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A Comparison of Two 85-GHz SSM/I Ice
Concentration Algorithms With AVHRR
and ERS-2 SAR Imagery
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Abstract—Sea ice concentrations obtained with two algo- vertically polarized channel at 22 GHz. SSM/I orbit and scan
rithms from Special Sensor Microwave/Imager (SSM/I) data are geometry allow monitoring polar regions poleward of Bior

compared to spaceborne visible/infrared and active microwave ; ; T
imagery for the Greenland Sea in Spring. Both algorithms, the 60°S almost entirely during one day [3]. Data coverage im

ARTIST Sea Ice algorithm (ASI) and the SEA LION algorithm ~ Proves when using all three current DMSP satellites.

(SLA), utilize 85-GHz SSM/I brightness temperatures with a spa-  IC€ concentration maps can be generated from SSM/I data
tial resolution of 15 km x 13 km. Ice concentrations obtained from using well known algorithms such as the NASA TEAM algo-
Advanced Very High Resolution Radiometer (AVHRR) infrared  rithm (NTA, [4]) or the Comiso Bootstrap algorithm (CBA) [5].
data in cloud-free areas are underestimated by SLA and ASl ice Spatial resolution of such maps is determined by sampling dis-

concentrations by 3.6% and 8.3% (correlation coefficients of 0.90 ) . . .
and 0.91). Ice concentrations estimated from texture classified tance and field-of-view (FOV) associated with the lowest SSMI

ERS-2 synthetic aperture radar (SAR) images by assigning experi- frequency used. This is usually the 19-GHz channel (sampling
ence-based ice concentrations to ice-type classes are overestimatedistance: 25 km, FOV: 69 knx 43 km). Using the 85-GHz
by SLA and ASI ice concentrations by 4.4% and 1.5% (corre- channels (sampling distance: 12.5 km, FOV: 15 ki3 km)
lation coefficients of 0.84 and 0.77). However, omitting low/high yqiq allow resolution improvement by at least a factor of four.

ice concentrations forming up to 80% (AVHRR) and 60% (SAR)
of the entire dataset reveals a significantly different statistic. For Several authors have suggested or already used 85-GHz SSM/I

instance, the correlation between AVHRR and SLA and ASI ice data for sea ice concentration retrieval [6]-[9], or have used
concentrations drops to 0.77 and 0.70, respectively. All presented 85-GHz data for algorithm enhancement [10].
technigues to obtain ice conc_entrations need improvement and Seg ice analysis using 85-GHz SSM/I data is hampered by
future developments should involve larger datasets. However, a considerably larger weather influence compared to 19- and
with care, both algorithms can be used to obtain reasonable ice 37-GHz SSM/I data. Th f ind ch f
concentration maps with a 12.5 kmx 12.5 km grid-cell size. -bhz e € sunace win C, af,‘ges sea SuUl age
_ ] _ _ ) roughness and thus alters the surface emissivity. Atmospheric
Index Terms—Arctic regions, algorithms, microwave radiom- \yatar causes a change in atmospheric opacity. Both effects yield
etry, neural network application, sea ice, synthetic aperture radar o . . )
(SAR). a net decrease of the polarization ratio at 85 GHz causing an ice
concentration overestimation. The two algorithms compared
here for determining ice concentrations using 85-GHz SSM/I
. INTRODUCTION data are the ARTIST Sea Ice algorithm [8] (simply referred to

EA ICE SIGNIFICANTLY affects heat fluxes between the2S ASI) and the SEA LION algorithm (SLA) [9], [11]. Both of
cean and the atmosphere [1]. Sea ice representation in these methods address the weather influence in different ways.
merical climate models is still an active research topic [2] re- The ice concentration measurements produced by SLA and
quiring long-term large-scale sea ice observations. These carfisd Will be compared to concentrations produced using satel-
provided by remote sensing satellite sensors such as the SpdifiPased synthetic aperture radar (SAR) and visible/infrared
Sensor Microwave/lmager (SSM/I) onboard the Defense MeféR) imagery. The SAR data is generated by the second Euro-
orological Satellite Program (DMSP) spacecraft, which has d&an Remote Serysmg satelll'te (ERS'-Z, 5.3 GHz, ve'rtlcal polar-
quired data since 1987. It is equipped with dual-polarized (véation on transmit and receive), which produces high-resolu-
tical and horizontal) channels at 19, 37, and 85 GHz and of{@" imagery (25 mx 25 m spatial resolution over an 100 km
x 100 km area). However, temporal coverage is sparse com-
pared to SSM/I. Therefore, despite the much better spatial res-
Manuscript received September 30, 2002; revised June 20, 20adution of SAR data, large-scale ice analysis still has to rely on
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TABLE | over open water. Assuming that the atmospheric influence can
SSM/I GHARACTERISTICS[3], f: FREQUENCY, p: POLARIZATION, FOV: be represented by a smooth functiortbbetween ice and open
FIELD-OF-VIEW, SI: SAMPLING INTERVAL .
water the polynomial

fIGHz] p FOV [kmxkm] SI [km] ‘

1935  h,v 69 x 43 25 Cast = 1.1-0.009 26 P —0.000 604P? +6.438-10"°P3 (2)
22235 v 50 x 40 25

370 hw 37 x 29 25 can be used to calculaté. The coefficients of (2) as well as

855  h,v 15 x 13 125

tie points of open water and ice are estimated from data of the
Arctic Radiation and Turbulence Interaction STudy (ARTIST),

gorithms that were used, namely, the SLA and AS| as well as tignducted in the environment of the Svalbard archipelago in
methods used to derive ice concentration maps using SAR Aarch/April 1998. This has been done by using reference ice
AVHRR images. Section IV describes and Section V discuss%gr?cer.]tratlon_data and Ie:?lst square statistics for tie point op-
the ice concentration results of the SLA and ASI (using SSMjmization. This approach is more accurate than the one pro-
data) compared to the thematic maps produced using SAR &§€d by [6] relying on minimum and maximum values of some

AVHRR. Section VI summarizes the results and suggests futi@mples. _ _ _ _
applications. Weather induced errors of ice concentration estimated with

(2) are large for open ocean and relatively small for sea ice
due to the higher emissivity of sea ice. Therefore, each pixel
Casr is set to zero ifCxta < Chihreshold WhereCya is the
Both ASI and SLA are applied to 85-GHz SSM/I data aoyTA ice concentration (including the weather filter of [12]). The

quired aboard DMSP platform F14 in Aprll 1999 in the Greerthresh()'dcthreshold — 5% masks ice-free areas. A threshold
land Sea. See Table | for SSM/I channels and associated spatigl..., ..« = 30%, as given in [8], can be used for removing

ires

resolutions and sampling intervals [3]. Data are interpolated ind@ong weather influence without the above-mentioned weather
a polar-stereographic grid with 12.5 kan12.5 km grid cell size. fijter.

