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ABSTRACT 
A new probabilistic image segmentation model based on 
hypothesis testing and Gibbs Random Fields is introduced. 
First, a probabilistic difference measure derived from a set 
of hypothesis tests is introduced. Next, a GibbsMarkov 
Random Field model endowed with the new measure is then 
applied to the image segmentation problem to determine 
the segmented image directly through energy minimization. 
The Gibbshlarkov Random Fields approach permits us to 
construct a rigorous computational framework where local 
and regional constraints can be globally optimized. Results 
on grayscale and color images are encouraging. 

1. INTRODUCTION 

Humans can easily, even effortlessly distinguish between 
separate objects in an image scene. This has long been a key 
problem in computer vision, where a number of steps, from 
low-level to high-level vision, are needed to understand an 
image or some portion of it. A critical step, and the topic of 
this paper, is that of image segmentation. 

Image segmentation is based on the idea that two sep- 
arate objects with distinct appearance can be separated. In 
a greyscale image we rely on different brightness levels or 
textures; in a color image, the difference can be based on 
color differences: in the most general case of arbitrary mul- 
tispectral images, the appropriate segmentation criteria will 
be problem-specific. We will focus on multispectral images. 

The image segmentation process is dependent ontwo in- 
teractive components: I) a measure of discontinuity and 2) 
a framework for grouping similar pixels and separating dis- 
similar ones. The idea of brightness discontinuity between 
objects in greyscale images is fundamental to the problem 
of image segmentation. It is used to devise schemes to seg- 
ment images by separating homogenous brightness group- 
ings from each other [3]. The main component in such an 
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algorithm is the distance measure used to assess the simi- 
larity or discontinuity in brightness. Typically this distance 
measure is the Euclidean distance in I-D; in other words, 
the simple difference [4]. 

However, the first question one needs to ask is whether 
the simple difference or Euclidean distance (for multispec- 
tral images) is appropriate for measuring brightness discon- 
tinuities. The Euclidean distance is used given its intuitive 
appeal and low computational complexity for multispectral 
images. However, there are many instances where this dis- 
continuity measure fails: noisy images, specular reflections, 
intensity variations (such as those produced by shadows), 
etc. In color images, the vector angle is an intensity invari- 
ant distance measure [l]; however, the vector angle gives 
very ‘hoisy” results for vectors with small magnitudes. A 
probabilistic framework would help to better define appro- 
priate discontinuity measures given the assumptions of the 
particular problem at hand. 

The second component, the pixel grouping algorithm, 
has taken on different forms. Image segmentation can be 
subdivided into three broad categories: point-based tech- 
niques [7], spatially or region based methods [6] and by- 
brids [S, IO]. Point-based methods are concerned with 
global pixel comparisons such as those done using cluster- 
ing algorithms. The primary drawback of point-based tech- 
niques is their inability to take into account local variation 
to avoid the formation of many small extraneous regions, as 
well as the need of knowing how many cluster prototypes 
to select [8]. Region based methods are primarily based 
on spatial pixel proximity and similarity. Their main disad- 
vantage is that a region could include two vastly different 
regions due to a small gradient between the two distinctly 
“colores’ regions. Hybrid methods [S, 101 attempt to com- 
bine both the point-based and spatial paradigms. Methods 
developed based on both paradigms minimize the disadvan- 
tages from either group of methods. This paper will be 
concerned with the use of hybrid image segmentation al- 
gorithms based on Gibbs Random Fields. 
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2. A PROBABILISTIC DISCONTINUITY 
MEASURE 

A basic image segmentation algorithm is concerned with 
the question of whether two pixels are part of the same re- 
giodgroup or part of two different regionsJgroups. When 
some distance measure such as the Euclidean distance is 
used, the decision to include a pixel in one group or the 
other is essentially explicitly (e.g., region growing methods) 
or implicitly (e.g., number of regions in clustering methods) 
an experimentally set threshold. However, this type of dis- 
continuity criterion does not take into account noise, and 
illumination effects. 

One way to take into account noise is to assume a partic- 
ular noise model and devise a discontinuity measure based 
on this assumption. Each pixel is assigned an integer label 
0 5 1 < M to associate it with one of the 12.I region proto- 
types. If we associate with label 1 a global region prototype 
{CL} then each region has a well defined meaning. Con- 
sider the following model of a multispectral pixel, which is 
a standard assumption in noisy image restoration problems: 

R, = a, +xis, (1) 
+ 

where X,, is the pixel vector, ai is the region prototype 
with some associated label 1, and Go, is some prototype- 
dependent noise covariance &,. In this paper, we will as- 
sume that the noise component for each prototype is Gaus- 
sian distributed. 

