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Abstract: A linked list approach has been devel-
oped to efficiently calculate texture features based
on cooccurrence probabilities. The commonly used
matrix based approach (the grey level cooccurrence
matrix or GLCM) requires an unreasonable amount
of computation, especially for image segmentation
purposes. The linked list approach calculates ex-
actly the same results while significantly decreasing
the time to both generate the cooccurrence data
and calculate the texture features. The full dy-
namic range may be maintained without the dra-
matic increase in computation time that would be
experienced by the GLCM approach, however, the
behaviour of the statistics changes with different
grey level quantizations. This paper describes the
implementation of a linked list algorithm, demon-
strates its applicability, and investigates the validity
of the cooccurrence texture features.

I. INTRODUCTION

Texture is an important part of image interpretation.
A common approach to texture analysis uses grey level
cooccurrence matrix (GLCM) texture features [3]. Al-
though this method has been widely applied to remote
sensing image interpretation, it has restrictions. Shokr
suggested that a linked list approach may be better
suited to generating cooccurrence features than a ma-
trix approach [5]. The primary focus of our paper is to
describe a grey level cooccurrence linked list (GLCLL)
and to provide insight into its performance.

II. ALGORITHM DETAILS
A. GLCM Implementation

A GLCM contains the conditional joint probabilities of
all pairwise combinations of grey levels given two pa-
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represents the number of occurrences of grey levels g;
and g; and M is the total possible number of all grey
level pairs within a window given a particular (4,8).

Typical grey level shift invariant GLCM texture statis-
tics are presented in Fig. 1. These statistics extract
three fundamental characteristics from the cooccur-
rence matrices. Moments about the main diagonal in-
dicate the degree of smoothness of the texture. Dissim-
ilarity (DIS), contrast (CON), inverse difference (INV),
and inverse difference moment (IDM) are statistics of
this type. Another fundamental characteristic of the
cooccurrence matrix is the uniformity of its entries.
The greater the homogeneity, the fewer the number
of grey level pairs representing the texture. Maxi-
mum probability (MAX), uniformity (UNI), and en-
tropy (ENT) describe homogeneity. The final statistic,
correlation (COR), describes the correlation between
the grey level pairs (g;,9;). Note that two of the statis-
tics (INV and IDM) have been normalized to truly re-
flect the smoothness characteristic. The normalized
statistics consistently have a higher classification rate
and larger inter-class distances than the unnormalized
versions.

In practice, the computational demands of the GLCM
texture feature extraction are reduced in a number of
ways [2, 5]. The image data is typically quantized
from eight bits down to as few as four or five bits.
This reduces the size of the GLCMs and causes a dra-
matic decrease in computational time. Quantization
has the potential to remove pertinent information from
the image. What happens to the GLCM features if
the full dynamic range is used? The number of statis-
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Fig. 1: GLCM texture statistics.

tics and/or the number of (4,6) pairs must be limited
so that all textures features are calculated within a
reasonable duration. Deciding which statistics are the
most informative for remotely sensed imagery has been
the focus of research efforts. A fixed window size is
common when implementing the GLCM, however, if
the window contains multiple textures, the cooccur-
rence measures may become confused. Also, this inher-
ently assumes that each texture has the same resolu-
tion. For any image segmentation problem, the GLCM
approach is not computationally reasonable using fully
overlapped windows.

B. GLCLL Implementation

One method to improve performance when using sparse
matrices is to use a linked list approach. Implement-
ing a grey level cooccurrence linked list (GLCLL) has
proven to be very efficient because it does not allo-
cate storage for those grey level pairs that have zero
probability, unlike the GLCM approach. Both meth-
ods generate the identical texture features.

The linked lists are set up in the following manner.
Each node is a structure containing the two cooccur-
ring grey levels, their probability of cooccurrence, and
a link to the next node on the list. The linked list is
kept sorted based on the cooccurring grey levels. An
example of such a sorted list would be {(1,2), (1,4),
(L5), (3,1) (3.3), (3.4), (3.7), (40), .. }. A new grey
level pair (gi, g;) is included in a linked list by finding
the first instance of g; and then proceeding from that
point to find g;. If the pair is found, then its probabil-
ity is incremented; otherwise, a new node is added in
a sorted fashion. In the traditional GLCM approach,
the matrix is symmetric [3]. This would undermine the
computational advantages of the linked list approach,
hence, the data is stored asymmetrically.