The SLA requires atmospheric data as provided by the Nu-
merical Weather Prediction (NWP) modéigh Resolution Lim- B. Sea Lion Algorithm
ited Area ModelHIRLAM) of the Danish Meteorological In- The SEA LION algorithm (SLA) [11] was developed during

stitute (DMI). In the Greenland Sea, this model has a spati[ﬂl : L . .
e project SEA LION (SEa ice in the Antarctic—LInked with
resolution of 0.15 x 0.15°, which is similar to 85-GHz SSM/I proj ( ice : w

data. Model dat IS0 int lated into the ab i OceaN-atmosphere forcing) and uses the normalized brightness
ata. Model data are also Interpolated into the above-men 'oqgﬂwperature polarization difference (also called polarization

grid. io, PR H
For the comparison, 16 ERS-2 SAR images acquired in ApFﬁmo’ 85) at 85 GHz

1999 in the Greenland Sea have been selected (orbits 20762,
20805, and 20848). SAR images are classified as described
in Section Ill. Also, data of channels 1, 2, and 4 of the Ad- . . o
vanced Very High Resolution Radiometer (AVHRR) aboard thée Using Py instead ofP minimizes the temperature depen-
NOAA-15 spacecraft are used for comparison. ence. Brightness temperatures are given by

Il. DATA

_ Tn - Th

Py=-2 "%
N, AT,

®3)

T, = (1 — C)va + CTM‘, and7j, = (1 — C)Thw + CTy; (4)
Ill. M ETHODS
A. ASI Algorithm with 1 — C andC being fractions of a unit area covered by open
. o . water and ice and,,,,,, Ty, andT,;, T}; being tie points of open
ASI [8] combines a model for retrieving total ice concentrgy aier and sea ice. At 85 GHEy takes values around 0.20 over

tion from SSM/I_SS'GHZ data proposeq by [6] (Svendsen alyan water and 0.02 over 100% ice, almostindependently of the
gorithm, SVA) with an ocean mask de_nved from 19-, 22-, a e type [6]. Inserting (4) into (3) and solving fét yields
37-GHz SSM/I data using the NT algorithm [4] and the weather

filter of [12]. The algorithm of [6] is based on a simplified form Ty +Thi Prni— Px\ "

of the microwave radiative transfer equation ¢= (1 + Tow + Thw Py — PNw) . %)
P=(11e7" = 0.11) e "(aC +b) The quantitiesPy,, andPy; are tie points of open water and
a =Ae;T; — Aey,T,, andb = Aey, Ty (1) ice.Theyhave been estimated from data of all SSM/I overpasses

of the Greenland Sea during April 7 to 18, 1999, and therefore
where( is the total ice concentratiot; is the brightness tem- reflect average conditions of this period. Ice tie points are esti-
perature polarization difference at 85 GHX¢ is the surface mated using a mask including all pixels where average as well as
emissivity polarization difference of ice or open water; arid temporal variability of PR85 are below a certain threshold. The
the total atmospheric optical depth. Effective surface tempeiaerage ensures that only pixels are used where PR85 yields a
tures of ice and open water afgandT,,, respectively. minimum ice concentration of at least 95%. The temporal vari-

The brightness temperature polarization difference at 85 Gldhility allows identification of those pixels where the low av-

P =1, — T}, (whereT, and1} are brightness temperatures atrage PR85 is indeed caused by high ice concentration and not
vertical and horizontal polarization) is small over ice and lardey a frequent weather influence.
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The major difference between ASI and SLA is the correction TABLE I
of 85-GHz SSM/I brightness temperature changes due to the FEATURESV(V'TLDE’()EVT/';'EZ[;_FSONUT&'BEEER%SFEQE WAGE. CaLCULATION
weather influence, quantified by surface wind sp&gcatmo- o )

spheric water vapor contefi’, and atmospheric liquid water F rule n G
contentlZ. ASl tie points include this weather influence empiri- LEE f; = LEEFILTER(c?(i), N) 7x7

cally and, therefore, requires no explicit correction of brightness  Mean  fo = Y0, iP; 16x16
temperatures. For the SLA;, W, andL are either taken from a ENT f3=-— Z,fszl P;jlog P;; 16x16 8
NWP model (HIRLAM) and/or are taken, over open water only, INV  fy = Zgj:l TEJH 128x128 256

from low-frequency SSM/l data (19, 22, and 37 GHz) [13]-[15].
The MicroWave MODel (MWMOD) [16] is used to quantify
the weather influence and to correct brightness temperaturesigéd for discrimination [22], [23]. Of the many existing tex-
a known surface (open water or ice) for this influence given lare methods, cooccurrence probabilities [24] have been suc-
V, W, andL. cessfully applied to SAR sea ice imagery. As a result, this is the
CalculatingC' with the SLA requires iterations starting withtexture feature extraction method of choice used in this paper.
afirst-guess o€’ obtained from uncorrectefly values. Ineach  Four different feature§ = (f1, f, f3, f4) given in Table Il
iteration, an improved weather-influence-correctgdvalue is  are derived from the ERS-2 SAR images using.am window.
used to calculate an improvédvalue, which in turn is used to The first feature is the output of the Lee filter [25]. The Lee
obtain a new modeled value #fyv. The iterations are stoppedtechnique for additive image noise was applied ina7pixel
after 60 steps or iA Py (the difference betweef’y and the |ocal neighborhood on the® (in decibels) images. The other
modeled value oP’y) falls below a threshold of 0.001 ensuringhree outputs are based on gray level cooccurrence probabilities.
a theoretical retrieval accuracy ef 1%. SLA ice concentra- The gray level cooccurrence probabilities represent the condi-
tions shown in Section IV are a combination of two SLA rungonal-joint probabilities £;,) of all pairwise combinations of
using either HIRLAM or SSM/I data for the weather influenceyray levels separated by a distamand an orientatioi. These
correction over open water. This has become necessary becgigpabilities are typically stored in a matrix, often referred to as
V, W, andL values derived from SSM/I data are more realistithe gray level cooccurrence matrix or GLCM. Here, the textures
over open water than NWP model data and thus improve thge assumed to be rotationally invariant, so, for a given distance
SLA sea ice analysis. More information about the SLA is given the probabilities are averaged together. Once the probabili-

in [11] and [17]. ties for a given window are known, then statistics are applied to
generate the texture features. The statistics used here are mean
C. SAR Image Classification (MEAN), entropy (ENT), and inverse moment (INV).

