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Abstract. The performance of Support Vector Machines (SVMs)
is highly dependent on the choice of a kernel function suited to the
problem at hand. In particular, the kernel implicitly performs a feature
selection which is the most important stage in any texture classification
algorithm. In this work a new Gabor filter based kernel for texture
classification with SVMs is proposed. The proposed kernel function is
based on a Gabor filter decomposition and exploiting linear predictive
coding (LPC) in each subband, and exploiting a filter selection method
to choose the best filters. The proposed texture classification method
is evaluated using several texture samples, and compared with recently
published methods. The comprehensive evaluation of the proposed
method shows significant improvement in classification error rate.

Keywords: Texture Classification, Support Vector Machine, Linear Pre-
dictive Coding, Gabor Filters, Segmentation.

1 Introduction

Texture analysis has been an active research field due to its key role in a wide
range of applications, such as industrial object recognition [1], classification
of ultrasonic liver images [2] or the detection of microcalcification in digitized
mammography [3].

Texture classification algorithms generally include two crucial steps: feature
extraction and classification. In the feature extraction stage, a set of features are
sought that can be computed efficiently and which embody as much discrimina-
tive information as possible.

The features are then used to classify the textures. A variety of classifiers
have been, and we propose to use support vector machines (SVMs) which have
been shown to outperform other classifiers [4]. The superiority of SVMs origi-
nates from their ability to generalize in high dimensional spaces focusing on the
training examples that are most difficult to classify.

SVMs can be effective in texture classification, even without using any exter-
nal features [5]. In fact, in the SVM feature extraction is implicitly performed by
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Fig. 1. A linearly nonseparable problem (Left) is converted to a linearly separable
problem (Right) using a non-linear transform.

a kernel, which is defined as the dot product of two mapped patterns, and the
proper selection of this kernel can significantly affect the overall performance of
the algorithm.

The main focus of this paper is to propose a new kernel function and to
investigate the effectiveness of external features. Specifically, we propose to use
linear predictive coding (LPC) [6] in subbands of Gabor filters bank to extract
efficient sets of features. While most filter bank based methods require sophis-
ticated feature selection methods to reduce the dimensionality of the feature
space, our method takes advantage of high dimensionality due to the intrinsic
ability of SVMs to generalize in high dimensional spaces.

The rest of this paper is organized as follows. In Section 2 the SVMs are
reviewed, in Section 3 the proposed kernel and filter selection algorithm are
presented, Section 4 dedicated to experimental results.

2 SVM Review

The principle of SVMs is to construct a hyperplane as the decision surface in such
a way that the margin of separation between training samples of different classes
is maximized. Since a basic linear SVM scheme is not applicable to practical cases
(which are not linearly separable), non-linear SVMs are widely used, in which
a nonseparable pattern becomes separable with a high probability if projected
into a nonlinear feature space of high dimensionality.

Given x from the input space, let {Φj(x)}m
j=1 denote the m non-linear fea-

tures. Then, a linear decision surface in the non-linear space is:

m∑

j=1

wjΦj(x) + b = 0 (1)
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given the two-class training samples {(xi, yi)},yi ∈ {−1, 1}, the weight coeffi-
cients w can be found by solving an optimization problem [7]:

J(w, α, ξ, b) =
1
2
wT w + C

N∑

i=1

ξi −
N∑

i=1

αi[yi(wT Φ(x)i + b) − 1 + ξi] (2)

where C is a regularization selected by the user, and the nonnegative variables
αi are the Lagrange multipliers. In particular, Lagrange Multipliers are solved
in a dual form:

N∑

i=1

αi − 1
2

N∑

i=1

N∑

j=1

αiαjyjK(xi,xj) (3)

which leads to the non-linear SVM classifier:

f(x) =
N∑

i=1

αiyiΦT(xi)Φ(x) + b =
N∑

i=1

αiyiK(xi,x) + b (4)

where the kernel function K(., .) is:

K(x1,x2) = ΦT(x1)Φ(x2) (5)

as can be seen in (3) and (4), the nonlinear mapping Φ(.) never appears explicitly
in either the dual form or in the resulting decision function. Thus it is only
necessary to define K(., .) which implicitly defines Φ(.). Our proposed kernel is
presented in the next section.

