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Abstract

Stream Processing is a data processing paradigm in which long se-
quences of homogeneous data records are passed through one or more
computational kernels to produce sequences of processed output data.
Applications that fit this model include polygon rendering (computer
graphics), matrix multiplication (scientific computing), 2D convolu-
tion (media processing), and data encryption (security). Comput-
ers that exploit stream computations process data faster than conven-
tional microcomputers because they utilize a memory system and an
execution model that increases on-chip bandwidth and delivers high
throughput. We have designed a general-purpose, parameterizable,
SIMD stream processor that operates on IEEE single-precision float-
ing point data. The system is implemented in VHDL, and consists
of a configurable FPU, execution unit array, and memory interface.
The FPU supports pipelined operations for multiplication, addition,
division, and square root. The data width is configurable. The execu-
tion array operates in lock-step with an instruction controller, which
issues 32-bit instructions to the execution array. To exploit stream
parallelism, the number of execution units as well as the number of in-
terleaved threads is specified as a parameter at compilation time. The
memory system allows all execution units to access one element of
data from memory in every clock cycle. All memory accesses also pass
through a routing network to support conditional reads and writes of
stream data. Functional and timing simulations have been performed
using a variety of benchmark programs. The system has also been
synthesized into an Altera FPGA to verify resource utilization.

Keywords— Stream processing, GPUs, SIMD.

1 Introduction

Many applications of computers contain a high degree
of inherent data parallelism. Such applications include
graphics rendering, media processing, encryption, and im-
age processing algorithms – each of which permit operations
on different data elements to proceed in parallel. A funda-
mental problem of computer hardware design is to expose
as much of this parallelism as possible without compromis-
ing the desired generality of the system. One such approach
is stream processing, in which data parallelism is exposed
by processing data elements independently and in parallel.

In stream processing, each record in a stream is operated
on independently by a kernel – a small program applied to
each data element, potentially in parallel. The result of ap-
plying a kernel to a stream produces another stream. The
order in which streams and kernels are applied is very flexi-
ble, allowing operations to be optimized. Stream processing
can be implemented in a way that minimizes hardware re-
source, allowing more computations to be performed using
less area in a VLSI design and less memory bandwidth.

The research topic of stream processing has been pursued
extensively at Stanford University as part of the develop-

ment of the Imagine stream processor ([4], [3], [5], [1], [2]).
The Imagine is a VLIW stream processor developed for
media processing. The Imagine supports a 3-level mem-
ory hierarchy including off-chip RAM, a high-bandwidth
stream register file, and high-speed local registers contained
in each processing element. Researchers at Stanford have
investigated the implementation of conditional streams [3],
in which conditionals are implemented in a SIMD archi-
tecture through multiple passes and on-chip routing. Re-
searchers have also investigated low-level (kernel) schedul-
ing for VLIW instructions and high-level (stream control)
scheduling [5] for placing and moving streams within the
stream register file. Research into configurable parallel
processors has been conducted in Texas [6] for the TRIPS
processor.

Parallel processing has also undergone rapid develop-
ment in the area of graphics processors (GPUs). Current-
generation GPUs now support highly flexible instructions
sets for manipulating pixel shading information, while ex-
ploiting fragment parallelism. Hardware features have even
been proposed to make GPUs more like stream processors
([7], [8], [9]). Many researchers have recognized the po-
tential performance exposed by GPUs and have ported a
wide range of parallelizable algorithms to the GPU, includ-
ing linear algebra operations, particle simulations, and ray
tracing ([10], [11]). The introduction of general purpose
GPU programming has led to the development of several
high-level tools for harnessing the power of these devices.
These attempts include the development of Brook for GPUs
[12] (a project from Stanford, aimed at exposing the GPU
as a general stream processor) and Sh ([14], [13], [15]) (a
project at the University of Waterloo, which targets GPUs
from ordinary host-based C++ code – an approach called
metaprogramming.

This research project merges these two research efforts
by developing xStream, a parameterizable stream proces-
sor that is compatible with existing APIs for GPU pro-
gramming. The xStream permits most of the Sh system to
be executed in hardware, including single-precision float-
ing point operations. The system also supports a routing
system that supports conditional streams. The system has
been designed to be efficient, modular, easy to configure,
and simple to program.
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2 xStream Processor Overview

A high-level block diagram of the processor is shown in
Figure 2. There are several key components of the design,
including an array of floating point processing elements
(PEs), the execution control unit, and an on-chip mem-
ory system consisting of an inter-unit routing network and
fast stream register file. The DRAM and host are compo-
nents that would be integrated eventually for a full platform
design.

