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Abstract

As an alternative to the wavelet, Gabor function has been used as
an efficient representation of two dimensional signals. We are in-
terested in BayesShrink techniques for image denoising, and have
shown in our previous work that BayesShrink Ridgelet performs
better than VisuShrink Ridgelet and VisuShrink Wavelet. In this
paper, a dyadic Gabor filter bank is combined with BayesShrink
method for image denoising. In the proposed method, the noisy
image is decomposed to different channels in several levels by a
dyadic Gabor filter bank. To recover the image, the corrupting
noise is removed by applying the proposed BayesShrink method
on the noisy Gabor coefficients. The notse variance is estimated
in Gabor domain and the estimated noise is then used to dynam-
ically calculate an individual threshold for each spatio-frequency
channel. Finally denoised coefficients are transformed back to
reconstruct the image.

Keywords — BayesShrink; VisuShrink; Gabor; Wavelet;
denoising.
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Noise undesirably corrupts the image by perturba-
tions which are not related to the scene under study
and ambiguates the underlying signal relative to its ob-
served form. For this reason noise elimination is a main
concern in computer vision and image processing. The
goal of denoising is to remove the noise and retain im-
portant signal features as much as possible. To achieve
this goal, traditional approaches use linear processing
such as Wiener filtering [1]. In the presence of addi-
tive noise, linear filters, which consist of convolving the
image with a constant matrix to obtain a linear com-
bination of neighborhood values, can produce a blurred
and smoothed image with poor feature localization and
incomplete noise suppression. To overcome these short-
comings, nonlinear filters have been proposed. Much
research has recently focused on signal denoising us-
ing nonlinear techniques in the setting of additive white
Gaussian noise. One of the most important denois-
ing techniques is wavelet based denoising [2], [3]. The
wavelet transform separates the signal and noise; as a
result it can be used to remove the noise while pre-
serving the signal characteristics. Researchers have em-
ployed two different approaches to nonlinear wavelet-
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Figure 1: Gabor Filter in Spatial Domain

ing function takes the argument and shrinks it toward
zero by the threshold. Both approaches are nonlinear
and operate on one wavelet coefficient at a time. Dif-
ferent denoising methods have been proposed for signal
denoising via wavelet. BayesShrink Wavelet image de-
noising has been recently introduced [6] as an alterna-
tive to the VisuShrink Wavelet image denoising to im-
prove the wavelet based denoising performance. In this
paper BayesShrink Gabor image denoising is introduced
and the results are compared with those of VisuShrink
Wavelet method. The following Section explains Ga-
bor function and VisuShrink thresholding technique for
image denoising. Proposed method is presented in Sec-
tion four. In Section five the results of the proposed
method and the VisuShrink Wavelet technique are com-
pared and the paper is concluded in Section six.

2 Gabor Function

A typical Gabor filter in the spatial domain is de-
picted in Fig. 1. A Gabor base function is a Gaus-
sian function modulated with an exponential or sinu-
soidal function that is defined in terms of the product
of a Gaussian and an exponential [7], [8], [9]. Two-
dimensional Gabor functions h(x,y) can be written as:

(1)

h(z,y) = g(z,y) - exp™ ™"

based denoising: first, known as wavelet thresholding  where,
[4], [2], [5], a hard threshold function keeps a coefficient L
if it is larger than the threshold and sets it to zero oth- (1) = 1 ox S (i) )
erwise; second, wavelet shrinkage with a soft threshold- g\Y) = 20,0y p
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and its frequency response H (u,v) is:
H(u,v) = G(u— f,,v) = exp 27 (u=f)Poitv*al] (3)

where,
2 2
= ur + UT

f? (4)

and
0 = tan"' (v, /u,)

()
Gabor functions are bandpass filters which are Gaus-
sians, centered on (f.,f) in the spatial-frequency do-
main. The parameters f,, 0, o, and o, determine the
subband Gabor filter. f,. and 6 are center frequency
and orientation and o, and o, are the bandwidth of
the filter.