3 LPC Kernel for Texture Classification

The performance of SVM classifier is strictly dependent on the choice of a SVM
Kernel K(., .) suited to the problem at hand. In this section we introduce a new
kernel based on LPC and Gabor filters.

3.1 Linear Predictive Coding

Linear predictive coding (LPC) is a popular and effective technique in signal
processing [6], which models a given signal s(n), can be approximated as p-th
order autoregressive:

s(n) =
p∑

i=1

ais(n − i) + Gu(n) (6)

where GU(n) is an hypothetical input term.
The linear prediction model indicates that a signal s(n) can be estimated by

an all pole system of order p with a scaled input u(n). Proper selection of LPC
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Fig. 2. Discrimination ability of LPC for two typical textures. Dotted curves show the
error margin within +/- standard deviation (std)

order leads to efficient presentation of the signal with reasonable discriminative
power. Fig.2 shows discrimination ability of LPC. In this figure two typical
textures A and B are considered. In Fig.2a LPC model of A is used to estimate
several texture samples from A and B. In Fig.2b LPC model of texture B is used
for the same experiment. Average estimation errors show strong discrimination
ability for LPC model.In this paper we propose to use LPC (ai) as features for
texture samples in the subbands of Gabor filters bank.

3.2 Gabor Filter

Filter banks have the ability to decompose an image into relevant texture features
for the purpose of classification. Multi-channel filtering is motivated by its ability
to mimic the human visual system (HVS) [8] sensitivity to orientation and
spatial-frequency. This has led to a HVS model consist of independent detectors
each preceded by a relatively narrow band filter tuned to a different frequency.

In this way, Gabor filters are motivated to be used due to their ability to be
tuned into various orientations and spatial-frequencies. In the spatial domain a
Gabor function is a Guassian modulated by exponential:

F (x, y) = exp(
−1
2

[
x2 + y2

σ2 ]).exp(j[kxx + kyy]). (7)

In this study twenty filters are constructed using five spatial radial frequencies
(ω) and four orientations (θ) as recommended in [9]. where:

ω = 2π
√

k2
x + k2

y, θ = arctan(
kx

ky
) (8)
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3.3 Proposed SVM Kernel

Given an L × L image window x and a bank of filters {F (α), α = 1, 2, ..., K},we
obtain subband images x(α) = F (α) ∗x. LPC of x(α) are denoted as Ax(α) which
is a p × 1 vector . LPC order (p in (6)) was experimentally set to L. Motivated
by the SVM kernel exploited in [10] for signal classification, we propose the
following kernel:

K(xi,xj) = exp − 1
2η2 [

q∑

α=1

L∑

n=1

(Āxα
i
(n) − Āxα

j
(n))2] (9)

which complies with the Mercer’s theorem [4].
A filter selection algorithm is used to pick q best filters among K existing

filters. The notation Āxα
i

emphasize the normalization of the LPC values:

Āxα
i
(n) =

Axα
i
(n)

∑L
n=1 | Axα

i
(n) |

(10)

3.4 Filter Selection

In a filter bank some filters are more effective in discriminating features of
a given set of textures. To address this issue, we propose a method of filter
selection to optimize classifier performance. To achieve this goal we divide
training samples into two disjoint subsets, training subset (T ) and validation
subset (V ) known as cross-validation [11]. Our filter selection algorithm is as
follows:

Step0) B = {F (1), F (2), ..., F (K)} and S = φ
Step1) For each filter in B train classifier over T and find classifier

gain GS
⋃

{F (α)} over V

Step2) β = arg max(GS
⋃

{F (α)})

Step3) E = GS
⋃

{F (β)} − GS , B = B − {F (β)} , S = S
⋃{F (β)}

Step4) repeat step 1 to 3 while E > ε

4 Comparison with Existing Methods

To verify the effectiveness of the proposed method(LG-SVM), experiments were
performed on classification and segmentation of several test images. The test im-
ages were drawn from two different commonly used texture sources: the Brodatz
album [12] and the MIT vision texture (VisTex) database [13]. All textures
are gray-scale images with 256 levels. The classifiers were trained on randomly
selected portions of subimages that are not included in the test images. Gray
scales were linearly normalized into [−1, 1] prior to training and test.