Given that remote sensing images tend to be large and given

Compared to SSM/I, ERS-2 SAR data is restricted sincetifat each pixel requires its own texture feature vector, a fast
uses only one frequency and one polarization for sending aaigorithm was employed. A suitable approach is an iterative
receiving. In addition, the signal is degraded by the multiplica&ramework which is commonly employed in image processing
tive speckle noise. The ambiguities in the normalized radalgorithms [26]. Such a method avoids the need to traverse en-
cross sectionr’ general do not allow unique assignments téire GLCMs and, in doing so, significantly minimizes the com-
sea ice types with simple threshold techniques. Moreover, thgtational demands. For example, based on trial testing on an
backscatter of ice-free ocean depends on the wind-speed whieharate 2002 2000 SAR image, the GLCM method required
can vary considerable in one SAR frame especially in thser five times the computational time compared to the itera-
marginal ice zone (MIZ) [18]. No general automatic algorithriive method given a window size of 2515 and a quantization
exists for the estimation of sea ice concentration from SABvel of 32. The iterative method requires anywhere from ap-
data. proximately 1% to 50% of the computational time of the matrix

A supervised classification of ERS-2 SAR sea ice imagerysethod, depending on the parameters selecigd (statistics).
performed by using texture feature extraction and a neural netA supervised neural network learning architecture was used
work. First, the ERS-2 SAR data was calibrated [19]. Then, thier classification, namely Kohonen’s Learning Vector Quanti-
linear incidence angle dependence of sea ice backscatter wason (LVQ) [27]. LVQ approximates the probability density
removed. An average incidence angle dependence (slopefupictions by a set of optimally placed vectors which are called
d0°(0)/06 = —0.3 dBI° was used which was estimated withircodebook vectors (CV). The codebook is generated by learning
the overlap of the ascending and descending branch of the ofliim examples of class labeled feature vectors (training data).
[20]. The technique for the slope estimation is similar to th&bout 70-200 homogeneous areas of five different surface types
used by [21]. The slope depends on ice type and surface rouglere manually selected for each ERS-2 orbit. First-year (FY),
ness (deformation). The value ef0.3 dBf represents an av- grease (GR), brash (BR), and level (LE) ice, as well as open
erage of predominantly first-year and young ice in the MIZ. Th@ater (OW) regions were discriminated. These areas were used
next step is to select appropriate textures features. for training and testing of the neural network. The advantage of

Texture, a representation of the spatial relationship of graging a neural network is the adaptiveness, i.e., it can be trained
levels, is important for computer-assisted interpretation of imvith examples of different appearance, such as calm or wind
ages. Since SAR imagery contains spatially dependent classghened open water. Best results are obtained if wind speed
characteristics, texture extraction methods have been commaahyl direction are almost uniform within the region of interest—a
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TABLE Il Atmospheric Administration (NOAA) LM User’s Guide
ESTIMATED EFFECTIVE |CE CONCENTRATIONS[IN PERCENT] IN THEMATIC [31] are used

SAR MAPS. SEE TEXT FOR MEANING OF COLORS .. L
i) Apply a cloud-mask by combining maps | and II.

Open Water ~ Grease ~ Brash ~ Level  First-year i) Identify and mark ice floes in map | located as close as
(OSV) Icegfg’R) Ice ;SR) Ice 9%‘3) IC"IS:)Y) possible to open water and, according to the respective
o Slack areen —d orange _ Tir value, belonging to gray or gray-white ice.

iv) Fromthese floes, take the average AVHRR chanrigg4

value as the AVHRR ice tie poiffig ic.
TABLE IV v) Identify and mark areas in map | located as close as pos-
OPEN WATER AND SEA ICE TIE POINTS [IN KELVIN] OBTAINED FROM AVHRR sible to the ice edge re\/ea"ng a radiance typica| of open
CHANNEL 4 T7r MAPS OFDATES GIVEN IN TABLE V water
April 10 April 13 April 16 vi) Fromthese areas take the average AVHRR chanfig} 4
TiRow 269.9 270.1 269.6 value as the AVHRR open water tie poifir ow-

Tiic 2648 2647 2649 All of these steps are done for each AVHRR image. Respective

tie points are listed in Table IV.

reasonable assumption when classifying several SAR ima%eg inally, the AVHRR ice concentratiofiavarr is calculated

neighboring each other. The classification accuracy for trainlngS follows:

(self consistence) and test (test data not used for training) are Cavinn = 100% for T < Tinae
95% and 88% for April 10, 88% and 73% for April 13, and 93% T — T ,
and 81% for April 16. CAVHRR = ——————2— for

Tir,ic — TiR,0w

To give an estimate of the ice concentration using the classi-
Tiric <Tir < T1R,0w

fied SAR images an average ice concentration value is needed .
for each of the five classes. These values are given in Table IlI Cavarr = 0% for Tig > TiR,ow-
together with the colors used to display the different ice types in

Fig. 3in Section IV. The values stem from the experience gainedNe'ther_ p_ercent albedo nd_f’m are corrected_fqr mmdenc_e
angle variation or atmospheric attenuation. This is not required

during experiments of the 1998 ARTIST in the Svalbard areap th hand data of ch 11 and 2 | dt
The reader should keep in mind, that these values have grause on the one hand data of channet 1 and - are only usedto
select appropriate areas for tie point estimation and to generate

been cross-checked against dnysitu data. However, given ot : .
the resolution of the SAR images used and the typical size® ualitative cloud mask without using absolute values. On the
er hand, tie points arillg values are similarly influenced by

first-year and/or level ice floes, these estimates for these two . q | i d at heric att tion leadi
ice types are quite realistic. First-year ice contains a small frdgedence angie variation and atmospheric attenuation leading

tion of multiyear ice (below 20%). Typical sizes of ice floes of° ac_onsistent bias. . . .
I ultiyear ice (below o). Typi 'z ! This method has some shortcomings. First, the cloud masking

floe fragments of brash ice, however, are small, and thereforeh it fail t Il clouds. Clouds mimic th
the uncertainty of the ice concentration estimate for this ice ty gheme mignt fauil 1o remove afl clouds. Liouds mimic the sur-

is larger—nbut still difficult to determine. Grease ice contains ce and depending on whether the surface is warmer or colder

consolidated suspension of ice crystals in water, acting as p ?_n thte dengs' tget;]ce cor;r::egtratlon cantr:oei En?er' oLover-
cursor for the development of pancake ice. Certainly, the egieumated. second, the method assumes that below (above) a

mate of 30% for grease ice marks the lower end of possible i %rtamTIR value the AVHRR plxgl IS 'entlrely covered by ice
concentrations. open water). Subpixel-scale distributions of open water and ice

cannot be addressed. A mixture of thick, cold small first-year ice
floes and open water, for instance, may cause an IR temperature
well below the ice tie point'ir ;. despite a notable open water
AVHRR imagery can be used to estimate the ice concentiigaction. An ice concentration overestimation would result. Fi-
tion with a spatial resolution of 1 knx 1 km [28], [29]. Ap- nally, thin ice can cause ice concentration underestimation due

