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ABSTRACT

In this paper, a novel approach for performing blind decor-

relation of SAR data is proposed. A patch-wise computation

of the point-spread function (PSF) is performed directly from

the SAR data to account for spatial nonstationarities present

in SAR. The problem of estimating the PSF is formulated

as an additive source separation problem in the frequency

domain, and is subsequently solved using a Bayesian least

squares estimation approach based on a Fisher-Tippett log-

scatter model. Experimental results using both simulated

SAR data and real RADARSAT-2 SAR sea-ice data showed

that the proposed decorrelation approach can successfully

learn the correct PSF and significantly reduce the correlation

in SAR data.

Index Terms— decorrelation, SAR, Bayesian least squares

1. INTRODUCTION

The use of synthetic aperture radar (SAR) has become an in-

tegral part of terrestrial and environmental monitoring appli-

cations, such as sea-ice monitoring [1] and land cover classi-

fication [2]. In SAR imaging systems, electromagnetic pulses

in the microwave range (e.g., C-band for RADARSAT-1) are

transmitted towards the surface of the Earth. The amplitude

and phase signals at the receiver are then combined as if they

were produced from a much larger antenna than the one used

to transmit and detect the pulses, thus creating a large syn-

thetic aperture.

An important challenge faced in SAR imaging is the pres-

ence of speckle, which arises from the constructive and de-

structive interference of the backscatter signal. Such complex

speckle patterns occlude important details, thus limiting the

level of accuracy that can be achieved when analyzing such

data. While a large number of new despeckling algorithms

have been proposed [3, 4, 5], the performance of such meth-

ods are often limited due to the fact that a majority of such

methods do not account for the coherence between backscat-

ter signals, resulting in correlated speckle patterns. There-

fore, an important step in SAR data reconstruction may be the

decorrelation of the SAR data, which can then be processed

using existing despeckling algorithms to greater effect. Such

decorrelation is often difficult since the point-spread function

(PSF) of the SAR imaging system is not readily available.

In this paper, we investigate a new Bayesian source sep-

aration approach to blind decorrelation of SAR data, where

the PSF is estimated directly from the SAR data. The key

contribution is the patch-wise computation of the PSF, to ac-

count for spatial nonstationarities. Interestingly, similar non-

stationary PSFs are present in medical ultrasound data, and

this method should have similar applicability there. The pro-

posed method for blind decorrelation of SAR data is pre-

sented in Section 2. The experimental results using both syn-

thetic SAR data and real RADARSAT-2 SAR sea-ice data are

presented in Section 3. Finally, conclusions are drawn and

future work are presented in Section 4.

2. METHODOLOGY

Assuming linear wave propagation and weak scattering, the

received signal f is modeled as the convolution

f(x, y) =

∫ ∫
h(x, y, α, β) · r (α, β) dαdβ+m(d, θ), (1)

where h is the PSF of the imaging system, m is all phenom-

ena not accounted for by h, and r is the reflectance function

defining the population of scatterers. While h is not spatially

invariant, to simplify the model, h is commonly assumed to

be spatially invariant within a sufficiently small region. As

such, a segment from f , denoted as f ′, can be modeled as the

convolution of a linear, space-invariant PSF h′ and a segment

of the reflectance function r′:

f ′(x, y) = h′(d, θ) ∗ r′(x, y) +m(x, y), (2)

Based on f ′, the demodulated, in-phase/quadrature data g′

can be expressed as

g′(x, y) = f ′(x, y) + jC (f ′(x, y)), (3)

where C denotes the Hilbert transform. To decorrelate f ′, we

must first estimate h′. Given the linear nature of the demodu-

lation step, f ′ can be computed by taking the real part of g′.
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Fig. 1. Decorrelation results using simulated speckle

The Fourier transform of (2) is then

F ′(u, v) = H ′(u, v)R′(u, v) +M(u, v). (4)

where H ′, R′, and M are the Fourier transforms of h′, r′, and

m, respectively. Assuming that the phenomena not accounted

for by h′ have little effect on the system, we simplify (4) by

ignoring M , we can decouple H ′ and R′ by performing the

logarithm transform on (4):

log{|F ′(u, v)|} = log{|H ′(u, v)|}+ log{|R′(u, v)|}. (5)

