
A Hardware Implementation of Real-Time Video
Deblocking Using Shifted Thresholding
Martin Hansen

Department of Electrical and
Computer Engineering
University of Waterloo

Waterloo, Ontario, Canada
Email: mdbhanse@uwaterloo.ca

Alexander Wong
Department of Electrical and

Computer Engineering
University of Waterloo

Waterloo, Ontario, Canada
Email: a28wong@uwaterloo.ca

William Bishop
Department of Electrical and

Computer Engineering
University of Waterloo

Waterloo, Ontario, Canada
Email: wdbishop@uwaterloo.ca

Abstract— Video compression has become very important as
demand has increased for the storage and transmission of
digital video content. Popular video compression schemes like
MPEG encoding make use of block-transform coding techniques
which are susceptible to blocking artifacts. Recently, an efficient
deblocking algorithm based on the concept of shifted thresholding
has been proposed. This algorithm uses only integer arithmetic
and replaces division operations with bit shifting. This paper
proposes a new hardware architecture for the implementation of
video deblocking using shifted thresholding. A prototype system
for high performance video deblocking using a FPGA (field
programmable gate array) board is described. The prototype
system leverages the reduced hardware complexity of the shifted
thresholding algorithm to cost-effectively implement video de-
blocking on a FPGA board.

I. INTRODUCTION

With the ever increasing need for efficient storage and
transmission of digital video content, video compression has
become an active area of research. Video compression is
essential for applications ranging from high definition video
broadcasting to the wireless transmission of video content to
portable entertainment systems. Popular video compression
schemes such as MPEG [1] and recent video compression
schemes such as H.264/AVC [2] make use of block-transform
coding, where blocks of pixels are processed independently to
reduce computational and storage requirements.

A significant drawback of block-transform video coding
is that blocking artifacts are introduced at block boundaries.
These artifacts noticeably degrade video quality, particularly if
the video content is compressed at a high compression rate. To
improve video quality, a process known as video deblocking
is used to reduce the impact of blocking artifacts.

A large number of video and image deblocking methods
have been introduced. These methods have been categorized
[3] as follows:

1) Projections onto convex sets (POCS) methods,
2) Spatial block boundary filtering methods,
3) Wavelet filtering methods,
4) Statistical modeling methods,
5) Constrained optimization methods, and
6) Shifted transform methods.

Traditionally, methods based on spatial block boundary
filtering have been used in real-time video decoding due to
their low computational complexity. However, interest has
grown recently into the use of shifted transform methods.
Such methods typically deliver improved deblocking quality.
However, the computational complexity of shifted transform
methods have traditionally been very high due to the need for
a large number of floating-point calculations.

Recently, an efficient deblocking algorithm based on the
concept of shifted thresholding was proposed [3]. This algo-
rithm uses only a fraction of the computations required by
traditional shifted transform methods. Furthermore, it requires
only integer computations and uses bit shifting to replace
division operations. Despite these simplifications the algorithm
still achieves image quality that is competitive with other
methods in its class. The algorithm is also ideal for imple-
mentation using inexpensive hardware.

This paper presents an efficient hardware architecture for
video deblocking using shifted thresholding. The proposed
architecture is described and explained in detail in Section
2. The hardware complexity of the proposed architecture is
analyzed in Section 3. A prototype design is presented in
Section 4 along with experimental results. Conclusions are
drawn in Section 5.

II. PROPOSED ARCHITECTURE

The proposed hardware architecture implements a shifted
thresholding algorithm for video deblocking [3] on an Altera
DE2 board [4]. The shifted thresholding algorithm transforms
an initial decompressed image into a deblocked, decompressed
image. The algorithm performs six distinct operations as illus-
trated in Fig. 1. The proposed hardware architecture assumes
greyscale bitmap images of dimensions 640×480, with each
greyscale pixel represented by 8 bits. However, the architecture
could be easily modified to support larger images and larger
colour representations.

A 6 stage pipeline architecture was chosen for the hardware
design. It should be noted that in the interest of hardware
optimization, the pipeline stages deviate slightly from the
6 distinct operations described previously. The first pipeline
stage loads image data from memory in blocks of 8×8 pixels,

0840-7789/07/$25.00 ©2007 IEEE
28

�����������	
���
�

��������	
���
�

�������

���������

��������

�������
���������

���
���	
�����
��

�������
�������

���

���

���

���

���

�� �� ��

� � �

� � �

��� ��� ���

��
�� ��

�� ��
��

Fig. 1. Overview of shifted transform deblocking [3]

and manages the coordinate shifting that is necessary to
produce the four shift patterns. These blocks are passed one
at a time to the second pipeline stage which implements the
two matrix multiplications required by the Discrete Cosine
Transform (DCT). The third pipeline stage performs scalar
multiplication, thresholding, and another multiplication. The
fourth pipeline stage implements two matrix multiplications
for the inverse DCT operation. Finally, the blocks are multi-
plied again (weighted averaging) and saved back to memory
in pipeline stages five and six, respectively. The final pipeline
design is shown in Fig. 2.

