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ABSTRACT 

In this paper, a framework based on a Markov Random 
Field approach for color image segmentation enhanced by 
edge detection is presented. We use a previously developed 
methodology to transform the image into an R’G’B’ space 
to remove any highlight components preserving the vector- 
angle component, representing color hue but not intensity, 
to remove shading effects. To improve the segmentation 
process we describe the idea of a line process. This allows 
for the integration of region segmentation with edge detec- 
tion in a Markov Random Field framework. We discuss the 
advantages of this new model with respect to the previously 
developed image segmentation model. 

1. INTRODUCTION 

The perception of objects in the real world without illumi- 
nation effects (known as color constancy) has been a major 
research subject in the image science and technology com- 
munities. In spite of shading and highlight effects, humans 
are quite able to perceive object surfaces in a scene, a diffi- 
cult task for computer systems. A Markov Random Field- 
based algorithm for color image segmentation invariant to 
shading and highlight effects developed in the context of 
the Dichromatic Reflection Model of Shafer [ 1 11 has been 
introduced [5]. 

In [SI, the authors describe a Markov Random Field 
framework for color image segmentation using a pixel- 
based highlight invariant transformation and the inner vec- 
tor product or vector angle as a similarity measure between 
two transformed color pixels. Both ideas were first jointly 
used in [ 181. This consisted in applying a principal compo- 
nent analysis and vector angle clustering-based approach for 
color image segmentation in which the algorithm chooses 
the most optimal (in the Mean Squared Error-sense) multi- 
vector inner vector product fit to the data [3]. 

In [SI, the vector angle was found to provide a sound 
color similarity framework with respect color theory. Most 

methods for color image segmentation presented in the lit- 
erature use the Euclidean distance [13, 141. However, the 
Euclid.ean distance is a particdarly poor measure of color 
similarity since the RGB space is an-isotropic, especially 
when !specular reflection and shadmg are present in the im- 
age. 

The use of an MRF color model was warranted as it was 
shown that the Dichromatic Reflection Model was inade- 
quate to solve the problem that sufficiently dark shades of 
any color all look alike (i.e., black), and similarly specu- 
lar reflections or highlights converge to the same color (the 
color of the illuminating light, normally white) [5]. Conse- 
quentl:y, a spatialMarkov Random Field model was deemed 
essentiaal in order to perform the segmentation by assigning 
a highlight pixel to a colored group based on its surrounding 
context. 

For color image segmentation, it would be use l l  to help 
the segmentation algorithm with edge information. Hybrid 
methods combining region segmentation and edge detection 
have been developed which are based on heuristics and the 
use of ithe Euclidean distance suc;h as in [4]. The focus of the 
present paper is to extend the color image processing and 
segmentation formulation based on the Dichromatic Reflec- 
tionMode1 [ 1 1,151, and Markov Random Fields introduced 
in [5] to one taking into account edge information. We pro- 
pose to define the spatial context using a Gibbsklarkov ap- 
proach, as outlined in Section 3, and introduce edge infor- 
mation using a hybrid edge/segmentation model. In th s  
way, vve propose a much mort: rigorous model based on 
stochastic optimization theory imd illumination invariance 
properties derived from color science. 

Certady others have used Markov random fields for 
image segmentation [l,  9, 191; however, normally these 
methods involve Gauss-Markov random fields, where the 
GMRF defines a spatial texture for the R, G, B compo- 
nents, from which segmentation can proceed as a separate 
hypothesis-testing procedure applied to the GMRF likeli- 
hood [ 101. Our approach builds on the vector angle-based 
models introduced in [5]: we wish to find the segmented 
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by the wavelength of the color of the illuminated ob- 
ject 

The focus of this paper will be on inhomogeneous dielectric 
materials such as plastics. We assume the illumination light 
is white or the image has been white balanced [ 181. 