When applying this technique to an image, the GLCLLs

Case Total Order
GLCM w/o updating O(n?) + 0(s%g?)
GLCM w/ updating O(n)+ O(s?g%)
GLCLL w/o updating | O(n®N) + O(s*N)
GLCLL w/ updating O(nN) + O(sQN)

Fig. 2: Order of cooccurrence texture extraction methods.

are created when the window is at the top left hand
corner. After the features are calculated, the window
is moved one column to the right. Instead of recalcu-
lating entire GLCLLs, the current GLCLLs are sim-
ply updated. The pairs of grey levels introduced by
the new column are inserted into the GLCLLs. The
pairs associated with the column that the window just
passed over are subtracted from the GLCLLs. If the
subtraction causes the grey level pair to have a zero
probability, then that node is removed. The window
moves in a zig-zag fashion until the entire image has
been covered. This method will be referred to as “up-
dating”.

III. METHODS AND RESULTS

In order to directly evaluate sea ice imagery, subim-
ages have been extracted from a validated Limex C-
band HH image [4]. This image has three dominant ice
classes: brash ice, open water, and first year smooth
ice. Two types of evaluations are presented. First,
completion times of different scenarios are compared.
Second, classification testing is performed to determine
the effect of using different grey level quantization lev-
els. Classifications are done using a supervised pairwise
Fisher linear discriminant.

A. Computational Speed Comparisons

Four different scenarios are compared: (1) the GLCM
without updating (traditional approach), (2) the GLCM
with updating, (3) the GLCLL approach without up-
dating, and (4) the GLCLL approach with updating.

Theoretical orders of the comparative computational
speeds are presented in Fig. 2. Computational speeds
are dependent on the window dimension (n), the num-
ber of statistics (s), and the number of grey levels (g).
The GLCLLs are also dependent on the length of the
linked lists (V) which is equal to the total number of
distinct grey level pairs found in the window. This
value is not only dependent on g but also the texture
characteristics. The computational requirements are
split into two aspects: the generation and the calcula-
tion of the statistics.

A 32x32 image of brash ice is extracted from the Limex
image. Window sizes {5, 10, 20} and quantized grey



No. GLCM | GLCM | GLCLL | GLCLL
Grey w/o w/ w/o w/
Size | Level | update | update | update update
5 full 10 9.9 0.0059 0.0052
10 full 10 9.8 0.033 0.024
20 full 9.9 9.8 0.26 0.12
5 128 2.5 2.4 0.0059 0.0052
10 128 2.5 2.4 0.032 0.024
20 128 2.5 2.5 0.25 0.11
5 64 0.62 0.61 0.0057 0.0051
10 64 0.63 0.61 0.030 0.022
20 64 0.64 0.62 0.21 0.089

Fig. 3: Completion times (seconds per window sample) to cal-
culate statistics.

levels {full, 128, 64} are used. A total of 28 texture fea-
tures are determined using {6 = 1; 8 = 0,45, 90, 135;
statistics = MAX, UNI, ENT, DIS, CON, INV, IDM}.
The increase in speed is impressive, as presented in
Fig. 3. The time per sample of the fastest approach
(GLCLL with updating) is always a fraction of the
slowest approach (GLCM without updating).

The results match the theoretical orders well. At a
fixed window size, doubling the number of grey levels
increases the completion time of the GLCM approaches
by a factor of four. Calculating the GLCM with up-
dating only improves the computational speed slightly,
thus the computational speed of the GLCM approaches
is highly dependent on determining the statistics. Mod-
ifying the window size for the GLCM approaches has
little effect on the computational requirements. In
contrast, increasing the window size for a fixed grey
level increases the GLCLL completion time because the
larger windows have more distinct grey level pairs and
this increases the length of the linked lists. The num-
ber of grey levels influences the computation times of
the GLCLL approach since quantized grey levels short-
ens the linked lists. Finally, updating the GLCLLs is
advantageous, especially with larger window sizes.

B. Classification Testing

Sixty-four and 100 8x8 samples each of brash ice, first
year smooth ice, and water are selected from the Limex
image to represent the training and classification data
sets. Sixteen texture features are selected using {d = 1;
8 = 0,90; statistics = MAX, UNI, ENT, DIS, CON,
INV, IDM, COR}. In order to determine the effect of
quantization on the classification, grey levels {full, 128,
64, 32, 16 } are used. The classification accuracy of the
testing is presented in Fig. 4. Surprisingly, the grey
level quantization has little effect on the classification
ability. A contributing factor could be the inherent
distinctiveness of the three texture classes. Another
factor is provided in Section IV following investigation

No. Grey Training Test
Levels Results (%) | Results (%)

full 98.4 89.7

128 98.4 89.3

64 98.4 86.0

32 96.4 89.0

16 97.4 89.0

Fig. 4: Classification accuracy for different grey level quantiza-
tions.