Given (5), the problem of estimating H ′ becomes an addi-

tive source separation problem, where the goal is to separate

log{|H ′(u, v)|} from log{|R′(u, v)|}. We model the problem

as Bayesian least squares

Ĥ ′
l(u, v) = argmin

H′
l(u,v)

{
E

[(
H ′

l(u, v)− Ĥ ′
l(u, v)

)2

|F ′
l (u, v)

]}
,

(6)

where H ′
l(u, v) = log{|H ′(u, v)|} is the log-Fourier trans-

form of the PSF segment, and F ′
l (u, v) = log{|F ′(u, v)|}

is the log-Fourier transform of the received signal seg-

ment. From (6), the analytical solution is well known to

be Ĥ ′
l(u, v) = E [H ′

l(u, v)|F ′
l (u, v)]. If we follow the com-

mon assumption that the prior p(H ′
l(u, v)) is uniform in the

situation where no prior information is known, the Bayesian

estimator can be simplified to be a function of the likeli-

hood p(F ′
l (u, v)|H ′

l(u, v)). Based on the common Gaussian

scatter model for R′, R′
l follows a Fisher-Tippett distribu-

tion [6]. Therefore, the likelihood p(F ′
l (u, v)|H ′

l(u, v)) can

be expressed as

p(F ′
l |H ′

l) = 2 exp

[
2 (F ′

l (u, v)−H ′
l(u, v))− ln 2σ2

F ′
l

− exp
[
2 (F ′

l (u, v)−H ′
l(u, v))− ln 2σ2

F ′
l

] ]
.

(7)

After estimating Ĥ ′
l , H

′ can be computed by taking the expo-

nential transform and, finally, the SAR data F ′ can be decor-

related using the Wiener filter.

3. EXPERIMENTAL RESULTS

To validate the proposed decorrelation methodology, we in-

vestigate its performance using both simulated SAR data and

real RADARSAT-2 SAR sea-ice data obtained from the Cana-

dian Ice Service (CIS).

Figures 2 and 3 show the effect of the proposed decorrela-

tion. That the simulated tests involve realistic assumptions is

supported by the similarity in behaviour of the decorrelation

in both simulated and real cases. The actual decorrelation of

a small synthetic data patch was shown in Figure 1. At least

for that one example, the ability to learn the correct PSF, to

successfully decorrelate the patch, is clear.

The most impressive results are shown in Figure 4, where

the method is applied to a large (1041 × 1041) sea-ice SAR

image. The method is applied patch-wise, to take into account

the spatial nonstationarities present in SAR. The sharpness of

the decorrelated and despeckled image is striking, and would

lead to improved classification, particularly in the small, elon-

gated bright and dark morphological features.

4. CONCLUSIONS AND FUTURE WORK

In this paper, a new blind decorrelation method for SAR data

was introduced. A patch-wise estimate of the PSF was ob-

tained directly from the SAR data using a Bayesian source

separation strategy in the frequency domain. The ability to

accurately estimate the PSF and significantly reduce correla-

tion in SAR data was demonstrated using both synthetic SAR

data and real RADARSAT-2 SAR sea-ice data. Given the

promising results obtained, future work involves applying the

method to additional samples of SAR data, and then coupled

with tests on classification algorithms, to test the efficacy of

the decorrelation approach in improving SAR image analysis.

Related tests will be performed on medical ultrasound im-

ages, which suffer from more striking nonstationarities than
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Fig. 2. Autocorrelation functions based on simulated data.

Fig. 3. Autocorrelation functions based on real, correlated RADARSAT-2 SAR sea-ice data.

SAR, and frequently also with much inferior signal-to-noise

ratios, where a decorrelative approach would have much to

offer.
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Real Correlated RADARSAT-2 Decorrelated & Despeckled

Fig. 4. Decorrelation results using an example RADARSAT-2 SAR sea-ice scene
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