DRAM

Host
(Scheduler)

Stream
Register

File

(SRAM)

Routing

Memory
Control

Execution
Control

Stream Processor SIMD
Array

PE0

PE3

PE2

PE1

Figure 1: xStream Processor Block Diagram

The design implements the stream processing model by
enforcing a restricted memory access model. All memory
access from the execution unit array must pass through the
stream register file, and all memory access must read or
write at the head of the stream. The stream register file
stores streams as a sequence of channels – each channel
stores a component of a stream record. The channels are
configured at startup of the device, and are dynamically
read and written during execution.

Data parallelism is exploited in two major ways in the
design. First, data elements can be processed in parallel by
an array of processing elements. This results in a speedup
of roughly N times for an array containing N processors,
as there is little communication overhead for independent
stream accesses. As the number of processors is increased,
the memory and routing network automatically scale to
match the new array size (with the routing only rising as
O(N ∗ log2N). Second, interleaved multithreading is used
within each processing element with an arbitrary number of
threads, trading instruction level parallelism for the avail-
able (unlimited) data parallelism.

The execution model allows for conditional execution of
read or write instructions to the memory bus. The sys-
tem automatically routes stream data to the correct mem-
ory bank when processors are masked. Execution units are
fully pipelined so (with multithreading) a throughput of 1
instruction per cycle is almost always achieved.

2.1 Floating Point Unit

The floating point arithmetic unit detailed in this docu-
ment is based on a core parameterized floating point library
developed at the Northeastern University Rapid Prototyp-
ing Lab (RPL) [16]. A number of extensions were made
to the existing core library to provide additional arithmetic
operations such as floating point division, square root, frac-
tion and integer extraction operations. Furthermore, a pa-
rameterized floating point arithmetic unit interface was cre-
ated to provide a single core component for general inter-
facing with the rest of the processor architecture.

2.1.1 Hardware Modules

The FPU core supports the following features:
• Implements a full parameterizable floating point struc-
ture with configurable mantissa and exponent bit lengths
(single precision (32-bit) floating point format was used for
the purpose of the project)
• Implements Floating point addition, subtraction (by
negation), multiplication, division, square root, and frac-
tion and integer extraction
• Implements two of the four IEEE standard rounding
modes: round to nearest and round to zero
• Exceptions are partially implemented and reported ac-
cording to the IEEE standard

The above specification was decided based on a number of
important design decisions. For the purpose of the project,
the parameterized floating point core unit was configured
to comply with the IEEE 754 standard for single preci-
sion floating point representation. Therefore, the number of
mantissa bits and exponent bits are set to 23 bits and 8 bits
respectively, with a single sign bit. This provides the level
of precision needed to perform basic floating point calcula-
tions, while still being manageable in terms of size and test-
ing effort. Operations on denormalized floating point num-
bers are not supported because, based on research done by
Professor Miriam Leeser at the Rapid Prototyping Lab [16],
it would require extra hardware to implement and therefore
is not necessary for our purposes.

The above list of floating point arithmetic operations was
chosen as it provides the functionality needed for a subset
of the Sh API and upon which all other operations can be
built upon. Only two of the four IEEE standard rounding
modes were implemented as the additional rounding modes
(+∞ and − ∞) were deemed unnecessary. Finally, only
part of the exception handling specified by IEEE standard
was implemented in the FPU core. The inexact exception
is ignored while all other exceptions generate zero values at
the output of the FPU along with a general exception flag.
This was chosen to provide compatibility with the Sh API.

The FPU has been designed to operate using a six-stage
pipeline. The first four stages involve the denormalizing of
the floating point numbers and the arithmetic operation.
The last two stages involve the rounding and normalizing
of the floating point value.
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2.2 Execution Control Unit

Several design goals have guided the development of the
execution control unit in the xStream processor. These
include:

• Compatibility with the Sh API
• Instruction set scalability and orthogonality
• Latency hiding for various levels of parallelism
• Interleaved multithreading support

The component diagram of an execution unit is shown
in Figure 2.2. Note that each of the bus connections are
multiplexed by the control signals arriving from the exe-
cution controller. The execution controller also includes a
high-speed instruction cache for kernels.

