 1987.

[2] M. Morrone and D. Burr, “Feature detection in human vision: A phase-
dependent energy model,” Proceedings of Royal Society of London B,
vol. 235, pp. 221–245, 1988.

[3] M. Thomson, “Visual coding and the phase structure of natural scenes,”
Network: Computation in Neural Systems, vol. 10, pp. 123–132, 1999.

[4] P. Kovesi, “Phase congruency: A low-level image invariant,” Psycholog-

ical Research, vol. 64, no. 2, pp. 136–148, 2000.

[5] Y. Tian, “Autofocus using image phase congruency,” Optical Express,
vol. 19, pp. 261–270, 2011.

[6] Z. Wang and E. Simoncelli, “Local phase coherence and the percep-
tion of blur,” in Advances in Neural Information Processing Systems,
pp. 1435–1442, 2004.

[7] S. Gundimada and K. Asari, “A novel feature selection strategy on
fused thermal and visible cameras for improved face recognition in the
presence of extreme lighting and facial variations,” in Face Biometrics

for Personal Identification: Multi Sensory Multi-Modal Systems, Signals

and Communication Technology Series, pp. 109–120, 2008.

[8] L. Qing, S. Shan, X. Chen, and W. Gao, “Face recognition under varying
lighting based on the probabilistic model of gabor phase,” in Proceedings

of International Conference on Pattern Recognition, pp. 1139–1142,
2006.

[9] A. Wong, “Illumination invariant active contour-based segmentation
using complex-valued wavelets,” in Proceedings of IEEE International

Conference on Image Processing, 2008.

[10] A. Belaid, D. Boukerroui, Y. Maingourd, and J. Lerallut, “Phase
based level set segmentation of ultrasound images,” in Proceedings of

International Conference on Information Technology and Applications

in Biomedicine, pp. 1–4, 2009.

[11] I. Hacihaliloglu, R. Abugharbieh, A. Hodgson, and R. Rohling, “Bone
segmentation and fracture detection in ultrasound using 3d local phase
features,” in Proceedings of Med Image Comput Comput Assist Interv.,
pp. 287–295, 2008.

[12] A. Wong, D. A. Clausi, and P. Fieguth, “CPOL: Complex phase order
likelihood as a similarity measure for mr-ct registration,” Medical Image

Analysis, vol. 14, no. 1, pp. 50–57, 2010.

[13] O. Sadowski, Z. Yaniv, and L. Joskowicz, “Comparative in-vitro study of
contact and image-based rigid registration for computer-aided surgery,”
Computer-Aided Surgery, vol. 7, no. 4.

[14] V. Walimbe, O. Dandekar, F. Mahmoud, and R. Shekhar, “Automated 3d
elastic registration for improving tumor localization in whole-body pet-
ct from combined scanner,” in Proceedings of the Annual International

Conference of the IEEE Engineering in Medicine and Biology Society,
pp. 2799–2802, 2006.

[15] S. Viswanath, J. Chappelow, P. Patel, B. Bloch, N. Rofsky, R. Lenkinski,
E. Genega, and A. Madabhushi, “Enhanced multi-protocol analysis via
intelligent supervised embedding (empravise): detecting prostate cancer
on multi-parametric mri,” in Proceedings of SPIE Medical Imaging,
2011.

[16] D. Langer, T. van der Kwast, A. Evans, J. Trachtenberg, B. Wilson, and
M. Haider, “Prostate cancer detection with multi-parametric mri: Lo-
gistic regression analysis of quantitative t2, diffusion-weighted imaging,
and dynamic contrast-enhanced mri,” Journal of Magnetic Resonance

Imaging, vol. 30, no. 2, pp. 327–334, 2009.

[17] I. Selesnick, W. Ivan, R. Baraniuk, and N. Kingsbury, “The dual-tree
complex wavelet transform,” IEEE Signal Processing Magazine, vol. 22,
no. 6, pp. 123–151, 2005.

[18] S. Fischer, F. Sroubek, L. Perrinet, R. Redondo, and G. Cristoba, “Self-
invertible 2d log-gabor wavelets,” International Journal of Computer

Vision, vol. 75, no. 2, pp. 231–246, 2007.