Consider that there are two adjacent pixels <fat and ,fa* 
consisting of noise and unknown region prototypes a and 

respectively. a, and Z2 may be equal or different. In 
practice. the pixels do not need to he adjacent and can be 
any two sets of vectors. However, given the GibbsiMarkov 
Random Field framework that will be used to petform the 
segmentation, the pixels will be considered adjacent. Con- 
sider that the image actually consists of two regions (i.e., 
M = 2) with prototypes C;. However, we do not know for 
whicb pixel the vector Zl corresponds to TI and for which 
to & (and correspondingly for Z2). 

There are therefore four hypothesis tests that can be ap- 
plied with the following respective null hypotheses: 

Hypothesis Test 1 : a, = az = TI 
Hypothesis Test 2: a‘, = ii2 = C2 
Hypothesis Test 3: a‘, = C;, a‘2 = Zz 
HypothesisTest 4: a, = F2, & = ?, 
Each Iyothesis test implies probability densities for 

Tot and X,, . Each of the hypothesis tests results in aprob- 
ability density functionwith means set to tl or& depending 
on the hypotkesis beins tested. For example, for Hypothesis 
Test 1 both S,, and X,, would be distributedas Gaussians 
as follows: 

P(&, IHTI) - N(c;, Rc,)  
p(,faZlJHTI) - N(C;,fL,) (2) 

Assuming pixels ,fa, and ,Fa, are independent we have 

p(,fal ,Ca2 INT1) = p(%, ~ H T l ) p ( , ~ a 2  ( H T I )  (3) 

We-wo$d now end up with four joint probability densities 
p ( X , ,  X,,,IHTl) . . .P(X,,~Y,, JHT4). The highest joint 
probability for particular X,, and X,, would be chosen 
as the winner and would tell us which labels X,, and S,, 
should assume. The joint probability density can be rewrit- 
ten as an Gibbs energy function by examining the variables 
in the exponent from the Gaussian densities in (2): 

+ 

+ - 

+ 
O(.?,?>, = (,YO> - G ) T I q ( & ,  - F,) + 

+ 
(.Ys2 - ?I)TR;1(ia3 - c;) (4) 

We call this the probabilisticdiscontinuitymeasure. In other 
words, we are introducing a modification to the standard 
Euclidean distance formulation by making the result depen- 
dent on R, the covariance matrix ofthe noise. We were thus 
able to rewrite the hypothesis test into an energy function. 
If we set R = I, then we obtain the Euclidean distance. 

The theory behind this approach is well grounded in 
statistics and therefore there is nothing new from that point 
of view. However, this methodology is being applied to 
image segmentation for the first time (as far as we know) 
and as such presents a new way of looking at this impor- 
tant problem. The idea presented here is to consider any 
region homogenous in “color” or characteristics corrupted 
with some type of noise, as well as other effects such as 
specular reflections. In this paper, we only address the case 
of noise “corruption”. 

Furthermore, we make the assumption that we know the 
noise model (Gaussian) and estimate its parameters (vector 
means and covariance matrices). How this is achieved will 
be addressed in the next section. 

Finally, for real world problems where typicalIy W > 2, 
this method would quickly become impractical given the 
high number of hypothesis tests necessary. To avoid this 
problem, it would be necessary to reformulate the hypothe- 
sis tests into the following one: 

HO : a, = a2 

I31 : a, # a 2  ( 5 )  

With this formulation, we can also keep equation (4). 

3. MARKOV RANDOM FIELDS 

The modeling problems in this paper are addressed from the 
computational viewpoint by using Markov random fields to 
model the image segmentation process. There are two pri- 
mary concems: how to defme an objective function for the 
optimal solution of the image segmentation, and how to find 
its optimal solution. It is reasonable to define the desired 
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solution in an optimization sense given the various nncer- 
tainties in the imaging process. In this case, the “exact’* 
solution to our segmentation problem would be interpreted 
as the optimum solution to the optimization objective. 

Some forms of contextual constraints are eventually 
necessary when trying to interpret visual information, 
Markov Random Fields (MRF) [2,9] provide a natural way 
of modeling context dependencies between, for example, 
image pixels of correlated local features [5]. However, in- 
stead of using the Gaussian Markov Random Field to de- 
fine a spatial texture from which segmentation can pro- 
ceed as a separate hypothesis-testing procedure [5], OUT 
approach finds the segmented image directly as the re- 
sult of energy minimization of some appropriately-defined 
Gibbs random field. Furthermore the regions are not dis- 
tinguished on the basis of texture. rather on intensity dif- 
ferences (whether in one or more dimensions). The formu- 
lation of our Gibbshtarkov model will be similar to oth- 
ers used for segmentation 12, 51 except that we consider 
global/regional constraints in addition to local ones used in 
classic MRF research. Since our goal is the assertion of lo- 
cal constraints, rather than an accurate modeling of spatial 
textures [5 ] ,  we shall only be concerned with first order ran- 
dom fields (i.e., a 4 pixel neighborhood). 