Figure 2: Execution Unit Component Diagram

2.2.1 Bus Structure

To allow a single instruction to complete every cycle
requires sufficient register bandwidth to allow 2 input
operands to be sent to the floating point unit and 1 output
operand to be received from the floating point unit every
cycle. This requires a 3-bus structure with 2 input buses
and one output bus. One input bus and the output bus are
also shared with the external routing interface for loading
and storing external data to the register file.

2.2.2 Storage Structure

Each execution unit requires a local register file, which
must be fast (single-cycle latency) and also must support a
significant number of registers. Since a 3-bus structure was
used, the register file uses 2 input and 1 output ports. A
larger number of registers are required due to the limited
access to memory in a stream architecture – so all constants,
results, and temporaries must be stored in the register file.

In addition to local registers, many algorithms may re-
quire extended read-only storage for indexed constants or
larger data structures. These can be stored in a block of
read-only SRAM within each execution unit, into which in-
dexed lookups may be performed. Data in this local mem-
ory must be transferred to registers before it can be oper-
ated on. These indexed memories can use a single input
and output port.

2.2.3 Pipeline

The arithmetic units that are used within each execution
unit include the components shown in Table 2.2.3. There
are two different latencies for the units in the design, re-
sulting in a complication when trying to pipeline the en-
tire design. To create the pipeline for these units, we were
faced with the choice of either fixing the pipeline length at
the longer of the two latencies and incurring a performance
penalty for the slower instructions, or supporting both la-
tencies in separate pipelines and automatically resolving
the structural hazards arising from this configuration. A
design that allows for multiple variable pipeline lengths was
chosen.

TABLE I

Functional Unit Latencies

Component Latency

Floating point ALU 6 cycles
Floating point comparator 1 cycle
Indexed load/store 1 cycle

To automatically solve all hazard detection problems
(structural and data hazards), we have elected to design
a hardware writeback queue to track instructions in the
pipeline.
1. When the desired register in the queue is already enabled
– a conflict has been detected on the bus.
2. When any enabled queue register contains a writeback
register equal to one of the registers being read – a data
dependency needs to be avoided.

The hardware complexity to detect the first condition is
trivial. For the second condition, a comparator is required
for every queue slot for every read register. So in the case
of 8 queue slots and 2 possible read registers, the number
of 8-bit comparators required is 16.

2.2.4 Multithreading

The most important characteristic of the stream pro-
gramming model is that each element can be operated on
in parallel. To increase utilization of the pipeline and re-
duce the possibility of processor stalls, it is possible to
take advantage of this characteristic by implementing mul-
tiple threads of execution within a single execution unit.
There are several methods of implementing multithread-
ing, ranging from very fine-grained (switching threads on
every clock cycle) to coarse-grained (switching threads after
a fixed time interval or only on costly operations like cache
miss reads). Since the design does not permit any opera-
tion latencies of greater than 9 cycles, an efficient means of
decreasing the effective latency is to support fine-grained
interleaved multithreading. Interleaved multithreading is
supported by duplicating the state-holding components in
the design for each thread – thus, each register file needs
to be duplicated for each thread. In addition, the control
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hardware needs to broadcast the currently active thread for
each of the pipeline stages – decode, execute, and writeback.

2.2.5 Conditionals

Conditionals are handled in various ways in SIMD proces-
sors. In general, conditionals cannot be implemented di-
rectly in a SIMD processor because the processor array is
required to remain in lockstep (ie. each processor executes
the same instruction on a given clock cycle). Tradition-
ally, conditionals have been implemented by masking the
execution of processors for which a condition fails. In the
xStream processor, conditionals are implemented using the
method of predication, in which all processors first evaluate
all conditional branches and then conditionally write back
their results into the register file.

Conditionals are handled in the Sh intermediate repre-
sentation through conditional assignment of 0.0 or 1.0 to a
floating point value based on a comparison of two other
floating point values. Although conditional support us-
ing floating point values is easy to implement, this ap-
proach leads to additional usage of floating point registers
to store Boolean results. A more efficient alternative would
be to support a new series of single-bit registers for stor-
ing Boolean values. Boolean operations were implemented
using dedicated Boolean registers. This reduces the num-
ber of floating point instructions and relieves floating point
registers from storing Boolean values.

