A Novel Algorithm for Extraction of the Layers of the Cornea
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Abstract

Accurate corneal layer boundary extraction from optical
coherence tomography can provide precise layer thickness
measurements required in the analysis of corneal disease.
This paper establishes a novel approach to precisely obtain
the five primary corneal layer boundaries. The proposed
method determines correspondence relationships between
the layer boundaries to facilitate robust boundary extrac-
tion in the presence of noise and artifacts. The first phase
of the method applies morphological operators to enhance
the prominent structural features of the cornea. The second
phase uses a semi-automated segmentation algorithm to ex-
tract the upper and lower boundaries of the cornea; these
boundaries are used to register the corneal image. The final
phase extracts all five boundaries using a global optimiza-
tion method exploiting the medial correspondence relation-
ship between each layers.

The proposed method is tested and verified using a rep-
resentative set of optical coherence tomography images and
compared against several state of the art methods. The pro-
posed method is demonstrated to be more robust to noise, to
provide more accurate segmentation results, and to require
fewer user interactions than the other published methods.

1. Introduction

The adult cornea is only about 1/2 millimeter thick and is
comprised of five layers: epithelium, Bowman’s membrane,
stroma, Descemet’s membrane and the endothelium [1, 8].
The precise measurement of the thickness of all cornea lay-
ers is essential for the analysis of corneal swelling, acido-
sis, and altered corneal oxygen consumption [9]. To obtain
corneal images, optical coherence tomography (OCT) tech-
nology is used to capture the internal structure of the cornea.
The images produced using OCT are characterized by low
signal to noise ratio and image non-homogeneities. Robust
and accurate boundary extraction poses a great challenge.

Kostadinka et al. [14] first captured the cornea layers
using a high speed, ultra high refractive optical coherence

tomography (UHROCT) imaging technology and then ap-
plied image processing algorithms, such as Fuzzy Type II
wavelet despeckling. Although the images have been cap-
tured and denoised, there is no computer vision literature
related to corneal layer boundary extraction to obtain the
precise measurement of layer thickness.

However, existing methods such as active contour [2,
4,7, 10], intelligent scissors [5], enhanced intelligent scis-
sor [12], and edge relaxation and linking techniques could
be adapted for segmentation of the layers of the cornea.
Active contours or deformable models, fully-automatic seg-
mentation approaches, are typically used to extract the layer
boundaries. Unfortunately, none of these approaches are
suitable for corneal layer extraction because the layers of
the cornea are characterized by low signal to ratio. Con-
sequently, these fully-automated segmentation methods are
not capable of extracting layer boundaries. Rather, rigid
model based approaches are preferred.

Mortenson et al. [5] first introduced intelligent scissors
(IS), a semi-automatic segmentation algorithm, which as-
sists the user during the interactive segmentation process.
The user interaction allows the process to take advantage
of user knowledge when defining the boundaries. For this
method, the user selects seed points on the boundary and, as
the mouse moves along the boundary, the optimal bound-
ary path between the starting point and the current point
is obtained. There are two main advantages to this ap-
proach to segmentation. First, the segmentation is accom-
plished in real-time; this allows for rapid image segmen-
tation. Second, the boundary accuracy resulting from this
type of method is generally higher than automatic methods
since user knowledge is utilized throughout the process [5].

However, there are several drawbacks to existing IS-
based methods for precise measurement of cornea thick-
ness. First, like current automatic segmentation methods,
the boundary definition for existing IS methods rely on im-
age gradients; this dependence makes the algorithm sensi-
tive to contrast non-uniformities found in low signal to noise
ratios associated with OCT cornea images. Second, exist-
ing IS methods require the clinician to perform relatively
accurate manual tracing along the region boundary, which



can be time-consuming and laborious, particularly for com-
plex regions of interest. To overcome some of the problems
associated with IS, Wong et al. [12] proposed enhanced in-
telligent scissors (EIS) that uses phase-based representation
of the image as the external local cost, instead of the image
gradient. However, EIS approach alone is not suitable for
the extraction of the layers of the cornea.