propriate methods use the radiance measured at AVHRR ch@{iits rather high IR temperature compared to thicker ice.
nels 1 and 2 (0.58-0.68 and 0.72—1,40) and/or the IR bright-

ness temperature (IR temperaturd g, henceforth) measured IV. RESULTS

at AVHRR channel 4 (10.3-11.3m), depending on ice type ,
and time of the year. During winter and spring, for instance, AS! and SLA have been used to calculate Greenland Sea ice
freezing conditions prevail. Consequently, the IR temperatuf@ncentrations for days given in Table V. These SSM/I 12.5 km
contrast between open water and ice is large. Here, AVHRRL2:5 km ice concentratiorCss\ir) maps have been quanti-
data acquired in April 1999 are used together with a tie poiftively compared with NOAA-15 AVHRR visible/IR imagery

method based on AVHRR channel 4 IR temperatures [28], [3G1d With classified ERS-2 SAR images (thematic SAR maps)
Tie points (see Table 1V) are estimated as follows. acquired on the same days. AVHRR maps have been interpo-

lated into a 1 kmx 1 km polar-stereographic fine-mesh ver-

i) Generate a map of AVHRR channel 1 and channel 2 per- ; .
cent albedo and AVHRR channelig, (maps |, II, and Sion of the grid used at the National Snow and Ice Data Center

). Prelaunch slopes and intercepts as well as convér’\—ISIDC) [32]. For the thematic SAR maps, latitude/longitude

sion coefficients as given in the National Oceanic and!Available online at http://iwww2.ncdc.noaa.gov/docs/kim/index.htm.

D. Ice Concentration From AVHRR Imagery
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TABLE V and (g), SLA and ASl ice concentrationSq;,» andCxgp) are
AVHRR, ERS-2 SARAND SSM/I OVERPASSTIMES (UTC) lower thanC avirr in the pack ice area, especially in the north
USED IN THIS STUDY . . .
and in the MIZ. The ice edge is located more to the northwest

April 10 April 13 April 16 in both SSM/I ice concentration maps compared to the AVHRR
AVHRR  17:05 14:20 18:13 ice concentration.
SSSAI\;H 1;;7 : 21:13 - 21-i9 Similar icg concentration maps have been calculated and
SSMIT T 5 1'6 compared with each other for the other two days (see Table V).

The results have been combined and statistically examined.
Fig. 2(a) and (b) show scatterplots ©fsyi; versusCavugrg-
values of this grid have been interpolated to a spatial resolutiBoth SLA and ASI ice concentrations are not in perfect
of 250 mx 250 m, first. Second, SAR corner and center coordagreement with AVHRR ice concentrations, particular at high
nates are used to generate latitude/longitude pairs for each pigel concentrations, although the regression line slope is about
of the SAR map at the same resolution. Third, by searching 019 and correlation coefficients are around 0.95. For April 10,
the minimum difference between both latitude/longitude array8/HRR ice concentrations are consequently underestimated
each pixel of the interpolated SSM/I grid is assigned the corrigy the ASI. For April 13 and 16 (red and blue symbols),
sponding value of the SAR map using the drop-into-the-buckgie data pairs form a banana-shaped cloud pointing to an
method. Fig. 1(a) shows the region of interest together withuaderestimation of”syvurr at high and low values and an
typical example of an AVHRR IR temperature image superinpverestimation ofCyyvurr at moderate values. This is most
posed with colocated SLA ice concentration iso-lines. The cgironounced at high AVHRR ice concentrations, where SSM/I
ored rectangles denote subareas used in the comparison. ice concentrations take values down to 20% (ASI) and 40%
SLA).

A. AVHRR Versus SSM/I Ice Concentration ( )

A compromise has been made between time difference Bf SAR Versus SSMil Ice Concentration
AVHRR and SSM/I overpasses and extent of cloud-free areasSixteen ERS-2 SAR images of orbits listed in Section Il (see
in AVHRR images when selecting overpasses for the compaiso Fig. 1(a), yellow, orange and red rectangles) are used for
ison (see Table V). For April 10 and 16, AVHRR and SSM/tomparison with SSM/I ice concentrations. Time differences
overpass times differ by less than 30 min, while for April 13 thbetween acquisition of selected ERS-2 SAR images and cor-
time difference is about 3 h. However, the considered area (sesponding SSM/I overpasses is about four hours (see Table V).
Fig. 1(a), large green rectangle) remained cloud-free during tffdtis is considerable given that ice drift is greater in this part of
day, and ice drift velocities in this area are about 5 km per d#lye Greenland Sea compared to the area shown in Fig. 1(b)—(g)
[33] so that any influence due to the time difference is neglj33]. However, the spatial overlap between preceding SSM/I
gible. overpasses and selected SAR images is not optimal and reduces

Fig. 1 shows maps of AVHRR channel 1 percent albedo atite amount of data to be used for a comparison significantly.
channel 4I7g together with the 1 knx 1 km AVHRR ice con- Therefore, data as given in Table V are used for the statistics,
centrationCayvurr in images Fig. 1(b)—(d) for April 16 (see keeping in mind possible errors due to ice drift.
Fig. 1(a), large green rectangle, for location, and Table V for Thematic SAR maps have been derived from all selected SAR
times). Both albedo an@r reveal a compact ice cover alongmages using the scheme described in Section Ill. In the second
Greenland and a diffuse ice edge. Several large to vast ice flag=p, all pixels withina 12.5 km 12.5 km grid cell belonging to
as well as some open water/thin ice areas can be identifiede ice type are counted for all ice types of Table lll. Thereafter,
There is a clear transition from discernible ice floes with IR tenthe sum of the resulting counts is calculated using the ice con-
peratures below 263 K in the northwest (pack ice) to the MIZ icentration weights in Table Il1. Finally, this sum is divided by the
the southeast bordered by ice filaments and open water. Fig. Ifmber of 1 kmx 1 km grid cells within a 12.5 knx 12.5 km
exhibits a rather uniform texture with almost no change in thgid cell to obtain the SAR ice concentratioR s .
gray level (percent albedo) between more dense ice and ice filFig. 3 shows AVHRR channelZig maps superimposed with
aments in the MIZ. Fig. 1(c) indicates a gradual increasgpf thematic SAR maps an@sy » iso-lines at 5%, 30%, 60%, and
toward open water to about 266 K in the MIZ. An abrupt chand#0% for April 10 [Fig. 3(a) and (b)] and April 16 [Fig. 3(c) and
from 266—-269 K at the transition from dense ice to the ice fifd)] (see Table V for details of dates). The SAR maps of Fig. 3(a)
aments occurs, followed by another abrupt change at the trand (b) comprise four SAR frames. The MIZ is characterized by
sition from ice filaments to open water. Accordingly, Fig. 1(djhe transition from a compact ice cover with a rather well-de-
reveals 100% ice concentration in the pack ice area—excepfiimed ice edge in the top third to an increasingly diffuse ice edge
the mentioned open water/thin ice areas. These high ice cfurther below. According to the SAR map first-year and brash
centrations extend well into the MIZ. Toward the ice edge, idee (orange and green patches; see Table Ill for colors) domi-
concentrations drop abruptly to values below 40% to 50% northate. Therefore, the ice concentration is rather high. There is ev-
west of the ice filaments and to 10% to 30% in the ice filamentglence for this in SLA and ASI ice concentrations with values