���
�
�
�
���
���	
�����
��

���
�
�
�
�������
���������

���
�

�
�����

���
�
!
�
�������

���
�
"
�
���������

���
�
#
�
��������	��

Fig. 2. Pipeline architecture for shifted transform deblocking

The strength of this deblocking architecture lies in its
computational simplicity. All of the mathematical calculations
are performed using integer values, eliminating the complex-
ities of floating-point arithmetic. The architecture also avoids
division operations through the use of bit shifting. The most
complicated operation used is integer multiplication which can
be easily pipelined and optimized to manage area and latency.

A. Stage One - Shifting Component

The first stage of the pipeline loads the pixel data from the
SDRAM on the Altera DE2 board and manages the block
shifting. It forms the 8×8 blocks of pixels to be manipu-
lated by subsequent pipeline stages. Fetching each 64 pixel
block requires between 64 clock cycles and 80 clock cycles,
depending upon the address of the block in memory. The
control logic processes the blocks row by row and processes
the entire image a total of five times. The first iteration
retrieves the original (unshifted) image. The following four
iterations shift the image based on a set of four shift patterns:
(∆x,∆y) = (−3,−3), (−1,−1), (1, 1), (3, 3) to produce a
total of four shifted images.

B. Stage Two - Transform Component

The operations necessary to accomplish the DCT [5] are
two matrix multiplications followed by a scalar multiplication
and a right shift of 18 bits [3]. This can be expressed
mathematically as follows:

Y = (PXPT) ⊗ (E ⊗ ET) >> 18 (1)

where X is the input block, P is the 8 × 8 integer transform
matrix, and E is a constant matrix used for scaling. The first of
these operations, the double matrix multiplication (PXPT), is
implemented in the second pipeline stage with the remainder
of the DCT performed in the third pipeline stage. The double
matrix multiplication can be simplified for the purpose of
hardware design using the following mathematical property
(AB)T = BTAT as follows:

PXPT = (PX)PT = (XTPT)TPT = Φ [Φ [X]] (2)

where Φ [X] ≡ XTPT. Matrix transposition is a zero-cost
operation which can be accomplished using routing resources
in hardware. Therefore, equation 2 is simpler in the sense
that, with no additional hardware resources, the calculation
can be implemented as the same operation performed twice.
This simplification reduces the amount of physical hardware
required to implement the calculation. However, the time
required for the operation increases since less parallelism is
possible. It should be noted that the pipeline can be designed
to accomodate this latency without any significant effect upon
the overall system.

Due to FPGA logic cell constraints, each matrix multipli-
cation is split into two computations. First, the upper half of
the result is computed followed by the lower half. Again, the
latency can be easily absorbed into the pipeline, which must
allow for slow memory access times. Each operation requires
1 clock cycle per column, and 2 additional clock cycles for
overhead, resulting in 40 clock cycles for the entire second
pipeline stage.

C. Stage Three - Thresholding Component

The third pipeline stage begins by computing the remainder
of the DCT operation using scalar multiplication and right bit

29

shift. This is followed by a thresholding operation. The thresh-
olding required is a simple comparison operation. Following
the thresholding is another scalar multiplication, this time in
preparation for the inverse DCT that follows in stage four of
the pipeline.

Both scalar multiplications required are identical, and there-
fore the same hardware can be used for both. The calculations
are implemented using on-chip multiplication units, which
run asynchonously. The thresholding is accomplished using
a comparison operation between each matrix value and its
corresponding threshold value, stored in a ROM within the
on-chip M4K memory blocks. Because of the slow memory
access time to fetch these values, 1 clock cycle is required
per pixel. With 5 clock cycles per multiplication and with the
shift operation being a zero-cost operation, this pipeline stage
requires a total 74 clock cycles.

D. Stage Four - Inverse Transform Component

The inverse DCT in the fourth pipeline stage is performed
identically to the operations in the second pipeline stage.
With the scalar multiplication already completed by the third
pipeline stage, the two matrix multiplications are performed
again, now using the inverse transform matrix Q = PT, in
place of P. This pipeline stage takes 40 clock cycles, including
a right shift of 18 bits at the end of the stage, which completes
the transform requirements of the algorithm.