This paper builds on previous work in color image seg- 
mentation using Markov Random Fields [ 1, 81 and extends 
it to an MRF framework based on hypothesis tests. The 
principles presented in this paper can he applied to any mul- 
tispectral images as long as the probabilistic discontinuity 
measure is derived for the particular problem at hand. 

As described above, the basic idea is to replace the dif- 
ference calculations within the model with the probabilistic 
discontinuity measure. Therefore, energy cliques based on 
adjacent pixels would be calculated according to (4) rather 
than using Euclidean distance or vector-angle [SI. Sup- 
pose we are given a multispectral image X on a pixel lattice 
C = { i ,  j ] .  The energy model is shown as follows: 

H = ~ ~ ( ~ ~ i , j , ~ ; , j t , ) d , ( i , j ~ , f ~ i , j t l )  + 
. .  
3 i l  

+ +  
* ( X i , j ,  X;tl,j)~l(i,j),f(itl,j) + 

P [ ( I  - &(i,j),l(i,jti)) + (1 - & ( i , j ) , i ( i + i , j ) ) I  ( 6 )  

where p controls the relative constraints on the degree of 
region cohesion and fragmentation, while 6f(j,j1,,(i,j+1) is 1 
when both labels are the same and 0 otherwise. The d func- 
tions ensure that the labelling is consistent. If the labelling 
is inconsistent then the energy function will be high. 

Given equation (32, we can represent (6) as a joint prob- 
ability density over X,,j and all of its neighbors by multi- 
plying all four (i.e., for a first order Markov model) joint 

es or instances of (3). This is possible since each 
neighborhood comparison is independent of each other. 

The region prototypes { G ]  can adapt via continuous 
Gibbs sampling 181; in other words, the sampling and an- 
nealing takes place not only over label indices { l ( i , j ) } ,  
but also over the continuous valued region prototypes {C l ) .  
However, for this paper, we approximate this by computing 
the vector means instead. When labels are sampled, we use 
the probabilistic discontinyity measure to compute the dis- 
tance between the pixel X;,j and the corresponding region 
prototype {GI. The distance is also computed between pix- 
els &1,j or,fi,j+l and their correspondingfied region 
prototypes. This is possible since hypothesis test ( 5 )  does 
not ask for sampling over those projotypes, just the one be- 
ing compared to the central pixel X;J. 

The general color image segmentation algorithm is now 
described: 

0 All pixel labels are randomly initialized 

0 The vector mean { G }  and noise covariances are esti- 
mated for each cluster 

0 Repeat for several iterations: 

- At each pixel in the image: 

* Minimize the energy in model (6) by per- 
forming the hypothesis test (5) with respect 
to every region prototype (effectively sam- 
pling the labels) 

* Update the pixel’s label based on the Gibbs 
sampler result 

- Use continuous Gibbs sampling to adjust the re- 
gion prototypes {c] and compute the covari- 
ance matrix 

- Lower the temperature ‘I 

If the temperature reduction occurs slowly enough, this 
annealing process converges in probability to the global 
minimum [2]. 

4. RESULTS 

Results were obtained on grayscale and color images shown 
in Figure 1. Image segmentation results for the grayscale 
image using 3 clusters and for the color image using 2 clus- 
ters are shown in Figure 2. The grayscale segmentation 
shows three distinct clusters at three intensity levels sep- 
arating the features of interest which are the bacteria. It is 
apparent that the MRF might have not converged fully given 
the small dots present here and there. In the color segmenta- 
tion, the color separation between the red and green papers 
is quite successful except for areas with illuminationeffects 
such as highlights. 
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Fig. 1. (a) Grayscale image, (b) color image. 

(a) (b) 

Fig. 2. Segmentation results: (a) grayscale, (b) color. 

5. CONCLUSIONS 

A probabilistic framework for adaptive multispectral im- 
age segmentation using a probabilistic discontinuity mea- 
sure and a GibbsMarkov Random Field has been presented. 
The method presents several advantages: use of a discon- 
tinuity measure derived from first principles, adaptability 
of global constraints (region prototypes) to the data, sam- 
pling over both region labels and region prototypes using 
the Gibbs sampler (bothdiscrete and continuous),optimiza- 
tion of local contextual constraints (taking into account lo- 
cal features) with a global energy function (making sure 
that regions are optimally segmented with respect to each 
other). Hybrid methods have been introduced recently in- 
cluding region computation. However, none of these meth- 
ods provides a framework as flexible as MRFs which not 
only adaptively and globally optimizes local constraints, but 
can also easily integrate texture handling and edge detec- 
tion (line processes) within the segmentation process. Fi- 
nally, the introduction of a probabilistic discontinuity mea- 
sure and encouraging results allows us to build a principled 
image segmentation theory. 
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