To precisely locate the layers of the cornea, this pa-
per proposes a semi-automatic model based segmentation
method designed to minimize user input. First, the algo-
rithm identifies the epithelium (upper) and the endothelium
(lower) layer of the cornea using enhanced intelligent scis-
sor (EIS), a user-interactive semi-supervised segmentation
method. Second, a correspondence model is established be-
tween the upper and lower layer of the cornea using me-
dial axis transform (MAT). Finally, the boundaries are de-
termined from discrete optimization followed by parameter
estimation using prior information, the correspondence be-
tween layers extracted using medial axis transform relation-
ship.

The proposed method is described in Section 3. Sec-
tion 4 demonstrates the use of proposed method to extract
the layers of the cornea. Finally, the conclusion and future
research are discussed in Section 5.

2  Theory of the Proposed Method

The OCT corneal image contains five distinct layer
boundaries and is illustrated in figure 2. The epithelium and
endothelium outer boundaries have the highest contrast and
the Descemet’s membrane has the lowest contrast.

Several corneal images are initially segmented using the
following methods: a edge linking and relaxation label-
ing [6], parametric active contours [7, 4], geometric active
contours [10], optimal boundary detection [11] and edge-
free active contours [3] to extract the five layers of the
cornea. Unfortunately, none of these method give satisfac-
tory segmentation results for the corneal image. The failure
of these methods are due to following reasons:

e The OCT image has low signal to noise ratio and con-
tains image non-homogeneities.

e The boundary detection methods are dependent upon
the image gradient obtained from the noisy OCT im-
age.

e The inner boundaries of the OCT image are indistinct.

The poor performance of the geometric active contour, one
of the better segmentation algorithms, is illustrated in fig-
ure 1.

Instead, a model of the cornea is used to guide active
contours to segment the noisy image. Let the layer bound-
aries be represented using continuous parametric curves.
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Figure 1. The level set based geometric ac-
tive contour [10] fails to segment the layers
in the cornea due to very low signal to noise
ratio of the cornea image.

Let Q24.0(5), (s € [0,1], 2 € [0 —€,1+ €], 8 € [0,360]) be
a parametric curve, represented using a spline, deformable
model, or polynomial with s, the arclength as the parame-
ter. The parameter € is a small positive value allowing the
algorithm to search for boundaries in the neighborhood sur-
rounding @ = 0 and o = 1.

In literature [7, 4] the curve Q, (s) = §(s) is modeled
as an energy minimizing spline with total energy as:
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where Q¢ (s) and €,(s) are the first and second derivatives
of v(s) with respect to the arclength s, and the parameters
a(s), B(s) and y(s) are the penalties imposed on slope, cur-
vature and the external force of the active contours, respec-
tively. Typically, to allow convergence of the active contour
to the image edges, the energy is defined to be a function of
the image gradient (g),

Eope = ¢°(I) = (6G, + I)* 2)

for some first derivative of Gaussian (6G,,) with bandwidth
o, where x is the convolution operator and I € [0, 1] is the
intensity map of the cornea image.

The goal is to obtain the corneal boundaries by minimiz-
ing equation (1). However, as one can see from Figure 2
the layers of the cornea are not distinct. Therefore, the gra-
dient map alone is not able to attract the snake towards the
layers of the cornea. Further, the layer boundaries of the
cornea obey spatial statistics. Consequently, a model based
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Figure 2. Cornea image with layers of interest. The epithelium and endothelium layers of the cornea

are distinct while the other layers are obscured.

approach is suitable to segment the layers of the cornea. Un-
like the active contour which uses a deformable model, the
proposed method uses a prior model, 2, ¢(s) defined using
parameters « and 6 to represent the layer boundaries. The
proposed method assumes there is a correspondence rela-
tionship between the layers and that each layer can be repre-
sented using a piecewise continuous non-deformable linear
spline 2, ¢(s). The total cost associated with the spline is:

fle,0) = (1=1)*+g°(1))ds 3)
Q(a,0)(8)

The goal is to obtain optimal value of « and 6 corresponding
to the maxima of f(«, #), Mathematically,

[d,é] = arg max (f(a, 0)) “)

a,f

An efficient approach to solve (4) is provided in Section 3.

