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Abstract. A better understanding of cell behavior is very important
in drug and disease research. Cell size, shape, and motility may play a
key role in stem-cell specialization or cancer development. However the
traditional method of inferring these values manually is such an onerous
task that automated methods of cell tracking and segmentation are in
high demand. Image cytometry is a practical approach to measure and
extract cell properties from large volumes of microscopic cell images.
As an important application of image cytometry, this paper presents a
probabilistic model based cell tracking method to locate and associate
HSCs in phase contrast microscopic images. The proposed cell tracker
has been successfully applied to track HSCs based on the most probable
identified cell locations and probabilistic data association.

1 Introduction

One of the most important and common tasks for biomedical researchers is
cell tracking, which continues to be undertaken manually. Researchers visually
perform cell motion analysis and observe cell movement or changes in cell shape
for hours to discover when, where and how fast a cell moves, splits or dies.
This task is tedious and painful due to the often corrupted or blurred images,
the presence of clutter, fixing eyes for a long time, and repeating the same
task for different cell types. Furthermore, with the extent of cell imaging data
ever increasing, manual tracking becomes progressively impractical. As a result,
automated cell tracking systems are mandatory to further advance the study of
biological cells. Such a tracking system will require automatic object tracking,
usually under challenging conditions

A variety of semi-automatic or automatic methods have been proposed to
segment cell boundaries [T2I3]. These methods include thresholding, watershed,
nearest neighborhood graphs, mean shift procedure and deformable models.
Overall, these can be divided into three major categories: boundary based, region
based, and thresholding.

Markiewicz et al [4] have used watershed for the segmentation of bone marrow
cells. Thresholding methods have been used by Wu [5] and Glasbey [6]. Different
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Fig.1. (a) Phase contrast microscope image. (b) A mature cell is splitting. (c) Cell
model superimposed on original HSC image.

techniques have been used for choosing a suitable threshold, such as calculating
the image variance to separate the cell from the background [5], assuming the
intensity of the background to be uniform with a low variance while cell intensity
variance is high. Comaniciu et al [7] proposed a mean shift procedure method for
cell image segmentation for diagnostic pathology. Geusebroek et al [8] introduced
a method based on Nearest Neighbor Graphs to segment the cell clusters. Meas-
Yedid et al [9] proposed a method to quantify the deformation of cells using
snakes.

Due to the large number of cell types having different features such as shape,
size, motility, and proliferation rate, designing a universal cell tracking system is
impractical. In this paper, we focus on Hematopoietic Stem Cells (HSCs), which
proliferate and differentiate to different blood cell types continuously during
their lifetime, and are of substantial interest in gene therapy, cancer, and stem-
cell research. A novel cell tracking system is developed based on a probabilistic
cell model which effectively detect cells and a joint probabilistic data association
which associate detected cells over time.

2 Proposed Model-Based Cell Tracking

As a crucial step towards fully automatic cell tracking, an effective cell localiza-
tion/segmentation method is needed. To keep cells alive and dynamically active,
light exposure must be controlled during their life cycle. The limited light expo-
sure and cell transparency both contribute to the very low contrast, moreover
most of the cell staining techniques which are used to increase the contrast
between cell areas and background undesirably stain different parts of a tis-
sue unevenly, causing inhomogeneity. Fortunately the HSCs in our study have
a fairly regular shape and brightness pattern. Hence, a segmentation method
which exploits this useful information should be able to perform better than
simple thresholding.
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2.1 Cell Image Model

HSCs must be prepared befor imaging. HSC sample preparation is a two stage
process:

1. Extract and process mouse bone marrow.
2. Process and culture the HSCs.

After preparation HSCs are imaged using manual focusing through a 5X phase
contrast objective using a digital camera (Sony XCD-900). Images are acquired
every three minutes. When a cell division is observed, the progeny are imaged at
higher magnification using a 40X DIC objective. A typical HSC phase contrast
image is depicted in Fig. [l