The high-resolution ice concentration map has been averagdxve 60% in these areas. The transition from a compact to a
to 12.5 kmx 12.5 km spatial resolution [Fig. 1(e)] to match thaliffuse MIZ/ice edge can be identified from SSM/I ice concen-
resolution of SSM/I ice concentrations of the ASI [Fig. 1(f)] andrations quite well by means of an increasing interisoline dis-
of the SLA [Fig. 1(g)]. By comparing Fig. 1(e) with Fig. 1(f) tance. However, only ASI ice concentration iso-lines (5%, 30%,
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and 60%) follow the SAR ice edge remarkably well. Respectiwmmpared to other SSM/I frequencies. The ability to monitor
SLA ice concentration iso-lines tend to align further away froramaller open water areas (e.g., leads, polynyas) helps to monitor
the SAR ice edge. daily the distribution of bio-geochemical processes. Also, the
The SAR maps of Fig. 3(c) and (d) comprise seven SA&mount of land-contaminated ice concentrations is reduced and
frames. Compared to Fig. 3(a) and (b) the situation has chang&g. ability to monitor coastal or flaw polynyas is improved.
According to the SAR map, considerable first-year ice has beerice concentrations derived from SSM/I 85-GHz data have al-
converted to brash ice, which dominates (green patches). S{gRdy been used for navigation [7] and, if prescribed to numer-
and AS| ice concentration take values above 60% in this aréz2! meso-scale atmospheric models, have proven to notably im-
Large areas are covered by grease ice (black patches) aligrifgVe their output [8]. Kaleschket al. [8] made a qualitative
along the ice edge. Especially in the bottom third, the MIOMPparison between SAR data, ASI, and NASA Team algo-
becomes very disrupted with alternating open water and fir§t'm (NTA) ice concentrations. The ASI represented the ice

year/brash ice bands. This is evident in the AVHRR Channelcggncentration gradient across the MIZ more realistically relative
Tiw map by means O'f alternating bands of high and I to the NTA. SLA ice concentrations have been demonstrated to

as well as in SLA and ASI ice concentration maps. Howev&iléul?trate finer details than the NTA for Antarctic sea ice [9],

. AN 0 0 . :
ice concentration iso-lines of 5% and 30% again do not ali M An enhancement of the NTA, the NASA Team 2 algorithm

too well along the SAR ice edge, and SLA ice concentrati " : .
o P ) T2), was used to mitigate certain snow property influences by
iso-lines of 5% and 30% agree less with the SAR ice edge tr?%:wkus and Cavalieri [10]. They have quantitatively intercom-

those of the ASI [compare Fig. 3(a) and (b)]. _ pared ice concentrations of Comiso Bootstrap algorithm (CBA),
Fig. 2(c)—(e) gives an example of SSM/I ice concentrationgra NT2, and AVHRR IR imagery for data of one transect
[Fig. 2(c): ASI; and Fig. 2(d): SLA] in comparison to SAR iC€jy the Sea of Okhotsk (February 4, 1995) and Ross Sea (Au-
concentration [Fig. 2(e)] for April 10, 1999 (see Table V angyst 23, 1993). The NT2 provides more accurate ice concentra-
Fig. 1(a), yellow rectangle). Size of the shown area is 200 kfiyns with much less bias than the other two algorithms: corre-
x 412.5 km. Only SSM/I pixels entirely covered by the SARation coefficients improved from 0.50 (CBA) and 0.65 (NTA)
map have been used. SLA ice concentrations [Fig. 2(c)] rer0.83 (NT2) in the Ross Sea and from 0.65 (CBA) and 0.71
main above 20% along almost the entire ice edge, while AB{TA)to 0.74 (NT2) in the Sea of Okhotsk. Average differences
[Fig. 2(d)] and particularly SAR ice concentrations Fig. 2(e) re= \ygrr — Cssyir improved from 2.2% (CBA) and 7.9% (NTA)
veal a smoother transition to open water. Respective SAR iw-—0.8% (NT2) for the Ross Sea and from7.2% (CBA) and
ages (see Fig. 3) reveal a compact ice pack in the top and.8% (NTA) to—1.1% (NT2) in the Sea of Okhotsk.
more diffuse ice pack in the bottom. Neither ASI nor SLA ice A first quantitative comparison among NTA, CBA, and SLA
concentrations confirm this change in ice concentration. Thge concentrations, i.e., of ice concentrations obtained at a spa-
orange-brown area denoting ice concentrations above 809%idd resolution of 25 kmx 25 km (NTA, CBA, 19- and 37-GHz
largest in Fig. 2(e) and smallest in Fig. 2(c). Maximum value#ata) and of 12.5 knx 12.5 km (SLA, 85-GHz data), with SAR
tend to be highest in Fig. 2(d) and lowest in Fig. 2(c). Howevedge concentrations was made for the Greenland Sea by Kern
F|g 2(C) and (d) shows agreement in the ice concentration Vdﬁj] This was done in the same manner and for the same dates as

ation in the high-concentration area. SAR [Fig. 2(e)] showsi@ this study. CBA (NTA) ice concentrations exceeded SAR ice
different pattern. concentrations on average by 13:39.5% (8.5+ 18.8%) with