The classification results are compared with original SVM [5] as well as logic
operators [14], wavelet transform [15], filter banks [16], and spectral histogram
[17]. The segmentation result is compared with optimal Gabor filter method [9].
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Fig. 3. Texture images used in experiments (D# is the numbering scheme in the Bro-
datz album) (a)D4, D84 (b)D5, D92 (c) D4, D9, D19, and D57 (d) Fabric.0007, Fab-
ric.0009, Leaves.0003, Misc0002, and Sand.0000 (from [13] )

Images in Fig.3 are 256 × 256. Classifiers were trained by 1000 patterns
from each texture. This corresponds to about 1.7 percent of the total available
input patterns. The results are compared at different window sizes of 9× 9, 13×
13, 17 × 17,and 21 × 21. The original SVM shows the optimal classification rate
at window size 17 × 17. In the proposed optimized SVM the classification error
rate decreases by increasing window size. Classification error rates are presented
in Table 1. The proposed method outperforms the original SVM specifically in
larger window sizes.

In order to establish the superiority of the LG-SVM, its performance is com-
pared with the recently published methods. In the literature, texture classifi-
cation methods are evaluated both in overlapped and non-overlapped cases. In
non-overlapped case, not only there is no intersection between training and test
samples but also there is no overlap between them. Our proposed method is
evaluated in both cases. In Logical Operators [14] and wavelet co-occurrence
features method [15] overlapped samples are used. Results are listed in Table 2.
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Table 1. Error Rates (percent) for two-texture and multi-texture images.

Fig.3a Fig.3b Fig.3c Fig.3d
window size SVM LG-SVM SVM LG-SVM SVM LG-SVM SVM LG-SVM
9 × 9 12.7 9.6 14.6 14.2 22.3 15.2 21.8 14.5
13 × 13 9.4 7.6 12.1 11.2 17.3 11.9 20.0 10.3
17 × 17 8.6 4.1 11.9 7.3 16.1 8.7 18.5 7.2
21 × 21 13.0 1.2 15.6 5.0 21.8 7.1 19.7 4.3

In spectral histogram method [17] and filters bank [16] non-overlapped samples
are used (Table3). In each case parameters (e.g. sample window size, number of
test and train sample) are set accordingly. The results of segmentation using pro-
posed method are shown and compared with optimized Gabor filter method [9]
in Fig.4.

Table 2. Comparison of Error Rates in Logic Operators and Wavelet based method
with LG-SVM

Texture Logic Operators LG-SVM Texture Wavelet LG-SVM
D15 11 11 Bark.0006 7 11
D19 3 0 Clouds.0001 6 0
D52 19 0 Fabric.0017 2 0
D65 16 0 Grass.0001 21 4
D74 27 19 Leaves.0012 8 6
D82 14 2 Misc.0002 2 0
D84 28 5 Sand.0002 3 0

Table 3. Comparison of Error Rates with Filters Bank method and Spectral Histogram

Texture Best Filter Bank in [16] Spectral Histogram LG-SVM
Fig.11h in [16] 32.3 16.9 14.7
Fig.11i in [16] 27.8 20.9 15.6

5 Conclusions

This paper described an SVM classification method based on a kernel con-
structed on Gabor features derived by LPC. The proposed kernel creates a
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(a)
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Fig. 4. Segmentation: (a)original image (b) LG-SVM (c) LG-SVM after smoothing (c)
Optimized Gabor Filters [9]

feature space with more chance of separability at higher dimension. Excellent
performance on different textures where achieved. It was shown that the pro-
posed method outperforms recently published methods.

In this paper 1-D LPC and all pole model were used for feature extraction.
Motivated by the success of this method, using 2-D LPC and zero-pole (ARMA)
model are being pursued by the authors.
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