Grey
Levels | MAX UNI ENT DIS CON INV IDM COR
full 62 65 67 91 91 91 91 55
128 71 77 78 91 90 91 91 56
64 77 87 87 91 88 91 89 56
32 83 90 92 91 89 92 90 60
16 87 90 91 91 84 91 84 70

Fig. 5: Classification accuracy of individual statistics based on
test data across different grey level quantizations.

of the classification success of the individual statistics.

Fig. 5 represents the classification percentage of the
test data for individual statistics given {6 = 1; 6 =
0,90}. The homogeneity features (MAX, UNI, and
ENT) all have significantly increasing classification oc-
curring with coarser quantization. Quantization is re-
quired for these features so that a reasonable number
of grey level pairs are repeated within the same win-
dow to provide a good estimate of that statistic. With
full dynamic range, few grey level pairs are repeated
within the same window and a high state of entropy
exists in the cooccurrence data. Discrimination is dif-
ficult since all classes tend to a near maximum state
of entropy generating clusters that overlap in the fea-
ture space. As aresult, these measures actually rely on
the quantization in order to be effective. The smooth-
ness statistics (DIS, CON, INV, and IDM) tend to de-
crease classification accuracy with increasing quanti-
zation. Quantization tends to smooth the data pre-
venting the smoothness statistics from performing op-
timally. Compared to the other statistics, COR is quite
ineffective, but tends to improve with coarser quanti-
zation.

Cooccurrence texture features tend to be highly cor-
related. In this study, the average correlation across
all selected texture features for each class significantly
increases with coarser quantization. A high correla-
tion between the features is expected for DIS, CON,
INV, and IDM since they are all functionally the same.
MAX, UNI, and ENT also display the same type of be-
haviour. COR did not show any correlated behaviour
with any other statistics. Thus, only one of (DIS, CON,
INV, IDM) and only one of (MAX, UNI, ENT) and



perhaps COR should be used as statistics. This is es-
sentially the same conclusion that Baraldi and Parmig-
glani [1] determine.

IV. DISCUSSION AND CONCLUSIONS

The linked list approach for the generation of cooccur-
rence image data is greatly preferred to the traditional
matrix approach since it calculates texture features or-
ders of magnitude faster. However, in general, genera-
tion of cooccurrence data does not lend itself to rapid
feature extraction. The full dynamic range of the im-
age can be utilized using GLCLLs, with only a modest
increase in computation time. The degree of this in-
crease is texture dependent.

Textures that have noticeable but subtle differences at
full dynamic range may become statistically similar un-
der coarse quantization. This may be very important
when classifying remotely sensed imagery. A SAR sea
ice image often contains many different types of ice
types as well as transitions between these ice types
and quantizing the imagery can remove the subtle dif-
ferences between two similar ice classes that must be
segmented. It would be much safer and consistent if
the full dynamic range is used for feature extraction.

The classification studies reveal that grey level quan-
tization does not have a significant effect on the class
assignment accuracy using all the available statistics
and the given data set. This is probably due to a
trade-off in the effectiveness of the individual statistics
with changing quantization. At full dynamic range,
homogeneity statistics are poor and smoothness statis-
tics are quite strong. At coarse quantizations, smooth-
ness statistics are still quite good and the homogeneity
statistics have increased their effectiveness.

A major stumbling block is the difficulty selecting win-
dow sizes and pixel separations to uniquely identify
a particular class. Also, different textures within the
same image often have different spatial resolutions. Pick-
ing multiple window sizes and multiple pixel separa-
tions may solve this problem and generate a robust
feature set, however, the computational cost would in-
crease dramatically. If a window is too large, too much
blurring between boundaries can occur and the com-
putational times are higher. Smaller windows tend to
be more erroneous but generate better accuracy near
boundaries.

There is a possibility that only limited information can
be derived from the cooccurrence data for the pur-
poses of interpreting SAR sea ice imagery. The impor-
tant features are based on two sources of information:

smoothness and homogeneity. We are in the process of
comparing the features generated by the cooccurrence
probabilities to features generated by digital filtering
techniques. We expect that similar improved statistics
can be generated in a more computationally favourable
manner using such methods.
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