Similar ice concentration maps have been calculated aif@ression and correlation coefficients of 0.552 and 0.832 (0.571

compared with each other for the other days (see Table V). TRHd 0-848). In comparison to Table VI, correlation coefficients
results are combined and statistically examined. Fig. 2(f) aft ic?rrw‘gllyl/asrrtr?aﬁelz_ﬁ: ;erﬁggféévglgiig;ﬁzsg (r:gseljflltgegltssoazesisr:g-
(g)SSLTWS scatt(_arplots @issa yerSUSCSAR'. tme SLA or ASI, average differences between SAR and SSM/I
and ASl ice concentrations are not in perfect agreeme . h " ith ble standard
with the SAR ice concentration. Regression and correlatidft c_:oncentratlons are much smaier with a comparable standar
coefficients are 0.78 and 0.84, respectively. Part of the d guiation _compared 0 CBA ._emd NTA. The focus of this paper,
. however, is the quantitative intercomparison of SLA and ASI,
form a banana-shaped cloud (blue and red symbols) pomtlggth based on SSM/I 85-GHz data. with SAR and AVHRR ice
to an overestimation (underestimation) Gk g at low and concentrations. '
high values and to an underestimation (overestimation) Ofrapie \| summarizes the statistics for comparing AVHRR
Csar at moderate ice concentrations for data of April 1Gars,s SSM/Iice concentration and SAR versus SSM/I ice con-
(Apnl 13) by the blue (red) symbols. For April 10, data pairgentration of all dates given in Table V. It contains correlation
align more closely along the line of perfect agreement. Th@efficients (CC), regression coefficients (RC), the root-mean-
overall relationship betwee@ssr and Cssw is similar for  square error (RMS), and bias (BIAS) for this regression, and
ice concentrations of both algorithms. Both reveal the ba$le number of data points usel ). Columns denoted by DIFF
correlation for April 10 (ASI: 0.92, SLA: 0.91) and the worsicontain the average differengeone standard deviation. Land-
correlation for April 13 (ASI: 0.75, SLA: 0.78). and cloud-contaminated pixels (AVHRR) or pixels not entirely
covered by the SAR maps (SAR) have been omitted.

V. DISCUSSION A. AVHRR Versus SSM/I Ice Concentration

A primary reason for using 85-GHz SSM/I data for assessing The correlation coefficients of SLA and ASI with respect to
ice concentrations is the spatial resolution improvemeAVHRR are each very strong (0.95) as well as the regression



2302 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 41, NO. 10, OCTOBER 2003

TABLE VI
CORRELATION COEFFICIENT (CC), REGRESSIONCOEFFICIENT (RC), REGRESSIONROOT-MEAN-SQUARE ERROR (RMS), AND REGRESSIONBIAS (BIAS), NUMBER
OF DATA POINTS USED (N), AND AVERAGE |CE CONCENTRATION DIFFERENCEZ ONE STANDARD DEVIATION (DIFF) OF THE COMPARISON SSM/I VERSUS
AVHRR OR SAR ICE CONCENTRATION OFALL DATES GIVEN IN TABLE V

0-100% [ CC RC  RMS [%] N  BIAS[%] DIFF [%]

SLA vs. AVHRR | 0.961 0.900 10.9 1733 3.3 3.6+ 11.6

ASIvs. AVHRR | 0.952 0.908 12.2 1732 -1.9 83+ 12.8
6 -94%

SLA vs. AVHRR | 0.774  0.658 15.3 323 21.9 -2.0 £ 18.1

ASI vs. AVHRR | 0.701 0.744 18.4 284 8.4 8.7+ 19.5

0-100% | CC __RC RMS[%] N _ BIAS[%] DIFF %]
SLA vs.SAR | 0.837 0.774 184 830 163  -44+202
ASIvs.SAR | 0.775 0.727 215 830 159  -15+237
11-89%
SLA vs. SAR | 0480 0.391 18.1 348 380  -48+238
ASI vs. SAR | 0.373 0311 194 355 42 32+260

coefficients (0.90). Average differences are acceptable for tbk SSM/I tie points to the local conditions (the AVHRR tie
SLA (3.6%) and elevated for the ASI (8.3%), each with a stapoint 71y ;. is estimated locally). SLA ice tie points reflect the
dard deviation around 12%. The RMS error of the regressienerage ice properties of the last ten days of the entire investi-
compares with the standard deviations (ads0l2%). Emery gated area (Section Ill-A) and may—to a certain degree—even
et al. [30] reported differences for a comparison of NTA andepresent the ice properties within one or both green rectangles
CBA ice concentrations({xta andCcga) with AVHRR ice (large: area |, small: area Il). In contrast, ASI tie points were
concentrations in the Fram Strait for March 24, 1989,-@f3% obtained from ARTIST experiment data (Section IlI-B) and,
and 0.8% for NTA and CBA, respectively, with a standard deviherefore, are totally independent from SSM/I data used in
ation around 5%. A comparison betwe@Rts andCcga With  this study. Consequently, if ice properties between area | and
ice concentrations obtained from LANDSAT imagery revealdd differ significantly, and/or if ice tie points represent the ice
average differences f@f, snpsaT — Cnta Of 8.6+ 7.0% and properties of area | better than those of area Il or vice versa,
for Cpanpsat — Copa Of 6.0+ 6.8% for the Bering Sea on and/or if ice properties of area | and 1l differ from ice properties
March 13 and 21, 1988 [34]. The much larger comparable stahe tie points are based upon, then difference€’ iy and
dard deviation in Table VI can be partly explained by the facts;, o as well as in the agreement betweeg,yprr andCssyir
that [30] and [34] used a 25 km 25 km grid instead of a 12.5 are likely to occur.
km x 12.5 km grid. This causes less smoothing of the ice con-A large number of grid cells shows values kv urr close
centration, a lower (higher) number of grid cells with mediunto 100%, whileCssyir takes values down to 40% (SLA) or 20%
(low and high) ice concentrations, and therefore an increaggdl). How can this be explained?
probability for higher and more variable ice concentration dif- 1) The weather filter of the ASI and the SLA weather correc-
ferences. This is of particular relevance in regions with leads,  tion might have failed. This is rather unlikely because cor-
polynyas and/or a well-defined ice edge as is the case in [30] responding AVHRR images reveal clear-sky conditions
and our work. A third comparison between AVHRR and SSM/I and therefore no cloud-influence. Also, low air temper-
ice concentrations has already been mentioned [10]. atures (common for the investigation period) favor low
Fig. 2(a) and (b) reveals that less than 20% of all ice concen-  total water vapor content. This influence on SSM/I bright-
trations lie between 6% and 94%, while about 80% are either  ness temperatures can easily be corrected in both algo-
close to 0% or 100% (se&, Table VI). The statistics might rithms.
be strongly biased toward low/high ice concentrations. There-2) AVHRR tie points could have been poorly chosen. If, for
fore, the statistics have been repeated for ice concentrations be- instance7ir ;. is too high an overestimation 6tayvurr
tween 6% and 94%. Correlation coefficients decrease to below  would result. This could happen in the MIZ, where a no-
0.8. New values for bias (BIAS) and slope of the regression co-  table amount of open water coexists with cold ice, giving
efficient (RC), as well as the increase of the RMS error by 4% to IR temperatures which might already be bel@ ;..
15% (SLA) and by 6% to 18% (ASI), point to a poor agreement  However, for thin ice exhibiting a rather high IR tem-
betweenCavurr andCssyi in this concentration range. The perature a higher value would be required 1o ;.. To
average difference remains unchangeddak; and decreases choose a value fdfir ;. that is representative of different
for Cspa, but its standard deviation increases to almost 20%. ice types across different IR temperatures is crucial and at
Standard deviations of the average ice concentration (not shown the same time very difficult. Using the albedo instead of

in Table VI) decrease from about 40% to 25%. TR is expected to be a better choice in this region.
There is notable difference in the relationship between 3) Fog or low-level clouds might have obscured open water
Cavarr and Cssyr between April 10 and April 13 and 16, areas. This would have caused lower-than surface IR

especially for ice concentrations between 20% and 80%. This temperatures and an overestimatiorCafgrr . A cOM-
can be explained by the different locations (compare Fig. 1(a), parison ofC'ayvyrr With Tigr, including the used cloud
green rectangles) and the associated different compatibility —mask (not shown), reveals that about ten grid cells with
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Cavarr = 100% are in fact caused by an insufficient
cloud mask on April 10. Using a more sophisticated
cloud mask would reduce this error.