2.2.6 Instruction Set

The instruction set includes all the operation shown in
Table 2 with the given latency and functional unit.

TABLE II

Instruction Set

Instruction Latency Unit Operation

NOP 4 BUS No operation
ADD 7 FPU Rd ← R1 + R2
MUL 7 FPU Rd ← R1 ∗ R2
DIV 7 FPU Rd ← R1 / R2
SQRT 7 FPU Rd ← sqrt(R1)
INT 4 FRAC Rd ← floor(R1)
FRAC 4 FRAC Rd ← R1 − floor(R1)
CMP 4 CMP Cd ← compare(R1, R2)
COND 4 BUS Rd ← {R1 if C1}
LDI 4 IDX Rd ← index(R1)
STI 4 IDX index(R1) ← R2
GET 4 BUS Rd ← {route(imm) if C1}
PUT 4 BUS route(imm) ← {Rd if C1}
CON 4 BUS Rd ← scater(imm)

Operation Notes:
1. Rd denotes a destination register. R1 and R2 denote the
two register inputs.
2. Cd denotes a destination Boolean register. C1 denotes
an input Boolean register.
3. imm denotes an input immediate value.

4. compare() performs a comparison operation.
5. index() performs a lookup in the index constant table.
6. route() compacts outgoing data when execution units
do not produce output and routes incoming data to the
execution units requiring new elements.

Functional units are the components that are used dur-
ing the execute (EX) stage of pipeline execution. The func-
tional units that are available are shown in Table 2.2.6.

TABLE III

Functional Unit Descriptions

Label Description

BUS Internal execution unit buses
FPU Single-precision floating point unit
FRAC Integer/fractional part extraction unit
CMP Single-precision floating point comparator unit
IDX Index constant table

2.2.7 Instruction Controller

The active kernel is stored in SRAM local to the instruc-
tion control hardware. The control hardware is a simple
state machine that reads and issues instructions. Because
branching instructions are not supported and all data de-
pendencies are resolved at compile time, the controller steps
through the program and issues one instruction per cycle.

Instructions are decoded at the individual execution
units, so the common instruction controller consists mainly
of the state machine. The alternative is to decode instruc-
tions at the execution units, which would introduce a sig-
nificant number of new signals to be routed from the in-
struction controller to the execution units. The xStream
processor does not use this alternative approach.

2.3 Memory System

The on-chip memory system consists of the stream reg-
ister file (SRF), SRF controller, and inter-element routing
network. The memory system was designed with a number
of design goals in mind. These include:
• Direct support for the stream and channel primitives ex-
posed by Sh
• Bandwidth scalability to support arrays of execution
units
• Hardware support for conditional stream operations

The stream register file is intended to store input, out-
put, and temporary channels that are allocated during ex-
ecution. A channel is a sequence of independent 32-bit
floating point values. For operations on records containing
many 32-bit values, the records must first be decomposed
into channels and then stored into the SRF separately (for
example, vectors ¡x,y,z¿ must be decomposed into an x-
, y-, and z- channel before processing). The purpose of
the stream register file is to provide high bandwidth on-
chip storage component so that intermediate results can
be stored and accessed quickly by the execution array. The
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SRF is composed of several memory banks that permit par-
allel access. The number of banks in the SRF is coupled to
the number of processors that need to make parallel access
to the SRF – so for a processing array containing 8 proces-
sors, it is necessary to provide 8 equal-sized banks in the
SRF memory.

2.3.1 Channel Descriptors

Only a single channel in the SRF can be accessed at once.
When the channel is accessed, any number of processors can
retrieve data from the channel. Since channels are always
accessed in sequential order, it is necessary to keep track
of the current address for access within that channel. This
is done by storing an array of channel descriptors. Each
channel descriptor consists of the current address and final
address within that channel. When the current address
reaches the final address, the channel is empty and any
further references to that channel are rejected with an error.
Figure 2.3.1 depicts how channels are striped across banks
to allow for concurrent access.

