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rameters: interpixel distance (�) and interpixel orienta-tion (�). Following Barber and LeDrew [2], the proba-bility measure is de�ned by Pr(x) = fCijj(�; �)g whereCij (the GLCM) is de�ned by Cij = Pij= MXi;j=1Pij: Pijrepresents the number of occurrences of grey levels giand gj and M is the total possible number of all greylevel pairs within a window given a particular (�,�).Typical grey level shift invariant GLCM texture statis-tics are presented in Fig. 1. These statistics extractthree fundamental characteristics from the cooccur-rence matrices. Moments about the main diagonal in-dicate the degree of smoothness of the texture. Dissim-ilarity (DIS), contrast (CON), inverse di�erence (INV),and inverse di�erence moment (IDM) are statistics ofthis type. Another fundamental characteristic of thecooccurrence matrix is the uniformity of its entries.The greater the homogeneity, the fewer the numberof grey level pairs representing the texture. Maxi-mum probability (MAX), uniformity (UNI), and en-tropy (ENT) describe homogeneity. The �nal statistic,correlation (COR), describes the correlation betweenthe grey level pairs (gi,gj). Note that two of the statis-tics (INV and IDM) have been normalized to truly re-
ect the smoothness characteristic. The normalizedstatistics consistently have a higher classi�cation rateand larger inter-class distances than the unnormalizedversions.In practice, the computational demands of the GLCMtexture feature extraction are reduced in a number ofways [2, 5]. The image data is typically quantizedfrom eight bits down to as few as four or �ve bits.This reduces the size of the GLCMs and causes a dra-matic decrease in computational time. Quantizationhas the potential to remove pertinent information fromthe image. What happens to the GLCM features ifthe full dynamic range is used? The number of statis-



MAX: maxfCijg8(i; j)UNI:Pgi=1Pgj=1 C2ijENT: �Pgi=1Pgj=1 Cij logCijDIS:Pgi=1Pgj=1 Cij ji� jjCON:Pgi=1Pgj=1 Cij(i� j)2INV:Pgi=1Pgj=1 11+ji�jj=g CijIDM:Pgi=1Pgj=1 11+(i�j)2=g2CijCOR:Pgi=1Pgj=1 (i��x)(j��y)Cij�x�yFig. 1: GLCM texture statistics.tics and/or the number of (�; �) pairs must be limitedso that all textures features are calculated within areasonable duration. Deciding which statistics are themost informative for remotely sensed imagery has beenthe focus of research e�orts. A �xed window size iscommon when implementing the GLCM, however, ifthe window contains multiple textures, the cooccur-rence measures may become confused. Also, this inher-ently assumes that each texture has the same resolu-tion. For any image segmentation problem, the GLCMapproach is not computationally reasonable using fullyoverlapped windows.B. GLCLL ImplementationOne method to improve performance when using sparsematrices is to use a linked list approach. Implement-ing a grey level cooccurrence linked list (GLCLL) hasproven to be very e�cient because it does not allo-cate storage for those grey level pairs that have zeroprobability, unlike the GLCM approach. Both meth-ods generate the identical texture features.The linked lists are set up in the following manner.Each node is a structure containing the two cooccur-ring grey levels, their probability of cooccurrence, anda link to the next node on the list. The linked list iskept sorted based on the cooccurring grey levels. Anexample of such a sorted list would be f(1,2), (1,4),(1,5), (3,1) (3,3), (3,4), (3,7), (4,0), . . . g. A new greylevel pair (gi; gj) is included in a linked list by �ndingthe �rst instance of gi and then proceeding from thatpoint to �nd gj. If the pair is found, then its probabil-ity is incremented; otherwise, a new node is added ina sorted fashion. In the traditional GLCM approach,the matrix is symmetric [3]. This would undermine thecomputational advantages of the linked list approach,hence, the data is stored asymmetrically.When applying this technique to an image, the GLCLLs