3 Proposed Approach

This section describes how the proposed approach ex-
tracts the corneal layer boundaries. The proposed approach
consists of three steps: 1) preprocessing 3.1, 2) obtaining
correspondence model 3.2 and 3) locating the layers of the
cornea 3.3.

3.1 Preprocessing

Preprocessing of the corneal image is performed to im-
prove the ability of EIS to snap to the outer and innermost
layer boundaries. This step improves the boundary con-
trast while reducing the contrast of other regions. Contrast-
limited adaptive histogram equalization (CLAHE) is ap-
plied to obtain more consistent contrast throughout the en-
tire image [17]. Morphological operators are then applied
in the preprocessing phase of this algorithm to enhance low
contrast edges on the epithelium and endothelium bound-
aries [15]. If these edges have higher contrast, IS will be
better able to snap to the boundaries.

The boundaries are first enhanced using multiple struc-
turing operators designed to enhance arch-like structures.
The open operator is applied to a grey scale image for a
horizontal line. The slope of the line is then increased and
the open operator is applied again so that the previous hor-
izontal response becomes connected to adjacent points on
the curved boundary. The slope of the line is increased and
the process is repeated, connecting all points on the curve.
The slope is then decreased from the horizontal to connect
points on the opposite side of the boundary layer, associated
with negative slope. Finally, Gaussian blurring is applied to
remove noisy edges and to create uniform regions that per-
mit the enhanced intelligent scissors to more easily snap to
the higher contrast boundaries.



3.2 Correspondence model

The proposed approach uses EIS [12], an user interactive
segmentation method, on the preprocessed image to extract
a rough outline of the epithelium and endothelium (Fig-
ure 2). Then, the proposed approach creates a correspon-
dence model based on the initial user defined boundaries of
the epithelium and endothelium layers; the two boundaries
are related using medial axis transform.

Let Q4,0(s), (s € [0,1]a € [0—¢,1+4¢], 8 € [0,360]) be
a parametric curve which can be represented using spline,
deformable model, or polynomial with s, the arclength as
the parameter.

The curve 2, ¢(s) can be defined from correspondences
between the user segmented curves associated with the ep-
ithelium and endothelium boundaries. When o = 0 and
6=0, Q0 (s) corresponds exactly to the user segmented ep-
ithelium boundary. Similarly, €,—=1,6=0(s) corresponds to
the user segmented endothelium boundary.

As o increases from 0 — e to 1 + €, 0, (s) transforms
from the epithelium boundary to the endothelium bound-
ary. This transformation relies on point to point correspon-
dences between the two boundaries. For each point, po—o,;,
on the epithelium boundary, the corresponding point on the
endothelium boundary, p,— ;, is determined using medial
axis transform theorem. This association can be represented
by a vector v; where p,,; = Pa=0,; + av;. When a = 1,
Pa=1,; corresponds to the curve Q,—1,9=0(s).

The parameter 6 determines the rotation associated with
the curve. Points p, ;, are rotated about p,, ;—¢ for values of
6. The points on the epithelium and endothelium boundaries
are defined for 6 = 0.

The function value €, ¢(s), and the axes «, theta, and
s are illustrated in Figure 3.