To remove the effects of highlights it is necessary to 
transform the pixel coordinates according to the following 
transformation [12, 181: 

Fig. 1. Original RGB color scene image, showing highlights 
and shading, captured using white light. 

image directly as the result of energy minimization of some 
appropriately-defined Gibbs random field. Furthermore, the 
regions are not distinguished on the basis of texture, rather 
on shading and highlight invariant color, as well as edge 
information. That said, textured surfaces where the pixel 
variations are due to local shading effects (such as the sur- 
face of an orange) will be segmented correctly, since the 
normalized color is similar for all such pixels; whereas tex- 
tures with intrinsically different colors (such as marble or 
paisley) are not the focus of our approach. 

The formulation of our Gibbs model will be similar to 
others used for segmentation [6, 91 except for a number of 
variations due to the peculiarities of our transformed space 
and the addition of edge information. We demonstrate the 
advantages of constructing an energy function for Markov 
Random Field-driven image segmentation using a measure 
related to the inner vector product and integrating edge in- 
formation. 

This paper first describes the color illumination invari- 
ances and the development of an optimization criterion for 
segmentation. Next, the advantages of the new framework 
are outlined. Finally, conclusions and hections for hture 
work are given. 

2. COLOR THEORY 

The Dichromatic Reflection Model [ 11, 151 assumes that 
light reflected from objects has two components: 

1. specular reflection or highlight: this effect is charac- 
terized visually by a mirror-like reflection of the illu- 
minating light from a surface; 

2. diffuse or body reflection: this is light reflected from 
an object surface in all directions and is characterized 

where R ~ J ,  Gi,j and Bi,j represent the color values and 6,j 
represents the color pixel vector at location ( i , j ) .  In this 
transformation, the reflectance variation caused by interface 
reflection is removed by projecting the observed reflectance 
in an n-dimensional vector space along the illumination 
vector onto an (n-1)-dimensional subspace that is perpen- 
dicular to the illumination vector [12]. From a practical 
point of view, a histogram of the RGB pixels making up a 
homogeneously-coloredregion containing a highlight patch 
would show two connected clusters (one for the homoge- 
nous color and one for the highlight). In the transformed 
R'G'B' space, the pixels making up that region would ap- 
pear as a single linear cluster [ 18, 51. Therefore, given that 
the RGB components are assumed to be white balanced, the 
application of (2) eliminates the interface reflection term. 

The simplest way to obtain a shadmg invariant represen- 
tation is to normalize the new color vectors to unit length 
[ 12, 161. This operation puts all vectors on the unit hyper- 
sphere, except for the null vector (O,O,O) for which this op- 
eration is undefined. Since the Euclidean distance between 
two normalized transformed color vectors does not reflect 
accurately the perceptual difference between the two vec- 
tors [ 171, the invariance operation was factored directly into 
the similarity measure calculation by using one minus the 
cosine of the vector angle between two highlight in- 
variant color vectors E', d; the similarity measure then be- 
comes 

So if c' and d are similar in orientation then (3) will be 
close to zero. Bothvectors will be deemed close irrespective 
of the shading factors ac(i, j )  and a d ( i ,  j) associated with 
them. Therefore, this method is also shading invariant. In 
practice, the color vectors R', G', B' are normalized, which 
reduces (3) to a simple dot product calculation for each pixel 
comparison. 
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Fig. 2. Neighborhood on a lattice of regular sites. Num- 
bers 1-4 depict a 4-pixel or first order neighborhood and 1-8 
describe an 8-pixel or second order neighborhood. 

3. MARKOV RANDOM FIELDS 

To accurately model the problems in this paper we will have 
two primary concerns: how to define an objective function 
for the optimal solution of the image segmentation problem, 
and how to find its optimal solution. Given the various un- 
certainties in the imaging process (e.g., quantization noise, 
interreflections, impurities on the camera lens and transmis- 
sion noise), it is reasonable to define the desired solution 
in an optimization sense, such that the “perfect” or “exact” 
solution to our segmentation problem is interpreted as the 
optimum solution to the optimization objective. 