Case Total OrderGLCM w/o updating O(n2) +O(s2g2)GLCM w/ updating O(n) +O(s2g2)GLCLL w/o updating O(n2N) + O(s2N)GLCLL w/ updating O(nN) +O(s2N)Fig. 2: Order of cooccurrence texture extraction methods.are created when the window is at the top left handcorner. After the features are calculated, the windowis moved one column to the right. Instead of recalcu-lating entire GLCLLs, the current GLCLLs are sim-ply updated. The pairs of grey levels introduced bythe new column are inserted into the GLCLLs. Thepairs associated with the column that the window justpassed over are subtracted from the GLCLLs. If thesubtraction causes the grey level pair to have a zeroprobability, then that node is removed. The windowmoves in a zig-zag fashion until the entire image hasbeen covered. This method will be referred to as \up-dating". III. METHODS AND RESULTSIn order to directly evaluate sea ice imagery, subim-ages have been extracted from a validated Limex C-band HH image [4]. This image has three dominant iceclasses: brash ice, open water, and �rst year smoothice. Two types of evaluations are presented. First,completion times of di�erent scenarios are compared.Second, classi�cation testing is performed to determinethe e�ect of using di�erent grey level quantization lev-els. Classi�cations are done using a supervised pairwiseFisher linear discriminant.A. Computational Speed ComparisonsFour di�erent scenarios are compared: (1) the GLCMwithout updating (traditional approach), (2) the GLCMwith updating, (3) the GLCLL approach without up-dating, and (4) the GLCLL approach with updating.Theoretical orders of the comparative computationalspeeds are presented in Fig. 2. Computational speedsare dependent on the window dimension (n), the num-ber of statistics (s), and the number of grey levels (g).The GLCLLs are also dependent on the length of thelinked lists (N ) which is equal to the total number ofdistinct grey level pairs found in the window. Thisvalue is not only dependent on g but also the texturecharacteristics. The computational requirements aresplit into two aspects: the generation and the calcula-tion of the statistics.A 32x32 image of brash ice is extracted from the Limeximage. Window sizes f5, 10, 20g and quantized grey



No. GLCM GLCM GLCLL GLCLLGrey w/o w/ w/o w/Size Level update update update update5 full 10 9.9 0.0059 0.005210 full 10 9.8 0.033 0.02420 full 9.9 9.8 0.26 0.125 128 2.5 2.4 0.0059 0.005210 128 2.5 2.4 0.032 0.02420 128 2.5 2.5 0.25 0.115 64 0.62 0.61 0.0057 0.005110 64 0.63 0.61 0.030 0.02220 64 0.64 0.62 0.21 0.089Fig. 3: Completion times (seconds per window sample) to cal-culate statistics.levels ffull, 128, 64g are used. A total of 28 texture fea-tures are determined using f� = 1; � = 0; 45; 90; 135;statistics = MAX, UNI, ENT, DIS, CON, INV, IDMg.The increase in speed is impressive, as presented inFig. 3. The time per sample of the fastest approach(GLCLL with updating) is always a fraction of theslowest approach (GLCM without updating).The results match the theoretical orders well. At a�xed window size, doubling the number of grey levelsincreases the completion time of the GLCM approachesby a factor of four. Calculating the GLCM with up-dating only improves the computational speed slightly,thus the computational speed of the GLCM approachesis highly dependent on determining the statistics. Mod-ifying the window size for the GLCM approaches haslittle e�ect on the computational requirements. Incontrast, increasing the window size for a �xed greylevel increases the GLCLL completion time because thelarger windows have more distinct grey level pairs andthis increases the length of the linked lists. The num-ber of grey levels in
uences the computation times ofthe GLCLL approach since quantized grey levels short-ens the linked lists. Finally, updating the GLCLLs isadvantageous, especially with larger window sizes.B. Classi�cation TestingSixty-four and 100 8x8 samples each of brash ice, �rstyear smooth ice, and water are selected from the Limeximage to represent the training and classi�cation datasets. Sixteen texture features are selected using f� = 1;� = 0; 90; statistics = MAX, UNI, ENT, DIS, CON,INV, IDM, CORg. In order to determine the e�ect ofquantization on the classi�cation, grey levels ffull, 128,64, 32, 16 g are used. The classi�cation accuracy of thetesting is presented in Fig. 4. Surprisingly, the greylevel quantization has little e�ect on the classi�cationability. A contributing factor could be the inherentdistinctiveness of the three texture classes. Anotherfactor is provided in Section IV following investigation