E. Stage Five - Weighted Averaging Component

With the main matrix manipulations complete, the fifth
pipeline stage assigns a weight to each pixel within the block
based on pixel position. This is done using an on-chip M4K
ROM lookup table to reduce usage of FPGA logic cells. Each
pixel is fetched from the table based on its 8 bit value, its
position (which maps to one of eight different scaling factors),
and its block type (non-shifted or shifted). Therefore, the ROM
requires 2(8+3+1) = 4096 bytes.

In addition, any shifted blocks must have this shifting taken
into account since the pixel locations are relative to the initial
position of the pixel in the image and not the location within
the shifted version. Prior to the weighting process, the signed
pixel data must also be truncated, since calculation errors can
result in pixel values less than 0 or greater than 255. Fetching
from the ROM table requires 1 clock cycle per pixel. Adding
in the 4 clock cycle overhead results in a total time of 68 clock
cycles for this pipeline stage.

F. Stage Six - Saving Component

In the sixth pipeline stage, the blocks are weighted again.
Non-shifted blocks are given a relative weight of 4 (a shift
left by 2 bits) and the 4 shift patterns are each given a weight
of 1 (no shift) for a combined weight of 8 (which is then
normalized by a shift right of 3 bits). Now the pixel values
are added to those already in memory at their appropriate
locations. This process involves a memory fetch, an addition,
and a memory write operation. The minimum time required
for the sixth pipeline stage is between 32 clock cycles and 80
clock cycles.

G. Interfaces

The off-chip resources currently used for this project are an
SDRAM (for the initial image) and an SRAM (for the final
image). Additionally, the FPGA itself (discussed in Section 3)
has internal M4K memory blocks, which are used to imple-
ment ROM modules. The hardware development platform used
contains various other useful components, such as a Universal
Serial Bus (USB) port, an Ethernet port, and a Video Graphics
Adaptor (VGA) port. In the future, additional logic could be
added to transfer the input and output images using these
components.

Both the SRAM and on-chip ROM interfaces are quite
simple and consist of basic control signalling and obvious tim-
ing relationships. The SDRAM is controlled by a finite state
machine (FSM) which manages initialization, row selection,
precharging, and the other operations required by this memory
device. A custom interface was made to implement this FSM
for the purpose of translating simple load commands into the
complex sequence required by the SDRAM.

H. Memory Usage

The SDRAM and SRAM external memories are both used
in this design. Both are required to minimize the bottleneck
created by memory access. Both devices are 16-bit memory
devices that can store 2 image pixels at each physical address.
This width is beneficial for throughput, but introduces addi-
tional complexity for accessing the shifted blocks, since the
shifts are all by an odd number of pixels and thus result in
pixel accesses being out of line with the boundaries of each
memory word. Furthermore, this misalignment also crosses
row boundaries in the SDRAM, requiring additional clock
cycles for fetching data in these cases.

The initial decompressed image is stored on the SDRAM as
a 640×480 bitmap, with one byte per greyscale pixel. This size
gives a total of 307 200 bytes to be processed. Obviously this
value is dependent on the number of pixels in the image as well
as on the resolution of each pixel. The SDRAM word access
is well within the speed of the 20 ns clock provided on the
board, but this memory has the added burden of precharging
and other operations, all of which add to the latency. The
SDRAM also requires a 3 ns clock lead from the rest of the
design.

The deblocked final image is stored in the SRAM, and
always constitutes the same size as the original. SRAM access
is quite fast. No additional latency is introduced by the SRAM.
It is possible to store two bytes (one word) per clock cycle.

III. HARDWARE COMPLEXITY

The system was implemented as a VHDL design on an
Altera DE2 board [4]. This board includes an Altera Cyclone
II FPGA as well as various on-board components, including
several memories, USB port, Ethernet port, VGA port and
audio connectors, and other miscellaneous devices. For the
purpose of our design, the devices used on the Altera DE2
board other than the USB programming interface for the FPGA
were the SDRAM, the SRAM, and the FPGA itself.

30

The goal of the hardware implementation was to reduce
hardware complexity and latency over other similar algorithms
for video deblocking. Area usage was not a primary consid-
eration in the implementation, especially in the un-optimized
design. The current area usage on the FPGA is 31 585 logic
blocks, or 95% of this specific chip.

This large area usage is partly due to the amount of data
being processed in parallel by the pipeline stages. Each stage
concurrently manipulates a 8×8 block of pixels, with each
pixel represented by a minimum of one byte (in stages one,
five, and six) and a maximum of four bytes (in stages two
through four). This storage requires approximately 8 kbits of
on-chip memory which contributes significantly to logic block
usage. This is a conservative estimate, as some stages require
storage space for more than one block at a time.