From Fig. [[l we observe that HSCs can be characterized as an approximately
circular object with a dark interior and a bright boundary. During splitting, a
mature cell is divided to give birth to two new cells, as marked by a circle in
Fig.[[((b). The radius of these new cells is slightly smaller than that of their par-
ent. The phase contrast imaging technique leads to an asymmetric cell boundary,
one side dark and the other side bright. So rather than a heuristic threshold-
ing approach, the specific, consistent cell attributes observed should allow us
to formulate a far more specific model, essentially a matched filter, to be more
robust to noise and low contrast. We propose to consider the following criteria:
Cell size, Boundary brightness, Interior brightness, and Boundary uniformity or
symmetry. These criteria are combined to formulate the probability of a cell in
image I}, at location (., y.) and radius r

_ _ r

P(l'ca Ye, 7”|Ik) = Pcb(B(xca Ye, T)) . }Dic(B(xca Ye, 2)) . Pcdf(D(Cdf(B))) (1)
where the meanings of the individual terms P, Pi. and P.4s will be elaborated
in the following sections.

2.2 Probability of Cell Boundary P,

As depicted in Fig.[l(c), to model a dark region surrounded by a bright boundary,
the proposed cell model consists of two concentric circles, with the radius of the
internal circle being half of that of the external one. The external circle represents
the bright boundary while the internal one represents the dark region inside a
cell. Assuming (x.,y.) and r as center coordinates and radius of the exterior
circle respectively, the continuous circle is discretized spatially as

|($z - xc)2 + (yz - yc)2 - 7ﬂ2| S 623 (2)

where (x;,y;) are coordinates of circle boundary pixels and e is half a pixel.
Function B;(z., ye, ), which is a vector returning the intensity of all boundary
pixels, is defined as

Bi(l‘C, Ye, T) = {[(xi7yi)7 |(xl - xc)z + (yz - yc)2 - Tz‘
<eandi=1,2,.., N}, (3)
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where NN is the total number of pixels located on the cell boundary. In our
implementation, a rotation angle of 20° is adopted, and the total number of
boundary pixels (N) is equal to 18. The probability of cell boundary P is
assumed to be Gaussian with mean p., and variance O'gb

Pcb(B(xw Ye, ’I“)) ~ N(/J’Cb7 0'31;), (4>

where B(z.,ye,7) is the average cell boundary intensity

N
. = Bz TeyYe, T
Blre,yer) = 2t D ven), 9

2.3 Probability of Cell Interior P;.

The interior dark region of a cell is represented by the internal circle in the
proposed model. Assuming (z.,y.) and } as center coordinates and radius of
the interior circle, it is discretized as

r2
(= w0 (e — < € (6)
The probability of dark region inside the cell P;. is assumed to be another
Gaussian distribution with mean j;. and variance o2,

D) ~ Nptie, 02), (7)

PiC(B(xw Ye, 2

where B(wc, yec, 5) is the average intensity of cell interior region.

2.4 Probability of Uniformity of Cell Boundary P.q4f

Despite having an asymmetric boundary, both dark and bright sides of the cell
boundary maintain almost uniform intensities. To maximize the likelihood of
cell detection, an empirical cumulative density function (CDF) is calculated
to discriminate uniform background from the cell boundary. The CDF on cell
boundary pixel intensities is computed by

= Zﬁfl Bi(xmyw’r)
cdfn(B(xe,Ye, 1)) = 25 ,
Ifn(B(ze, ye, 1)) N - B(ze, yor 1)

nel:N (8)
A distance function D(cdf) is defined to find the maximum non uniformity of
cell boundary, i.e., the maximum cumulative distance of cell boundary intensities
from local mean:

n
D = —
(cdf) = maz ledfn = | 9)
An exponential function P4 (D) is used to penalize the non uniformity in cell
boundary:

P.gs(D) = exp{—2- N - D(cdf)} (10)
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Fig. 2. Measurement hypothesis for frame k which is generated based on image frame
k (I) by thresholding the local maxima map