As an example for 2) and 3) on April 13, many grid cells
haveC svurr Values above 90%, whil€ssy g takes values be-
tween 20% and 70% [red symbols, Fig. 2(a) and (b)]. Both SLA
and ASl identify a flaw polynya along the fast ice of Greenland.
This polynya can be identified in the AVHRR channel 1 percent
albedo map quite clearly (not shown). Blik takes values al-
ready slightly belowl1y ;. resulting in the observed high values
of Cavarr- Additionally, the polynya is partly covered by high

clouds not flagged by the cloud mask further increasing a po- 2)

tential overestimation of avHRR.-
At low ice concentrations disagreement is pronounced on
Aprll 13 [CASI ~ 0% but CAVHRR = 0% to 45%), CSLA =
0% to 70% but Cavurr < 20%, red symbols in Fig. 2(a), and
(b)] and on April 16 ['ast ~ 0% but Cavurr = 0% to 40%;
Cspa ~ 0% but CAVHRR = 0% to 25%, blue Symbols in
Fig. 2(a) and (b)]. In case of the ASI, agreement might be im-
proved using the good-weather threshold of 5% instead of the
bad-weather threshold of 30% (see Section IlI-B). However,
ASl ice concentrations of April 13 and 16 have been examined
for both thresholds, revealing practically no improvement. To
estimate the ice concentration in the outer part of the MIZ is dif-
ficult due to the numerous ice bands [compare Fig. 1(b) and (c)].
Here, ice might have been flooded by sea water and, therefore,
most likely exhibitsIig values close to that of open water. This
would result in an underestimation 6f\yurg - Ice edges given
by Cavarr andCssyir are not in perfect agreement. On April
13, Csp.a (not shown) reveals an ice edge where many pix
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1) Although ice concentration estimates given for ice types

in Table IIl are based on experience gained during sim-
ilar conditions in 1998, the accuracy of these values is
questionable. For brash and grease ice, ice concentration
estimates may differ from those in Table Ill. An ice con-
centration of 90% for brash ice seems to be too high for
ice filaments along the ice edge. Repeating the SAR ice
concentration analysis with a 70% concentration of brash
ice would probably reduce the disagreement for high SAR
ice concentrations. This would also be valid for discrep-
ancies at low ice concentrations [see 3) and 4) below].
The SAR image classification itself might be improved.
For April 16, for instance, to separate ice types “first-year
ice” and “brash ice” was difficult. In contrast, discrim-
inating wind-roughened open water from thin level ice
or grease ice is simple due to the large difference in
backscattering properties of these surface types. For all
days, best classification results have been obtained for
“open water.” However, due to the quite large classified
area (four SAR frames, i.e., 100 km 400 km for
April 10 and seven SAR frames, i.e., 100 kti700 km

for April 16), misclassifications can easily arise from
a change of the wind vector. For instance, the small
region of grease/level ice at the top of Fig. 3(a) and (b)
(black/red patch) could be such a misclassification. Tests
of the classification scheme described in Section III-C
revealed an error of 12% to 27%—which gives a notable
error in the SAR ice concentration.

e&t low ice concentration€’sar takes values between 0% and

are shifted by one to two pixels relative to the ice edge given 6‘39%' whileCxsr andCsr,a take values between 0% and 90%

CAvHRR, In both directions. This give§'avgrr = 0% where
Cssyr 2 0% and vice-versa. The corresponding mapgafs;
(not shown) reveals a more systematic shift towardtheurr 3)
ice edge, i.e., the ASI tends to underestimate ice concentrations
along the ice edge.

B. SAR Versus SSM/| Ice Concentration

Correlation (regression) analysis of SSM/l and SAR ice con-
centrations yield coefficients of 0.84 and 0.78 (0.77 and 0.73)4)
for SLA and ASI, respectively (see Table VI). Markeas al.

[35] investigated ice concentrations obtained with the enhanced
NASA Team algorithm (NT2, [10]) with ice concentrations de-
rived using a different automatic SAR ice discrimination algo-
rithm (SICA, [36]). They reported average correlation coeffi-
cients of 0.66 and 0.87 for the central Arctic and the northern
Fram Strait region, respectively, for September 1996. The re-
gions investigated in their study, however, were covered by a
minimum of 40% sea ice and, at that time of the year, exhibit 5)
different surface properties compared to the data used in this
study. Therefore, a direct comparison is not appropriate.

The average differend@sar — Css IS acceptable for both
SLA (—4.4%) and ASI (-1.5%); however, the associated stan-
dard deviations are elevated around 21%. The RMS error of
the regression compares with the standard deviatierz(;).

Both ice concentration algorithms tend to both under- and over-
estimateCsar for almost the entire ice concentration range. In
particular, values of’sr between 60% and 100% coexist with
values ofCss1 between 0% and 100% and 6%, between
20% and 100%. How can this be explained?

and 0% and 80%, respectively. How can this discrepancy be
explained?

Again, ice concentration estimates givenin Table 11l could
have caused some of these discrepancies [see 1) above].
Particularly, classifying ice filaments as brash ice with
90% ice concentration could have caused many of the
symbols below the line of perfect agreement in Fig. 2(f)
and (g).

Again, misclassifications could have caused some of the
discrepancies [see 2)]. For instance, thematic SAR maps
of April 13 (not shown) and April 10 and 16 reveal one
major difference. A much larger area of the MIZ (not
along the ice edge but in the interior) was classified as
grease ice on April 13, while it was classified as brash
ice, first-year ice, or level ice on April 10 and 16. These
grease ice areas are a likely sourced@nr being much
smaller thanCas; andCsp,a .