The on-board clock speed used for the FPGA is 50 MHz.
The design easily achieves this speed. The longest path delay
for the FPGA design is rated at 15.6 ns, which results in a
theoretical maximum clock speed of 64.1 MHz.

Some optimizations of this design should be undertaken to
reduce area usage. Due to the upper bounds on throughput
inherent when accessing memory, the deep parallelization of
the design may not be necessary. The middle pipeline stages,
requiring only 40 cycles to complete, are not ideal if they
provide no speed benefit with the cost of added area. It is
estimated that there can be area reductions of 5% obtained by
further optimizing the current pipeline.

IV. CURRENT RESULTS AND FUTURE WORK

For the purpose of testing, a set of test images have
been compressed heavily using the Joint Photographic Experts
Group (JPEG) standard [6] to introduce blocking artifacts.
These images have been used as an artificial test suite for the
deblocking architecture. The output of the hardware design has
been verified against results produced by a software version
of the video deblocking algorithm.

The prototype implementation uses the 50 MHz clock signal
provided on the Altera DE2 board. The throughput of the
hardware design is limited by the slowest pipeline stage.
An event-triggered pipeline is used. The performance of the
pipeline is dependent upon memory access times so throughput
is not a constant. Each 64 pixel block requires between 74
clock cycles and 80 clock cycles to process. Given a 640×480
image and given that 5 iterations over the image are required,
the minimum processing time is 37.8 ms (see Equation 3),
allowing 26.4 frames per second (fps) (see Equation 4) to be
deblocked. This rate exceeds the real-time video processing
rate of 24 fps so it is possible for the prototype implementation
to deblock a video stream in real-time.

tmin =
1

(
640×480

64 (74)
)

+ 4
(

640×480
64 (80)

)

50 000 000
= 37.8ms (3)

fmax =
1

37.8
= 26.4 fps (4)

Currently, the prototype design acheives a rate of 18.3 fps.
Dummy states are still present in the design for testing
purposes. It is projected that the maximum speed is readily
acheivable after further optimizations. However, this design is
not yet fast enough for consumer applications such as HDTV
that require a minimum resolution of 720×480. The prototype
design is only capable of delivering 23.5 fps (see Equation 5
and Equation 6) on the Altera DE2 board. There are several
avenues that can be pursued in the future to acheive 24 fps at
high-definition resolutions.

tmin =
1

(
720×480

64 (74)
)

+ 4
(

720×480
64 (80)

)

50 000 000
= 42.6ms (5)

fmax =
1

37.8
= 23.5 fps (6)

One potential solution that would allow the processing
of HDTV frames would be to use more suitable external
memories. Using external high-speed SRAM devices for both
input and output would eliminate the bottleneck created by row
selection in the input SDRAM. Also, if the output memory
allowed dual-port access, the delays introduced by reading
and writing in the sixth pipeline stage would be dramatically
reduced. With these improvements and further optimizations
to the third pipeline stage, it is projected that the design could
theoretically deliver 29.8 fps at 640 × 480 and 26.5 fps at
720 × 480.

V. CONCLUSION

In this paper, we have introduced a high performance
hardware architecture for video deblocking on a FPGA board.
The hardware architecture has been designed such that it is
suitable for real-time video deblocking on a low-cost FPGA
device. The current prototype design delivers 18.3 fps but the
design is theoretically capable of delivering 26.4 fps for video
frames of size 640×480 pixels. The design is suitable for real-
time video deblocking at this frame size and smaller sizes.
With a slightly more expensive FPGA device, it is projected
that real-time video deblocking should be possible on high-
definition video frames of size 720×480 pixels. It is our belief
that this design can be easily implemented in consumer-grade
set-top boxes, digital movie playback devices, and other digital
multimedia systems given further optimization and testing.

REFERENCES

[1] ISO/IEC 13818-2, Generic coding of moving pictures and associ-
ated audio information, Part 2: Video, November 1994.

[2] Joint Video Team of ITU-T and ISO/IEC JTC 1, Draft ITU-T
recommendation and final draft International Standard of Joint
Video Specification (ITU-T Rec. H.264 — ISO/IEC 14496-10
AVC), May 2003.

[3] A. Wong and W. Bishop, “Efficient deblocking of block-transform
compressed images and video using shifted thresholding,” in
Proceedings of the Eighth IASTED International Conference on
Signal and Image Processing, August 2006.

[4] Altera Corporation, DE2 User Manual, Version 1.4, 2006.
[5] N. Ahmed, T. Natarajan, and K. R. Rao, “Discrete cosine trans-

form,” IEEE Transactions on Computers, pp. 90-93, Jan 1974.
[6] G. Wallace, “The JPEG still picture compression standard,” Com-

munications of the ACM, vol. 34, no. 4, pp. 30-34, 1991.

31