3 VisuShrink Thresholding Technique

VisuShrink denoising is used to recover the original
signal from the noisy one by removing the noise. In
contrast with denoising methods that simply smooth
the signal by preserving the low frequency content
and removing the high frequency components, the fre-
quency contents and characteristics of the signal would
be preserved during VisuShrink denoising. VisuShrink
Wavelet, proposed by Donoho and Johnstone [2], [4],
uses the universal threshold given by:

Tu = ony/2log(M) (6)

Where o0,, and M are the noise variance and the num-
ber of image pixels respectively. Donoho and Jonstone
have proven that the maximum of any M independent
and identically distributed (iid) values with high prob-
ability is less than the universal threshold 7,. As M is
increased the probability will be closer to one, so with a
high probability pure noise signals are set to zero. The
universal threshold is obtained by considering the con-
straint that the noise is less than the threshold with
high probability as M increases, hence it tends to be
high for large values of M. As a result it will shrink
many noisy wavelet coefficients to zero and produces
smoothed estimated image.

4 Proposed BayesShrink Gabor
Method

A dyadic Gabor filter bank is designed to decompose
the input image to spatial frequency subbands. Four
levels of decomposition is considered such that the ra-
dial frequency bandwidth is one octave, hence the fre-
quency difference of f,.1 and fo is

f7'2
frl (7)

Four orientations 0°, 45°, 90° and 135° are used, there-
fore to cover the frequency domain angular bandwidth

log, =1

is chosen to be 45°. Twenty real channels out of the
total forty real and complex decomposed channels are
thresholded and used to reconstruct the denoised image.

4.1 Gabor Denoising Concept

To explain the Gabor denoising procedure, assume
I[i, j] to be the original M by M image where ¢ and
j=1,2,...,M and it is corrupted with additive noise

nli, jl:
(8)

nli,j] are identically distributed and independent of
I[i,j]. The goal of denoising is to estimate f[i,j] of
I[i, j] by removing the noise nli, j].

In the first step of Gabor denoising, the observed im-
age S is transformed into the Gabor domain. Then the
Gabor coefficients are thresholded and finally the de-
noised coefficients are transformed back to reconstruct
the image. Let Gp and G be the forward Gabor
decomposition and inverse Gabor reconstruction trans-
forms. Let assume 7 and T' as threshold and thresolding
operator respectively. The Gabor thresholding can be
summarized as:

Sli, ] = 12, j1 + nli, 5]

I = G(D(I) :
Ir = T(g T
I = Ggr(Ir) ©)

The choice of the threshold and the method which is
used to calculate the threshold, determine how efficient
the denoising technique would be. Although, selecting
a small threshold may produce an output image close
to the input, the recovered image may still be noisy.
On the other hand, a choice of a large threshold may
yield a blurred image by setting the most of the wavelet
coefficients to zero. The proposed BayesShrink Gabor
tresholding technique is explained in the following Sec-
tion.

4.2 BayesShrink Gabor

The subband Wavelet and Ridgelet coefficients of
a natural image can be described by the Generalized
Gaussian Distribution (GGD) [6], [10], [11]. A Gabor
base function is a Gaussian function modulated with
an exponential, hence for most of the natural images
Gabor coefficients can be described by the Generalized
Gaussian Distribution (GGD) as

GGo, y(I) = P(or,y)exp{=[6(cr,II|]"}  (10)
where, —oo < I < +00,v > 0,
S(or ) = o7 [ ()
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TABLE 1
GABOR SUBBAND COEFFICIENTS: EACH MATRIX CORRESPOND TO
A SPECIFIC ORIENTATION IN DIFFERENT DICOMPOSITION LEVEL.

Levl 4, 0° | Levl 4, 45° | Levl 4, 90° | Levl 4, 135°
Levl 3, 0° | Levl 3, 45° | Levl 3, 90° | Levl 3, 135°
Levl 2, 0° | Levl 2, 45° | Levl 2, 90° | Levl 2, 135°
Levl 1, 0° | Levl 1, 45° | Levl 1, 90° | Levl 1, 135°
and,
Plor) = G (12)

o is the standard deviation of subband Gabor coeffi-
cients, v is the shape parameter and Gamma function
I" is defined as:

I(z) = / " cop{—y)ytdy (13)

Moreover the distribution of the Gabor coefficients in
a subband can be described by a shape parameter ~
in the range of [0.5,1]. Considering such a distribution
for the Gabor coeflicients and estimating « and oy for
each subband, the soft threshold 75 which minimizes the
Bayesian Risk [6], [10], can be obtained by:

R(rs) = BE(I - I)* = BBy (I - 1)? (14)

where [ is 7,(J), J|I is N(I,0) and I is GGy, . Then
the optimal threshold 77 is given by:

Ti(or,y) = arg min R(7s) (15)

It does not have a closed form solution and numerical
calculation is used to find 7. A proper estimation of
the value 77 is concluded by setting the threshold as:

7(01) = = (16)

4.3 Calculating the BayesShrink thresh-
old

Subband dependent threshold is used to calculate
BayesShrink Gabor threshold. The estimated thresh-
old is given by (16) where o,, and o; are noise and sig-
nal standard deviations respectively. Gabor coefficients
corresponding to different orientations are depicted in
Tab. I. In this table each matrix is corresponded to a
specific orientation, hence the number of columns deter-
mines the number of orientations and each row contains
subband coefficients for a specific decomposition level.

@ m @

Figure 2.
ing VisuShrink Gabor denoising SNR=16.09. (c)
Denoised image using VisuShrink Wavelet denois-
ing SNR=17.37.

(a) Original image. (b) Denoised image us-

To estimate the noise variance 2 from the subband
coefficients, the median estimator is used on each sub-
band matrix coefficient:

o = median(|subband cooe ficients|)/0.6745  (17)

Signal standard deviation is calculated for each orienta-
tion in each subband detail individually. Thus having 4
orientations and L subband, 4 - L different o; must be
estimated corresponding to 4 - L subband-orientations
coefficients. Note that in BayesShrink Wavelet denois-
ing, oy is estimated on vertical, horizontal and diagonal
subbands [6], thus having L decomposition levels, 3 - L
different o; must be estimated to calculate the thresh-
olds for the different subbands. To estimate the signal
standard deviation (o), the observed signal S is consid-
ered to be S = I + n, while signal (I) and noise (n) are
assumed to be independent. Therefore, 0% = 0% + o2
where 0% is the variance of the observed signal. So d
is estimated by

61 = \[maz((6% - 62),0) (18)

5 Results

In this section the proposed Gabor denoising tech-
nique is used to recover the noisy images which are
corrupted with additive white noise. BayesShrink and
VisuShrink Gabor image denoising methods are imple-
mented and compared with VisuShrink Wavelet denois-
ing. Some natural images and images with straight
regions are used to test the proposed method in the
following experiments. Denoised images depicted in
Fig. 2(b) and (c) are derived using the VisuShrink
Gabor and VisuShrink Wavelet thresholding methods
respectively. The wavelet results are obtained based
on three different wavelet bases including Daubechies,
Symlets and Biorthogonal and the best one among them
is chosen to be compared with the proposed VisuShrink
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Gabor method.

As we can observe despite having
somewhat poorer performance in comparison with Vi-
suShrink Wavelet based on SNR, the result obtained
by VisuShrink Gabor denoising is visually better and
smoother. Fig. 3(a) and (b) show original and noisy
lena image respectively while Fig. 3(c) shows the re-

covered image using VisuShrink Wavelet. The result
obtained by applying the proposed VisuShrink Gabor is
depicted in Fig. 3(d) and denoised image using the pro-
posed BayesShrink Gabor is depicted in Fig. 3(e). As
we can observe proposed VisuShrink and BayesShrink
Gabor denoising methods perform better than Vis-
uShrink Wavelet and produce better and smoother re-
sults, both visually and in terms of SNR.

6 Conclusions

In this paper the Gabor transform for image de-
noising was addressed by introducing VisuShrink and
BayesShrink Gabor denoising techniques. The proposed
method was applied on natural images and images with
straight regions. The denoising performance of the re-
sults was compared with that of the VisuShrink Wavelet
image denoising method. The experimental results by
the proposed method showed the superiority of the im-
age quality and its higher SNR in comparison with Vi-
suShrink Wavelet technique. Furthermore we observed
that regardless of the selected wavelet basis, VisuShrink
and BayesShrink Gabor perform better than VisuShrink
Wavelet. However, the choice of the wavelet bases might
effect on the performance of the VisusShrink Wavelet.
Although the proposed methods perform better than
VisuShrink Wavelet, these methods perform somewhat
poorer in comparison with BayesShrink Wavelet, based
on SNR. However the proposed BayesShrink Gabor pro-
duces less local artifact than wavelet counterpart. Fu-
ture work is conducted to improve the performance of
these methods. Our previous ridgelet-based denoising
methods will also be compared with these BayesShrink
Gabor denoisisng methods.
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