SSM/I ice concentrations could still be biased by the
weather influence. On April 16, surface wind speed,
atmospheric water vapor content, and cloud liquid water
content were all quite high in the investigated area [see
Fig. 3(c) and (d)]. The weather filter (ASI) as well as
the weather influence correction (SLA) seem not to be
sufficient because both images [Fig. 3(c) and (d)] reveal
an SSM/I ice edge located notably further to the west
compared to the SAR ice edge. This has possibly caused
many of the blue symbols above the line of perfect
agreement in Fig. 2(f) and (g). The weather influence on
April 10 and 13 was significantly weaker.
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So far, the statistics have been discussed for the entire gigning estimated ice concentrations, the SAR ice concentra-
concentration range. Because many data are situated at low/igh (Csr) has been calculated. The comparisons reveal strong
ice concentrations (compare Section V), the statistics have begjteement, but not as strong as AVHRR comparisons to ASI or
repeated for ice concentrations between 11% and 89%, i.e.,{p_rA_ Again, by Omitting |Ow/h|gh ice concentrations and con-
all Csar and Cssy data pairs of this range. The results ar@ning the analysis to ice concentrations between 11% and 89%,
also shown in Table VI and reflect the rather poor agreement fgfs a5reement becomes poor.
this concentration range already visible from Fig. 2(f) and (g). Previously, SLA and ASI have been evaluated only qualita-

Correlation and regression coefficients are below 0.5 for bolrit}ely with independent data [8], [9]. To the best of the authors’

algorithms. knowledge, this is the first time that SLA and ASl ice concentra-

In the part of the Greenland Sea relevant for the compar- o :
ison between SAR and SSM/I ice concentrations, ice drift alongns are gqmpared .quanutatlwely with AVHR RIR temperature
d classified SAR imagery ice concentrations. Both SLA and

Greenland can amount up to 20 km per day [33] and might ha¥ X ) o
biased the results given in Table VI. For this reason, the compAr2! have to be used with care for ice analysis since they each

ison has been repeated for SSM/I overpasses with a maximif¢ @ different approach to address the significant weather in-
time difference to SAR image acquisition of less than 1 h. THilence associated with 85-GHz SSM/I data compared to other
resulting statistics reveals no improvement, neither for the ent®M/I data. The performance of both algorithms is similar for
ice concentration range nor for the range 11% to 89%. Conséear-sky (AVHRR) and cloudy (SAR) cases, which can be ex-
guently, ice drift may not have influenced the comparison. pected if the respective schemes used to mitigate the weather
influence work correctly. However, at low ice concentrations,
the SLA tends to overestimate ice concentrations, while the ASI
VI. SUMMARY AND CONCLUSION does the opposite. The SLA needs to be improved by using more

Early spring Greenland Sea sea ice concentration maps B%QHSti_C atmc_)sph(_aric da.ta for t he yvegther influence correctip n
tained with the ARTIST Sea Ice algorithm (ASI) and the SE,Rr,by discarding p|>fels with ahlgh_llqwd Water conFent. Thereis
LION algorithm (SLA) with a grid cell size of 12.5 knx 12.5 gwde_nce th_at ASl ice concentraﬂon;_are biased in areas Where
km for April 10, 13, and 16, 1999, have been presented. Both aﬁ.pomts fail to represgnt local .c.ondltlons. In c_ontrast, SLA tie
gorithms utilize the 85-GHz channels of the Special Sensor I\,ﬂp'nts reflect average ice conditions of a certain, selectable pe-

crowave/lmager. The ASI uses the brightness temperature BSQ’ reducing such bias. More data have to be investigated to

larization difference, while the SLA uses the normalized bright°®e" these issues satisfactorily.

ness temperature polarization difference (also called polariza-The tie point selection required to obtaifvurr, as well

tion ratio). Using 85-GHz data requires a special considera® classmcat!c_)n, _colocatlor!, and assignment of ice concentra-
ns to classified ice types in SAR imagery, also has high error

tion of the weather influence (change in brightness tempettétQ

ture caused by change in roughness of the sea surface anﬁ%gntial. Improvements that would enhance reliability of a sim-

absorption/emission in the atmosphere due to water vapor Affg comparison include: 1) applying a more sophisticated tech-

cloud liquid water), which is much larger compared to low-fred'due to obtain ice concentrations from AVHRR imagery; 2) op-

guency SSM/I data. ASI tie points include this weather ianJ—'m'Z'!}g StAR f|ce cor;cefntranors est_lmat_mn by pefrffortmlgg thte
ence empirically and therefore no explicit weather correctio%aSSI Ication Irame-by-lrame 1o minimize any efiects due 1o

is required. SLA tie points reflect almost clear-sky conditiong.h"jmge_S in wind vecior, _a_nd t_)y a55|gn|.ng more re_gll_snc Ice con-
Therefore, 85-GHz SSM/I brightness temperatures are expl entrations to the classified ice types; and 3) utilizing a much

itly corrected for the weather influence using atmospheric d f’a[_?ﬁr d:(tjaset. d Mi S ing Radi AMSR
taken either from low-frequency SSM/I data or from Numer- € Advance icrowave Scanning Radiometer ( )

ical Weather Prediction model data for radiative transfer calcapoard EOS-AQUA wil gllpw improved sea lce analysis com-
lations. pared to SSM/I. The main improvement will be due to the finer

atial resolution of used AMSR channels: 18.7 and 36.5 GHz.

SLA and ASl ice concentrations have been compared with i
concentrations derived from NOAA-15 AVHRR data and clas—%ey have an FOV of 27 knx 16 km and 14 kmx 8 km at a

sified ERS-2 SAR data. Channels 1, 2, and 4 are used to egﬁ_mpling distance of 10 km. Since radi.ati_ve properties of the
mate tie points for each AVHRR scene to be used to estimate face and the atmosphere are rather similar at 85 and 89 GHz,

ice concentration@avurgr) from AVHRR IR temperature. For Zrlljscsn : enefllt frgr(r;\';hg EnerAfle) atial res?lutl(cj)_n to f theg i'GHZ
cloud-free areas, the comparison betwétr prr andCsya channels ( : 6 knx 4 km, sampling distance 5 km).

as well asCayirr andCagr reveals a strong positive Corre_A first attempt toward this direction has already been made by

lation (about 0.95) with corresponding linear regression valuégéleSChke [37F This would produce 12.5 knx 12.5 km ice

Confining the analysis to ice concentrations between 6% to 9Mncgngabt|ogl\r;1§gs (up to thf{elflgmlfilda"):j flr:olrg SSMl ”data5
generates significantly weaker correlation and regression vali@gu'gek Y spe}[cet(_:ra ' Al\/isag dat ) ?I_Shwe as

and with significantly larger values for RMS error and regre (M x> KM Ice concentration maps ( r da a). These can
sion bias. serve 1) as input for comparison of modeling efforts and 2) as

. i . - . independent data for evaluation of other spaceborne sensors
Slgteen ERS-2 SAR. Images have been classified using a ?#onitoring seaice (e.g., ERS, ENVISAT, and QuikSCAT).
pervised approach. Five classes (open water, level ice, grease

ice, brash ice, and first-year ice) have been identified. By as2See also http://www.seaice.de.
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