Bank 0 Bank 1

Stream Register File

Bank 2 Bank 3

Buffer 0
(Channel 0)

Buffer 1
(Channel 1)

Buffer 2
(Channel 2)

Figure 3: Description of Channels in SRAM

2.4 Routing Network

The routing network is what connects all the execution
units to the SRAM banks. The same network is used to
provide the processing elements with data and store the
output back into RAM. It has been designed such that it
can operate in either direction, from memory to PEs or
from PEs to memory. The complexity involved with con-
structing such a network is based on three different aspects.
Firstly, the network has to be parameterizable as it has
to be able to expand to the number of PEs used during
a simulation. Secondly, each PE has been designed with
conditional read and conditional write commands. These
conditions are based on the condition codes set during the
execution of the program. Thus the network has to handle
reading or writing a number of data elements that could be
fewer than the most number of processing elements avail-
able. Lastly, the network has been constructed so that each
PE does not need to worry about the next memory location
from which data will be available. This is especially impor-
tant given that each PE would not necessarily be reading
data from memory whenever a read instruction is invoked.

Thus, when a PE executes a read instruction, it shouldnt
need to worry about this issue.

To accomplish the tasks mentioned above, the network
was divided into two components, a barrel shifter and a
compactor. The barrel shifter reorders the data being
transferred. The compactor is what removes any gaps that
may exist in the data. This is useful when certain PEs
do not produce any data. This way data being stored to
memory does not have any gaps between them. The same
compactor can be used to introduce gaps between data ele-
ments when certain PEs do not need to read any new data.
The compactor and the barrel shifter together provide data
to each PE and write back any output produced while tak-
ing care of the three above mentioned issues.

3 Testing and Evaluation

Testing for the xStream processor has been carried out
through functional simulations. There are three applica-
tions that we wrote to test the xStream processor. The
three different programs show that the instruction set of
the xStream processor has been designed to be accommo-
dating for most tasks that can be broken up into parallel
streams. The first is a fairly simple program that normal-
ized a set of vectors. The second test was to generate a
fractal image. The third test is a much larger project that
is still in the works. It involves carrying out the process of
rasterization of an image.

3.1 Fractal Generation

The second algorithm was used to produce a Mandelbrot
fractal image. This is an algorithm where more data set
produced was larger than the data set used as input. The
output data was used to generate the final image using a
python program. Below you can see the image generated
by the simulation.

Figure 4: Fractal Image Generated by Simulation

3.2 Rasterization

Lastly, a rasterization program was attempted on the
processor as well. Rasterization is the process where an
image is parsed to determine what colour each pixel should
have on the screen. There are many ways of carrying out
the process. The algorithm used in our case was one that
was better suited to stream processing architectures. The
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entire process is broken up into different stages, each of
which is simulated on the processor. This is one of the
better examples that the xStream processor is fit to use for
real world applications.

4 Discussion and Conclusions

The stream processing architecture utilized in the
xStream processor maximizes arithmetic intensity (defined
as operations per memory access) by applying the same set
of instructions to data. However, a high bandwidth require-
ment still exists given the parallel nature of the processor.
Using a memory routing network that expands well and
provides the required bandwidth is an important aspect of
the xStream design. It is also important to be able to hide
the latencies involved with transferring data. Hence, single
cycle multithreading was implemented.

The xStream instruction set has also been designed to
ignore certain issues that are usually addressed by many
processors. By putting the conditional statements on the
load/store instead of on the jump, stalls are no longer a
concern. When a load or store doesnt execute, the next
data set from memory is loaded.

The design of a fully functional and parameterizable
floating point unit was also a challenge. As outlined be-
low, there is still some work that could be done to improve
some of the components of the FPU.

5 Future Work

There are a number of future improvements that can
be made to the xStream processor architecture. The di-
vision and square root instructions are the two bottlenecks
in terms of both area and performance. A variable length
pipeline could be used to enhance the performance of the
system. The square root and division operations could be
redesigned to utilize more clock cycles per instruction. This
enhancement would allow the performance of other com-
mon operations to be improved. Both instructions could
be designed to share hardware resources and use algorithms
such as high-order radix SRT or reciprocal multiplication
in combination with lookup tables to improve performance
at the expense of area.

Furthermore, a fully-functional external memory subsys-
tem could be implemented to create a complete processing
platform. The external memory system could support irreg-
ular memory accesses such as texture fetches in computer
graphics. However, this approach would require significant
changes to the existing memory controller.
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