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ABSTRACT 

A fast multisca ; optimal interpolation algorithm has 
been adapted to the mapping of hydrographic and other 
oceanographic data. This multiscale algorithm pro- 
duces solution and error estimates which are consistent 
with those obtained from exact least-squares methods, 
but at a small fraction of the computational cost. Prob- 
lems whose solution would be completely impractical 
using exact least-squares, that is problems with tens or 
hundreds of thousands of measurements and estimation 
grid points, can easily be solved on a small worksta- 
tion using the multiscale algorithm. Contrary to meth- 
ods previously proposed for solving large least-squares 
problems, the multiscale approach provides error statis- 
tics while permitting long-range correlations, using all 
measurements, and permitting arbitrary measurement 
locations. 

A set of MATLAB-callable routines which imple- 
ments the multiscale algorithm and reproduces the re- 
sults obtained in this paper are available by anonymous 
FTP; see the last section of this paper for details. 

reasons but also serve a scientific purpose: remote sens- 
ing measurements, for example those taken from a ship, 
are often rather sparsely sampled; such sparse fields are 
difficult for scientists to interpret, and are inconvenient 
or inappropriate for driving simulation programs. 

The challenge in the production of such maps is 
the large number of estimates required (> l O O O O ) ,  
the sparse and irregular nature of the supplied mea- 
surements, and the requirement that estimation error 
statistics be provided. Many oceanographers continue 
to solve least-square problems by matrix inversion, 
however this approach becomes completely impracti- 
cal for large two-dimensional estimation problems. In- 
stead, we propose to address such problems using a 
multiscale estimation framework which easily handles 
such estimation problems, and furthermore gives the 
user explicit control over the tradeoff between statisti- 
cal fidelity and computational effort. 

We will be applying our method to a problem of 
current scientific interest: the estimation of oceanic 
temperature maps from irregular measurements (small 
dots in Figure 1). We stack the random field into a 
large random vector 2, having prior statistics 

1. INTRODUCTION 

The production of maps - dense, regularly gridded 
sets of estimates - has become a problem of tremen- 
dous interest to scientific researchers working in remote 
sensing. Such maps are appealing not only for aesthetic 
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E[z]  = 0,  CO.(.) = s (1) 

where S is a smooth correlation function (isotropic 
Gaussian) determined via empirical means. 

2. MULTISCALE APPROACH 

To be sure, methods have been proposed to solve large 
estimation problems while avoiding brute-force matrix 
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Figure 1: Sample problem of interest: ship-based 
temperature measurements are taken at each location 
marked by a dot. We are interested in determining a 
dense map of temperature, and validating our estimates 
on the thick line. 

inversion, however each of these methods has some lim- 
itation which we find to be too constraining: 

FFT methods require that the measurements be 
regularly sampled in space, and that the measure- 
ment noise process be stationary. 

Local methods base each estimate upon only 
those measurements in its local vicinity, ignoring 
the rest. 

Subset methods base each estimate upon some 
(random or deterministic) subset of the measure- 
ments, ignoring the rest. 

Hierarchical methods such as multigrid do not 
provide estimation error statistics. 

In this section we present a method which permits 
the rapid solution of least-squares problems while 
maintaining long-range correlations, using all measure- 
ments, and permitting arbitrary measurement loca- 
tions. This method is based on stochastic processes 
modeled on trees; that is, processes x such that 

x(s) = A(sjx(s7) + B ( s ) w ( s )  
Y ( 5 )  = C(s )x ( s )  + 4 s )  

(2) 
(3) 

where s indexes the nodes of a tree, sy represents the 
parent node of s ,  w(s)  is a white-noise process, and 
y(s) represents the multiscale measurement process. 
We select a quad-tree (illustrated in Figure 2) as our 
tree structure; that is, each node above the finest scale 

Figure 2: An illustration of the definition of the state 
at each multiscale tree node: the state at each node 
s is made up pixels (small circles) sampled along the 
boundaries of node s and its four children. 

has four descendents, each descendent representing one 
quadrant of the region represented by the parent. For 
the purposes of this paper, we will focus primarily upon 
the finest scale of the tree: our hydrographic process 
x of interest will live on the finest scale of the tree, 
and all of the ship-based measurements will appear on 
finest scale nodes. 