Gibbs Random Fields (GRFs) [6 ,  191 provide a natural 
way of modeling context dependencies between, for exam- 
ple, image pixels of correlated local features [9]. Thanks to 
the improved insights and understanding provided by the 
Hammersley Clifford theorem [9], whch allows Markov 
random field (MRF) modeling to be reinterpreted as an en- 
ergy b c t i o n  minimization, GRF models can be used in 
practice. Second, the availability of methods for Gibbs sam- 
pling and Simulated Annealing [6] allow for the stochastic 
optimization of GRF/MRF models. 

The MRF-based segmentation model is defined by 
the contextual relationships within the local neighborhood 
structure. Since our goal is the assertion of local con- 
straints, rather than an accurate modeling of spatial textures, 
as in other GMRF color-segmentation research [lo], we 
shall only be concerned with first or second order random 
fields, both simplifjmg the model and limiting the compu- 
tational complexity. First and second order neighborhoods 
are shown in Figure 2. 

Suppose we are given a color image on a pixel lat- 
tice .E = { i ,  j )  . As just discussed in Section 2, each pixel 
(RGB}i,j is tramformed to its normalized representation 

We can precompute the adjacent-pixel vector-angle cri- 

-I 
‘i,j- 

Fig. 3. Cliques for first and second order neighborhoods. 

teria 

However, not all of the vector angles are computed with 
the same accuracy. Even a small amount of pixel noise on 
a dark or highlight region results in nearly totally random 
vector angles, which would be separated into single-pixel 
regions. Given the covariance ofthe vector angle difference, 
computed by analytic or Monte-Carlo means, we introduce 
weights 

1 
qJ. . - ‘-3 - 1 

wj . =: 93 m(o(2ij 7 Zi+l,j)) var(o(2i,j, J i , j + l ) )  

(5 )  
Then the Gibbs energy U for segmentation using a first or- 
der model can be formulated as follows [ 5 ] :  

W l ( 4  j )31  = 

~ ~ { ~ ( w ~ , j + ~ , 3 ~ ~ ~ j , j ) , ~ ( ~ + l .  + j) + w j , j ~ ~ j ~ ~ ( ~ , j ) , ~ ( j , j + l ) )  + 
B [(I - h , j ) , l ( i , j + l ) )  + (1 - f iq i ,J ) . l ( i , j+1) )11  (6)  

i >J 

where each pixel ( i , j )  is assigned an integer label 0 5 
I(i ,  j) < N ,  and where a, p control the relative constraints 
on the homogeneity of a single region and the degree of re- 
gion fiagmentation, respectively. 

Model (6)  is a very credble segmentation criterion, rep- 
resent~ ng a considerable advance beyond standard vector- 
angle methods, and yet (6)  is little more complicated than 
a standard IsingPotts model [ 191 and so is well-understood 
and easily implemented. 

Contextual relationships used in MRF modelling are 
usually based on neighborhood structures where the center 
pixel is related to the adjoining pixels using a clique poten- 
tial. A clique potential is the energy enclosed within the 
neighborhood structure or clique. For a first order MRF 
model, a 4-pixel neighborhood is considered. Cliques for 
this neighborhood structure are shown in Figure 3. 
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Fig. 4. Cliques with line processes for neighborhoods of 
size four. 

Edges can be modelled within the MRF context in two 
different ways: using line processes [6] and as a two-label 
(edge,non-edge) process. A line process model assumes that 
there is a possible “imaginary line” in between the center 
pixel and a neighborhood pixel. Examples of cliques with 
line processes are shown in Figure 4. In this paper, we will 
only consider models with line processes. 

To implement a line process, first an edge detection al- 
gorithmin the form of two l-D 2-pixel differences (one hor- 
izontal and one vertical) should be applied followed by an 
appropriate threshold. I-D operators are required to find 
line sites between pixels whereas most edge detectors such 
as Sobel find edges on top of the pixel lattice since they op- 
erate on a 3-pixel window (i.e., compute the distance be- 
tween the neighbors of the central pixel and placing the 
result at the central pixel site) [7]. In the case of a color 
or multispectral image, a distance measure should be used 
[ 171. In this research since the transformed R’G’B’ space is 
used, the vector angle measure will be used as the distance 
measure. 