[19] T. Lindeberg, “Scale-space: A framework for handling image structures
at multiple scales,” in Proceedings of CERN School of Computing,

Egmond aan Zee, The Netherlands, 1996.

[20] A. Witkin, “Scale-space filtering,” in 7th International Joint Conference

on Artificial Intelligence, pp. 1019–1022, 1983.

[21] J. Koenderink and A. V. Doorn, “The structure of images,” Biological

Cybernetics, pp. 363–370, 1984.

[22] A. Hummel, “Representations based on zero-crossings in scale space,”
in Proceedings of the IEEE Computer Vision and Pattern Recognition

Conference, pp. 204–209, 1986.

[23] J. Babaud, A. Witkin, M. Baudin, and R. Duda, “Uniqueness of the
gaussian kernel for scale-space filtering,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. PAMI-8, 1986.

[24] T. Lindeberg, “Scale-space for discrete signals,” IEEE Transactions

on Pattern Analysis and Machine Intelligence, vol. PAMI-12, no. 3,
pp. 234–254, 1990.



Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

14

[25] P. Perona and J. Malik, “Scale-space and edge detection using
anisotropic diffusion,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 12, no. 7, pp. 629–639, 1990.
[26] R. Whitaker and S. Pizer, “A multi-scale approach to nonuniform

diffusion,” Computer Vision, Graphics, and Image Processing, vol. 57,
no. 1, pp. 99–9660, 1993.

[27] L. Florack, A. Salden, B. ter Haar Romeny, J. Koenderink, and
M. Viergever, “Nonlinear scale-space,” Image and Vision Computing,
vol. 13, no. 4, pp. 279–294, 1995.

[28] J. Weickert and B. Benhamouda, “A semidiscrete nonlinear scale-space
theory and its relation to the perona-malik paradox,” Advances in

computer vision, pp. 1–10, 1997.
[29] A. Salden, “Bluman and kumei’s nonlinear scale-space theory.” Techni-

cal Report, February 1999.
[30] P. Fieguth, Statistical Image Processing and Multidimensional Modeling.

Springer, 2010.
[31] P. Davis and P. Rabinowitz, Methods of Numerical Integration. Dover

Publications, 2007.
[32] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image

quality assessment: From error visibility to structural similarity,” IEEE

Transactions on Image Processing, vol. 13, no. 4, pp. 600–612, 2004.
[33] S. Geman and D. McClure, “Statistical methods for tomographic im-

age reconstruction,” Bulletin of the International Statistical Institute,
vol. LII-4, pp. 5–21, 1987.

[34] K. Johnson and J. Becker, “The whole brain atlas.” World Wide
Web Document, February 2009. http://www.med.harvard.edu/AANLIB/
home.html.

[35] P. Boggs and J. Tolle, “Sequential quadratic programming,” Acta Nu-

merica, pp. 1–51, 1995.
[36] C. Studholme, D. Hill, and D. Hawkes, “An overlap invariant entropy

measure of 3d medical image alignment,” Pattern Recognition, vol. 32,
no. 1, pp. 71–86, 1999.

[37] M. Mellor and M. Brady, “Phase mutual information as a similarity
measure for registration,” Medical Image Analysis, vol. 9, pp. 330–343,
2005.

[38] G. Cao, P. Shi, and B. Hu, “Ultrasonic liver discrimination using 2-
d phase congruency,” IEEE Transactions on Biomedical Engineering,
vol. 53, no. 10, pp. 2116–2119, 2006.

Alexander Wong (M ’05) received the B.Sc. degree
in computer engineering, the M.Sc. degree in electri-
cal and computer engineering, and the Ph.D. degree
in Systems Design Engineering in 2005, 2007, and
2010, respectively, from the University of Waterloo,
Waterloo, ON, Canada. He was a postdoctoral fellow
from 2010 to 2011 at Sunnybrook Hospital and the
University of Toronto, Toronto, ON. He is currently
an assistant professor in the Department of Systems
Design Engineering at the University of Waterloo.
He is also with the Vision and Image Processing

Research Group, University of Waterloo. He has authored or coauthored
papers in various fields such as computer vision, graphics, image processing,
biomedical signal processing, and multimedia systems, published in refereed
journals and conferences. His current research interests include biomedical
image processing and analysis, remote sensing, computer vision, and pattern
recognition.