3.3 Extracting corneal layers

With curves Q=0 g=0(s) and Q=1 g=o(s) defined from
the user segmentation results, optimization techniques are
applied to search for feasible values of « and 6 that pro-
duce local maxima of equation (3). From the prior statics
obtained from segmenting several hundred cornea images
using the proposed algorithm, all five layers obey the same
correspondence relationship as the correspondence relation-
ship between epithelium and endothelium. Therefore, all
five layers have the same orientation; the orientation is fixed
at @ = 0. So, (3) can be written as

fla) = (1=1)*+g°(I))ds (5)
Qa,0)(5)

The goal is to obtain optimal value of « and 6 corresponding
to the maxima of f(«,#), Mathematically, from the prior

Qa,0=0(s)

Figure 3. The function value (2, ¢(s) is shown
in blue, and the axes o, theta, and s are shown
in black. The upper and lower boundaries, in
red, define the shape of the function , 4(s).

knowledge, the five peaks corresponding to the five layers
of the cornea are associated with the minima of f(«). How-
ever, the direct extraction of these peaks is difficult due to
the non-linear and noisy nature of the function f(«). There-
fore, the proposed algorithm incorporates prior knowledge
associated with the spatial location of the layers of the
cornea into f(a).

Based on a large sample set of 800 corneal images, a
probability density function in the form of a Gaussian mix-
ture model is created for the five values of « as follows:

5

Yla) = (R(ui, 1) 6)

i=1

Where p1; and o; are the mean and standard deviation of the
layers. Proposed approach obtains a bilateral function T («)
by:

T(a) = fa) xP(a). )

The five values of « corresponding to five significant peaks
of T («) are obtained and assigned to the five corresponding
corneal layer boundaries.

4 Test Results and Discussions

This section demonstrates the performance of the pro-
posed method compared to EIS and IS over a set of repre-
sentative corneal images. Other segmentation methods were
also tested, but, since they were dependent on the image
gradient, failed completely for the corneal images.



4.1 Methods Compared

In this section, the performance of the proposed method
is compared to enhanced intelligent scissors (EIS) and to in-
telligent scissors (IS); EIS and IS are both user interactive
segmentation methods. The proposed approach requires
user input when extracting the upper and lower layers of
the cornea. Using the user inputs to define the shape of the
cornea, the method accurately extracts all five layer bound-
aries. The performance of the level set (LS) [10] and gra-
dient vector flow based snake (GVFS) [16] was tested on a
subset of cornea images. Since, the images are noisy and
lack significant gradient information, LS and GVFS did not
produce any meaningful results on test data sets. Therefore,
LS and GVFS were excluded from further consideration.

4.2 Data Sets and Experimental Set up

The proposed algorithm was executed on corneal tomo-
grams acquired by Department of Physics and Astronomy
at the University of Waterloo. The images, containing 512
by 512 pixels, were obtained from three test subjects us-
ing a variety of OCT imaging techniques. One technique
produced a high contrast edge of the epithelium layer, lo-
cated at cornea to air interface. The focus of the tomogram
was centered at this point, which produced a high contrast
epithelium layer, but a low contrast endothelium layer. A
second technique inverted the corneal image by focusing
on the endothelium layer. Since the refraction index dif-
fered for each layer boundary, the second method produced
medium contrast for both the endothelium and epithelium
layers. The other, less preferable, imaging techniques pro-
duced artifacts within the corneal image; they created dark
artifacts through the apex of the cornea or vertical white
bands distributed over the entire cornea. These artifacts are
the result of imperfect hardware configurations and cause
the visibility of the corneal image to become obstructed.
The algorithms are evaluated for images representing each
type of technique.

In this section, the proposed method, EIS, and IS are
evaluated using five representative samples from the data
set that illustrate the various imaging techniques executed
during the data collection process. The segmentation results
were obtained using a dual core 2.5 GHz computer with 2
GB of RAM. The algorithms considered for evaluation are
implemented in Matlab R2008b.

4.3 Segmentation Results

The segmentation result of proposed method, EIS, and
IS across five cornea images are shown in Figure 4. Each
corneal image contains five layer boundaries that must be

segmented so that the thickness of each layer can be mea-
sured. In all test images, the proposed approach success-
fully extracts the layers of the cornea. The segmentation
results for EIS and IS primarily depend upon the interaction
capability of the user; better results are produced as the user
manually specifies more points. Both EIS and IS require
about 10 to 15 minutes for the manual user input for each
image to produce the level of accuracy shown in Figure 4.