2.5 HSC Tracking

A joint probabilistic data association (JPDA) method is proposed to solve the
object tracking problem. A probability map is obtained by applying the cell
model to the microscope image. The measurements are inferred from the input
microscope image by finding the local maxima in the probability map and
thresholding the local maxima map. As depicted in Fig. 2l the local maxima
which are at least §D apart in the probability map P, are located and the
generated local maxima map is thresholded to obtain a set S, of local maxima
which are §D apart and are greater than a threshold 75,

g _ Location : xﬁ,u xzyz, - xzvq
Th Probability:Pk(x’,z’l)7 Pk(xZ’Q), - Pk(l‘z’q)

This set is considered as HSC centre candidates. To track the HSCs over
time, each detected cell in the current frame must be associated to the proper
one in the previous frame as depicted in Fig. Bl To achieve this goal a distance
matrix D is generated to determine the validation gate of each cell as

D = {djﬂ‘, ] < [I,Mk_ﬂ and i € [1,Mk]} (11)

where Mj,_1, the number of rows is equal to the number of cells in previous frame
k — 1 and Mj, the number of columns is equal to the number of detected cells
in the frame k. Each element d; ; shows the euclidian distance between detected
cell j in frame k and identified cell 7 in frame k — 1.

The displacement of HSCs over time can be considered as a random walk,
hence a probabilistic validation gate is obtained by considering a Gaussian mo-
tion. A Gaussian function N (0, o)

Pd;; ~ N(0,0’) = ]71) (12)
is applied on the distance matrix to obtain a Gaussian probability distance
matrix. Each element P;; of this matrix shows the probability of associating
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Fig. 3. Cell centre association over time

detected cell j in frame k to identified cell ¢ in frame k£ — 1 and is higher if they
have smaller distance.

To associate the cell centers, a zero scan joint probabilistic data association
is considered as

P(fel fier)= [  max(Pii, Pr) - [[max(P;i, Pr) - [ Page (13)
N

FEM, My _1] ~FNN

where Pr is probability of false alarm and is assumed as a constant, Phge is
age penalty which means cell split may not occur sooner than a minimum age,
S =~ F'N N is the set of splitted cells, F' and N are

F :{i| i € {False alarm}}
N :{i| i € {New detected objects}} (14)

3 Results

By applying our proposed model based tracking method to the phase contrast
microscopic images, first a probability map of cell centers is obtained for each
frame. To further identify the cell centers, the probability map is thresholded
and local maxima are located. Eventually the detected cell centers are associated
based on proposed JPDA method.

Fig. @(a) shows the detected cell centers which is obtained by applying the
proposed probabilistic cell model, locating the local maxima in the probability
map and thresholding the local maxima map. Results obtained by applying the
proposed tracking method are depicted in Fig.@(b). As can be observed from Fig.
E(b), by applying our probabilistic model based tracking to depicted HSC image
sequence, it is able to identify and associate all cell centers correctly not only
in the non splitting case but also in the more challenging splitting case. Color
coding is used to high light associated cell centers such that different colors show
the association of cell centers over time.
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(a)

(b)
Fig.4. (a) Detection of non splitting and splitting cell centers. (b) Associated cell
centers superimposed on original HSC image such that each color shows a different cell

track over time (from left to right).

4 Conclusions and Discussions

The fields of bioinformatics and biotechnology rely on the collection, processing
and analysis of a huge number of bio-cellular images, including cell features such
as cell size, shape, and motility. This paper presents a probabilistic model based
cell tracking method to locate and associate HSCs in phase contrast microscopic
images. Our statistical cell model, which is constructed after carefully observ-
ing HSCs in typical image sequences, captures the key properties of HSCs. By
matching the image data with the cell model, a probability map of cell centers
is generated for each frame. Cell centers are located by further thresholding the
probability map and locating the local maxima. Cell association is accomplished
based on a joint probabilistic data association in which random walk is consid-
ered to model the cell motion. It can be seen from the previous section that such
a probabilistic model- based cell tracking method has produced very promising
results.

Our future work includes further improving the cell model to more accurately
reflect unique properties of the cells under different conditions and to fuse infor-
mation from adjacent image frames to make the method more robust to noise
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and clutters. Designing a parametric cell shape with more degrees of freedom
has also been considered as future work to adapt the proposed model to other
cell types.
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