No. Grey Training TestLevels Results (%) Results (%)full 98.4 89.7128 98.4 89.364 98.4 86.032 96.4 89.016 97.4 89.0Fig. 4: Classi�cation accuracy for di�erent grey level quantiza-tions.GreyLevels MAX UNI ENT DIS CON INV IDM CORfull 62 65 67 91 91 91 91 55128 71 77 78 91 90 91 91 5664 77 87 87 91 88 91 89 5632 83 90 92 91 89 92 90 6016 87 90 91 91 84 91 84 70Fig. 5: Classi�cation accuracy of individual statistics based ontest data across di�erent grey level quantizations.of the classi�cation success of the individual statistics.Fig. 5 represents the classi�cation percentage of thetest data for individual statistics given f� = 1; � =0; 90g. The homogeneity features (MAX, UNI, andENT) all have signi�cantly increasing classi�cation oc-curring with coarser quantization. Quantization is re-quired for these features so that a reasonable numberof grey level pairs are repeated within the same win-dow to provide a good estimate of that statistic. Withfull dynamic range, few grey level pairs are repeatedwithin the same window and a high state of entropyexists in the cooccurrence data. Discrimination is dif-�cult since all classes tend to a near maximum stateof entropy generating clusters that overlap in the fea-ture space. As a result, these measures actually rely onthe quantization in order to be e�ective. The smooth-ness statistics (DIS, CON, INV, and IDM) tend to de-crease classi�cation accuracy with increasing quanti-zation. Quantization tends to smooth the data pre-venting the smoothness statistics from performing op-timally. Compared to the other statistics, COR is quiteine�ective, but tends to improve with coarser quanti-zation.Cooccurrence texture features tend to be highly cor-related. In this study, the average correlation acrossall selected texture features for each class signi�cantlyincreases with coarser quantization. A high correla-tion between the features is expected for DIS, CON,INV, and IDM since they are all functionally the same.MAX, UNI, and ENT also display the same type of be-haviour. COR did not show any correlated behaviourwith any other statistics. Thus, only one of (DIS, CON,INV, IDM) and only one of (MAX, UNI, ENT) and



perhaps COR should be used as statistics. This is es-sentially the same conclusion that Baraldi and Parmig-giani [1] determine.IV. DISCUSSION AND CONCLUSIONSThe linked list approach for the generation of cooccur-rence image data is greatly preferred to the traditionalmatrix approach since it calculates texture features or-ders of magnitude faster. However, in general, genera-tion of cooccurrence data does not lend itself to rapidfeature extraction. The full dynamic range of the im-age can be utilized using GLCLLs, with only a modestincrease in computation time. The degree of this in-crease is texture dependent.Textures that have noticeable but subtle di�erences atfull dynamic range may become statistically similar un-der coarse quantization. This may be very importantwhen classifying remotely sensed imagery. A SAR seaice image often contains many di�erent types of icetypes as well as transitions between these ice typesand quantizing the imagery can remove the subtle dif-ferences between two similar ice classes that must besegmented. It would be much safer and consistent ifthe full dynamic range is used for feature extraction.The classi�cation studies reveal that grey level quan-tization does not have a signi�cant e�ect on the classassignment accuracy using all the available statisticsand the given data set. This is probably due to atrade-o� in the e�ectiveness of the individual statisticswith changing quantization. At full dynamic range,homogeneity statistics are poor and smoothness statis-tics are quite strong. At coarse quantizations, smooth-ness statistics are still quite good and the homogeneitystatistics have increased their e�ectiveness.A major stumbling block is the di�culty selecting win-dow sizes and pixel separations to uniquely identifya particular class. Also, di�erent textures within thesame image often have di�erent spatial resolutions. Pick-ing multiple window sizes and multiple pixel separa-tions may solve this problem and generate a robustfeature set, however, the computational cost would in-crease dramatically. If a window is too large, too muchblurring between boundaries can occur and the com-putational times are higher. Smaller windows tend tobe more erroneous but generate better accuracy nearboundaries.There is a possibility that only limited information canbe derived from the cooccurrence data for the pur-poses of interpreting SAR sea ice imagery. The impor-tant features are based on two sources of information:
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