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ABSTRACT

In this paper a combined BayesShrink Wavelet-Ridgelet de-
noising method is presented. In our previous work we have
showed that BayesShrink Ridgelet performs better than Vi-
suShrink Ridgelet and VisuShrink Wavelet. Although our
BayesShrink Ridgelet technique performs somewhat poorer
in comparison with BayesShrink Wavelet, based on SNR,
visually it produces smoother results, especially for images
with straight lines. In the proposed method BayesShrink
Wavelet is combined with BayesShrink Ridgelet denoising
method which performs better than each filter individually.
The proposed combined denoising method gains the advan-
tage of each filter in its specific domain, i.e., Wavelet for
natural and Ridgelet for straight regions, and produces bet-
ter and smoother results, both visually and in terms of SNR.

1. INTRODUCTION

Data obtained from the real world in the form of signals do
not exist without noise. This noise might decrease to some
negligible levels under ideal conditions such that denoising
is not necessary, but usually to recover the signal the cor-
rupting noise must be removed for practical purposes. For
this reason noise elimination is a significant concern in com-
puter vision and image processing. Noise undesirably cor-
rupts the image by perturbations which are not related to the
scene under study and makes ambiguities in the underlying
signal relative to its observed form. The goal of denoising
is to remove the noise and to retain the important signal fea-
tures as much as possible. In the presence of additive noise,
linear filters, which consist of convolving the image with
a constant matrix to obtain a linear combination of neigh-
borhood values, can produce a blurred and smoothed image
with poor feature localization and incomplete noise sup-
pression. To overcome these shortcomings, nonlinear fil-
ters have been proposed, especially wavelet based denoising
[1,2]. The wavelet transform generally separates signal and
noise, as a result it can be used to remove the noise while
preserving the signal characteristics. Researchers have em-
ployed various approaches to nonlinear wavelet-based de-
noising: wavelet thresholding, wavelet shrinkage, and oth-
ers.
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Fig. 1. Noisy image, SNR=7.93

To compensate the weaknesses of the wavelet transform
to represent 1-D singularities in two-dimensional (2-D) sig-
nals, Ridgelet and Curvelet transforms were recently in-
troduced by Candes and Donoho [4, 5]. The VisuShrink
Ridgelet thresholding method was then introduced [6] as
an alternative to the VisuShrink Wavelet denoising and per-
formed better than its Wavelet counterpart for images with
straight lines. Similar BayesShrink methods have been also
introduced by [3, 7]. It seems quite reasonable to take ad-
vantage of the Ridgelet transform for improving the perfor-
mance of the Wavelet transform in straight regions. Hence,
a combined denoising method is proposed in this paper.
To improve the visual image quality, the proposed method
gains the advantage of Ridgelet transform in straight re-
gions while the better performance of the Wavelet trans-
form for natural images is considered. The paper presents
an overview of the Ridgelet transform and BayesShrink de-
noising, followed by the proposed combined BayesShrink
Wavelet Ridgelet image denoising method and experimen-
tal results.
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2. BACKGROUND OVERVIEW

The BayesShrink Wavelet method was introduced by Chang
et al [3, 8] and is the state of the art in wavelet image
denoising, outperforming the previous VisuShrink Wavelet
method. We are interested in combining BayesShrink with
the recently introduced Ridgelet transform [4, 5, 9, 10]. In
this section an overview of BayesShrink and the Ridgelet
transform are presented.

2.1. Ridgelet Transform

The Ridgelet transform effectively represents line singulari-
ties of 2-D signals. Since a sparse representation of smooth
functions and straight edges is provided by the ridgelet
transform, this new expansion can accurately represent both
smooth functions and edges with fewer nonzero coefficients
and achieves a lower mean square error (MSE) than the
wavelet transform. It maps the line singularities into point
singularities in the Radon domain by employing the embed-
ded Radon transform. Therefore, the wavelet transform can
efficiently be applied to discover the point singularities in
this new domain. Having the ability to approximate singu-
larities along a line, several terms with common ridge lines
can effectively be superposed by the ridgelet transform. The
bivariate ridgelet transform in R? is defined by

Rap0(k) = a_1/2w((/$1 cosf + kosinf — B)/a) (1)

where, a > 0, § and 6 are scale, location and orientation pa-
rameters respectively and w is a univariate wavelet function
on R — R. Along the Ridgelet lines k1 cos 0 + kg sin 6,
Ridgelets are constant and they are equal to the wavelets in
the orthogonal direction. Ridgelet coefficients of a bivariate
function (k) in R? are given by

Ri(a,0.0) = [Rapoll(ds @

The reconstruction formula is given by
2m +oo de
= [ [ s om0 5y

and is valid for integrable (and square integrable) functions.
Like Fourier and Wavelet transforms, any arbitrary func-
tion can be represented by a continuous superposition of
Ridgelets. Considering the 2-D Ridgelet transform as a 1-D
Wavelet transform in the Radon domain, the Ridgelet coef-
ficients of function I (k) can be defined as

o, ,6) = /?Rt

where $; (0, 7) is the Radon transform of function /(x) and
is based on the Dirac distribution (§) as

1/2w((7’ —Ba)dr (3

R(6,7) /I(m, K2)0(k1 cos @ + ko sind — 7)dk1dka
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Each Col Correspond to A Specific Direction
N Col representing N Directions
1-D Subband Detail Coef. Level 1
1-D Subband Detail Coef. Level 2
Detail 2

1-D Subband Detail Coef. Level L
Residual (Approximate) Coef. Level L

Table 1. Ridgelet Coefficients

2.2. BayesShrink Method

The subband Wavelet and Ridgelet coefficients of a natural
image can be described by the Generalized Gaussian Distri-
bution (GGD) [3, 8, 7]:

P(or, ) exp{=[6(ar,V)]"}

where —oo < I < 400, > 0 and,

GGory(I) = “)

i [rEM)E
oon) = o {F(l/v)}
ds
" v-6(or,7)
P(Ulﬂ’) = T(l)

oy is the standard deviation of subband Wavelet (or sub-
band Ridgelet) coefficients, -y is the shape parameter and T"
is Gamma function. For the most natural images the distri-
bution of the Wavelet (and Ridgelet) coefficients in a sub-
band can be described with a shape parameter in the range
of [0.5,1]. Considering such a distribution for the Wavelet
(or Ridgelet) coefficients and estimating and + and o for
each subband, the soft threshold T's which minimizes the
Bayesian Risk [3, 8], can be obtained by

R(Ts) = E(I —I)? = ErEy;(I—1)>? (5)
where 1 is Ts(J), J|I is N(I,0) and I is GGy, ~. Then
the optimal threshold T’ is given by

Ts(or1,7) = arg n%m R(Ts) (6)
S

It does not have a closed form solution and numerical cal-
culation is used to find T'§. A proper estimation of the value
T is concluded by setting the threshold as
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Fig. 2. BayesShrink Methods to Restore Noisy image
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Fig. 3. BayesShrink Methods to Restore Noisy Lena Image

3. THE PROPOSED METHOD

The visual image quality of BayesShrink Ridgelet for
straight regions is better than its Wavelet counterpart. At
the same time BayesShrink Wavelet performs better on nat-
ural images. The proposed method by combining them, per-
forms better than each method individually. The proposed
denoising method is presented in this section.

3.1. Calculating the BayesShrink threshold

Subband dependent threshold is wused to calculate
BayesShrink Ridgelet threshold. The estimated threshold is
given by [7] where n and I are noise and signal standard
deviations respectively. The 1-D Ridgelet coefficients
corresponding to different directions are depicted in Tab.
1. In this figure each column corresponds to a specific
direction, hence the number of columns determines the
number of directions and each column contains subband
detail coefficients for L different decomposition levels. To
estimate the noise variance o2 from the subband details, the
median estimator is used on the 1-D subband coefficients:

dn = median(|Details|)/0.6745 (8)

Signal standard deviation is calculated for each direction in
each subband detail individually. Thus having N directions
and L subband, NxL different o; must be estimated cor-
responding to Nz L subband-directions coefficients. Note
that in BayesShrink Wavelet denoising, o is estimated on
2-D dyadic subbands [3]. Thus having L decomposition
levels, 3 - L different o7 must be estimated to calculate the
thresholds for the different subbands. To estimate the signal
standard deviation (o), the observed signal S is considered
to be S = I + n, while signal (/) and noise (n) are assumed
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to be independent. Therefore, 0% = o7 + o2 where 0% is
the variance of the observed signal. So &7 is estimated by

61 = \/maz((6% — 62).0) ©)

3.2. Combined Denoising Algorithm

To avoid the overhead complexity that signal synthesizing
methods such as Basis Pursuit and Matching Pursuit cause,
the observed image passes through Wavelet and Ridgelet
denoising filters sequentially in the proposed method.
Assuming S = I + n, the noise variance is estimated and
the denoising task will be repeated till |[I — S|2 < e be
satisfied, where I and S are observed and noise free signals
respectively and e is a fraction of noise variance.

e= ac?
S=1I
do
{ ~
Cy, = Wavelet Transform{S'}
Cr, = BayesShrink Wavelet{C,, }
S = Inverse Wavelet Transform{Cp, }
C, = Ridgelet Transform{S}
Cr, = BayesShrink Ridgelet{C, }
S = Inverse Ridgelet Transform{C7, }

while(|T — S|2 > e)

4. RESULTS

Some results obtained by applying BayesShrink Wavelet,
BayesShrink Ridgelet and the proposed method are pre-
sented in this section. A synthetic image with straight lines
is used in the first experiment. The restored images using
three BayesShrink methods are depicted in Fig. 2. As we
can observe, the combined filtering performed better than
the two others such that its results have better visual qual-
ity and higher SNR. Fig. 3 shows the denoised Lena im-
age using BayesShrink Wavelet, BayesShrink Ridgelet and
the proposed method. Although this image does’nt have
much straight regions, the combined BayesShrink Wavelet-
Ridgelet does not degrade the superior result of Wavelet in
this domain and performs about the same as BayesShrink
Wavelet based on SNR while the combined method pro-
duces smoother result that can be observed by a closer look.
At the end the proposed method is applied to Gold-hill
which is a natural image with straight regions. Fig. 1 shows
the noisy image and restored images using BayesShrink
Wavelet and the proposed method are depicted in Fig. 4 and
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Fig. 4. BayesShrink Wavelet Denoising, SNR = 11.59

5 respectively. The results are zoomed in for better obser-
vation. As it can be observed not only the SNR is improved
by the combined method but also the image looks smoother,
especially in the straight regions.

5. CONCLUSIONS

In this paper a combined denoising method was proposed.
By addressing our previous work using Ridgelet transform
for image denoising, a combined BayesShrink Wavelet-
Ridgelet denoising technique was introduced. The proposed
method was applied on synthetic and natural images. The
performance of the combined method was compared with
BayesShrink Wavelet image denoising. The experimental
results by the proposed method showed the improvement
of the visual image quality and increase of SNR in com-
parison with BayesShrink Wavelet technique especially in
the straight regions of the image. Future work is conducted
to improve the performance of this method. As the future
work the proposed combined method would be considered
for image coding and restoration.
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Fig. 5. BayesShrink Wavelet-Ridgelet, SNR = 11.82
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