Furthermore, to effectively implement line processes, a 
second order model will be needed and several changes to 
model (6) will be required. For example, if there is an edge 
present at a line site d, then the energy term associated with 
the two pixels bordering that site should be set to zero since 
the bond is “broken”. However, if there is no edge, then 
the energy term remains as before. Furthermore, the bound- 
ary length constraint, which is composed of cliques of size 
two in (6), would be replaced by cliques of size four in the 
new model (these would be the only non-zero cliques [6]). 
Cliques of size four are shown in Figure 4 with their energy 
values. So while model (6) implicitly models edges using 
the boundary length constraint, the new model would do this 
explicitly using line processes. 

Model (6) can then be reformulated to account for line 
processes in the following manner: 

where V represents the edge pattern value of the clique as 
shown in Figure 4. 

The primary drawback with (6) is that it is strictly a lo- 
cal, pixel-neighbor model and suffers from the same prob- 
lems as other region-growing approaches: two vastly dif- 
ferently colored pixels may be grouped into a single region 

Fig. 5. Boundary length problem: both regions have the 
same boundary length, although very different volumes. 

if they are linked by noisy or intermediately-colored pix- 
els. A second undesired effect is that N constrains only 
the number of region labels, not the number of regions; that 
is, in regions of noise or color-gradients, (6) can generate 
a proliferation of small regions. Finally, the label criterion, 
controlled by p, measures boundary length, rather than re- 
gion volume (see Figure 5). Therefore, in regions where the 
vector-angle criterion is vague (that is, in saturated or dark 
regions), a large number of pixels may have to be fipped to 
see any change in the energy, implying that only the slowest 
of annealing schedules will successllly converge. 

There would be similar drawbacks with model (7). 
However, this model has the advantage of using explicit 
edge information whereas model (6) uses edge information 
implicitly. Both models could be improved by a region- 
merging step. Therefore, after the simulated annealing al- 
gorithm has converged, similar adjacent regions could be 
merged as long as the merging would lower the overall en- 
ergy U. This would be followed by applying the simulated 
annealing algorithm and iterating until convergence. This 
process would be carried out until no more regions could 
be merged. The region merging would effectively carry 
out a large pixel ‘‘llip” simultaneously, thereby, consider- 
ably accelerating the convergence process. Furthermore, 
small regions would be merged into adjacent larger regions 
through merging eliminating the second disadvantage. With 
a region-merging step, the first drawback would remain. 

Experiments are currently being carried out to verify 
these models and results will be presented at the conference. 

4. CONCLUSIONS 

We have presented a Markov Random Field-based model 
with a line process for shading and highlight invariant color 
image segmentation. The model’s invariance properties 
have been verified using the Dichromatic Reflection Model. 
Furthermore, the model is based on a vector angle differ- 
ence measure between color vectors and includes weights 
to take into account the reliability of calculating angles be- 
tween various vector pairs. The advantage of using a line 
process as a constraint over the boundary length is evident 
in its explicit rather than implicit edge representation. The 
disadvantage would be inaccuracies in the edge detection 
algorithm (especially the thresholding step). 

There are two immediate considerations for future work. 
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Furthermore, the limitation, as illustrated in Figure 5, of 
using the boundary length as an energy metric for each 
segmented region, should be revisited. The most obvious 
choice would be to prefer larger regions, where region size 
is measured by the number of pixels in the region. Although 
much more robust than boundary length, the number of pix- 
els is a non-local criterion, and is therefore computationally 
much less convenient. 

Finally, parameter estimation to obtain proper conver- 
gence of the MRF models is essential. In this paper, param- 
eter estimation was ad-hoc. A formalized parameter estima- 
tion technique needs to be applied to l l l y  evaluate the ad- 
vantages of the MRF models over vector quantization and 
region growing-based methods when applied to real scene 
images. 
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