To evaluate the accuracy of the algorithms, the ground
truth for each image is specified by manually selecting
points on each layer boundary. This process requires about
15 minutes of manual user input to specify over 100 points
for each image. The algorithms are evaluated by how close
the segmented boundaries are to the ground truth. For each
point along the ground truth boundary, the shortest distance
between the ground truth and the segmentation result is cal-
culated. The average distance and standard deviation is
computed for each layer. The results are summarized in
Figure 5.

On average, the proposed algorithm successfully locates
the layer boundary within 1.5 pixels of the manually speci-
fied ground truth. This algorithm typically requires the user
to specify only 4 points. In addition, when acquiring statis-
tics, about 800 images were segmented using less than 20
seconds worth of manual user input per image. The amount
of user interaction required to obtain the level of accuracy
permits large numbers of corneal measurements to be ob-
tained in sufficiently less time than is required for manual
segmentation.

The use of the EIS to outline the cornea and model of the
various layers allows the proposed algorithm to be capable
of greater accuracy than fully-automated algorithms by ac-
commodating significant amounts of noise. For the tests
sets with the greatest number of artifacts, image #1 and
image #3, the maximum deviation of the generated bound-
aries is within 4 pixels of the manually specified boundaries.
In addition, the algorithm also performs well for low con-
trast regions, such as image #>5.

When compared to the other methods, the proposed algo-
rithm produces boundaries that are closer to the ground truth
than those produced by EIS or IS. The standard deviation
for the proposed algorithm is also less, indicating a more
consistent boundary over the entire image. Although all
methods perform well for the higher contrast layer bound-
aries (the epithelium and endothelium), the proposed algo-
rithm performs significantly better than EIS and IS for the
middle layers, as shown in Figure 5. The proposed algo-
rithm provides a smoother curve that is less prone to noise
and artifacts present in many of the images, as shown in Fig-
ure 4. The proposed method also requires significantly less
user interaction. As a consequence, more accurate bound-
aries can be measured from minimal user input.



Proposed method EIS [12] IS [5]

Figure 4. Demonstration of the performance of proposed method compared to other published meth-
ods across five cornea images. Column 1: results obtained using proposed approach. Column 2-3:
results obtained using enhanced intelligent scissor (EIS) and intelligent scissor (IS). From top to
bottom the images contain the following artifacts: multiple white bands distributed over the entire
image, a single white band on the left side of the image, a dark artifact located at the apex of the
epithelium layer, typical image with good contrast, and typical image with very low contrast.
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Figure 5. Performance index of proposed approach compared to enhanced intelligent scissor (EIS)
and intelligent scissor (IS). The layers 1-5 corresponds to epithelium, Bowman’s membrane, stroma,
Descemet’s membrane and the endothelium layers of the cornea respectively. The proposed algo-
rithm performs as well or better than EIS and IS for all layers and images in the test set. Level set
(LS) and Gradient vector flow based snake (GVFS) are not shown because their errors exceeded 200
pixels.



5 Conclusion and Future work

This paper establishes and evaluates a novel algorithm
for segmentation of the layers of the cornea. The algorithm
accurately determines layer boundaries of the cornea im-
ages for a variety of corneal imaging techniques. For im-
ages with large numbers of artifacts, on average, the algo-
rithm is able to determine the boundaries to be within 1.5
pixels of the actual boundaries. The proposed algorithm
is able to produce these results with significantly less user
input than fully manual segmentation. The proposed algo-
rithm is capable of segmenting images with large artifacts
or speckle noise. The use of a corneal model and minimal
user input allows the cornea to be segmented without ex-
plicitly denoising the image. Consequently, the algorithm
is robust to low signal to noise ratios. Future work will at-
tempt to fully automate the segmentation process and will
consider additional parameters, such as scale and rotation,
to improve the local optimization process when fitting the
spline boundaries to the image data.
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