For multiscale models of the form (2),(3) there exist 
very fast estimation algorithms[l] which compute the 
estimates i ( s )  and estimation error covariances p ( s )  at 
each tree node s. The challenge in using these models 
stems from the need to select appropriate matrices A, B 
such that the nodes on the finest scale of the tree pos- 
sess the desired statistical covariance S. We propose 
to develop multiscale models motivated by the method 
of canonical correlations[2, 31, based on the following 
observation: the statistical role of z ( s )  in (2) is to mu- 
tually decorrelate the trees descending from node s and 
to decorrelate these from the remainder of the tree. We 
select the state at each node s to equal a subset of the 
process x sampled along the perimeter of s and its chil- 
dren (as illustrated in Figure 2) .  That is, 

x ( s )  = W ( S ) I c  (4) 

where W ( s )  is a matrix, sampling z along the perime- 
ter of s and the children of s. Once W ( s )  has been 
chosen for each tree node, the multiscale model follows 
immediately: 

A ( s )  = [W(s)SWT ( s v ) ]  [W(sy)SWT(s7)]  -l(5) 
B B T ( s )  = cov ( ~ ( s ) )  - cov ( A ( s ) z ( s y ) )  (6) 

This class of multiscale models leads to the following 
tradeoff, under explicit control of the user: the more 
densely that W ( s )  samples .a: along the perimeter of 
s and its children (i.e., the higher the dimension of 
z ( s ) )  the greater the statistical fidelity of the resulting 
estimates, but the greater the computational burden. 
Thus in the event that the prior statistics S were rather 
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Figure 3: A comparison of multiscale and exact least- 
squares results along the thick line of Figure 1. The top 
panel shows the multiscale estimates (solid), bounded 
by the exact estimates & one standard deviation 
(dashed). The bottom panel compares estimation error 
standard deviations. 

approximate, the user might opt for a relatively small 
state dimension for rapid estimation. 

3. EXPERIMENTAL RESULTS 

The successful development of a dense map estima- 
tor offers many exciting scientific possibilities, of which 
only a tiny sample can be illustrated here. 

Figure 3 and 4 show two sets of estimation results, 
based on low and high order multiscale models, respec- 
tively. These figures compare the multiscale estimates 
and error statistics with the exact least-squares results 
along the thick path shown in Figure 1. The multiscale 
estimates of Figure 3, based upon a sparse state sam- 
pling in W ( s ) ,  are similar to the exact solution, however 
the significant difference between the exact and multi- 
scale estimation error statistics suggests that these re- 
sults might be inadequate for a detailed model valida- 
tion study. On the other hand the multiscale estimates 
and the estimation error variances in Figure 4, based 
on a denser state sampling in W ( s ) ,  are quite close to 
the exact solution, These results required about four 
times the effort of that for Figure 3, however this ef- 
fort is still a tiny fraction of the effort to compute the 
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Figure 4: Same as Figure 3, but using a multiscale 
model representing four times the computational ef- 
fort, but still computing 50 times as many estimates in 
15% of the time for matrix inversion. The multiscale 
estimates now lie neatly within the one-sigma envelope 
of the exact solution. 

exact result via matrix inversion. Furthermore, this 
work was motivated from the start by the fact that 
the prior statistics S are somewhat uncertain; thus the 
small differences between the estimates produced by 
our multiscale method and those of the exact approach 
are essentially inconsequential, although the difference 
in computational effort is staggering. 

The dense fields corresponding to the multiscale 
model of Figure 4 are shown in Figure 5. Clearly no 
comparison with exact least-squares methods are pos- 
sible, because an estimation problem of this magnitude 
(16400 estimates) is well beyond the practical limit of 
matrix inversion. Furthermore, despite the fact that 
we are using a multisca.le-based estimator, the result- 
ing estimates p e  quite smooth and free of the artifacts 
that can appear in other multiscale models[4]. 

We will present further details of the multiscale 
modeling process, and discuss the statistical circum- 
stances under which our selected class of multiscale 
models (4) are reasonable. We will also discuss the 
example hydrographic problem in greater detail, moti- 
vate an interest in the problem, and elucidate why it is 
that maps such as in Figure 5 are of such interest. 
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Figure 5: The dense estimate and error statistic maps 
produced by the multiscale model of Figure 4. Note 
that both of the maps are smooth and are not subject 
to discontinuities or artifacts along tree boundaries. 

4. SOFTWARE 

The multiscale estimation software used to produce 
the results of this paper are available for download- 
ing via anonymous FTP from lids &t edu in the di- 
rectory pub/ssg/code/Hydrography. The software is 
distributed as is (i.e., without support), however com- 
ments and bug reports are welcome and may be sent 
to the author at pwfiegut@cs.toronto.edu 
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