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ABSTRACT

A better understanding of cell behavior is very important
in drug and disease research. Cell size, shape, and motil-
ity may play a key role in stem-cell specialization or can-
cer development. However the traditional method of infer-
ring these values from image sequences manually is such
an onerous task that automated methods of cell tracking and
segmentation are in high demanded, especially given the in-
creasing amount of cell data being collected. In this paper, a
novel probabilistic cell model is designed to segment the in-
dividual Hematopoietic Stem Cells (HSCs) extracted from
mice bone marrow cells. The proposed cell model has been
successfully applied to HSC segmentation, identifying the
most probable cell locations in the image on the basis of
cell brightness and morphology.

1. INTRODUCTION

The field of bioinformatics and biotechnology is growing
rapidly and relies more and more on advances of software
and hardware computer technology to collect, process and
analyze ever-increasing amount of data. More closely re-
lated to the community of image and video researchers, dig-
ital cytometry [1] has been recently introduced to adapt and
extend image processing techniques to analyze and extract
cell properties from microscopic cell images. By applying
advanced techniques in digital image processing and pat-
tern recognition to a huge number of bio-cellular images,
digital cytometry can improve our understanding of cellu-
lar and inter-cellular events so that significant progress and
new discoveries in biological and medical research may be
achieved.

One of the most important and common tasks for
biomedical researchers is cell tracking, which continues to
be undertaken manually. Researchers visually perform cell
motion analysis and observe cell movement or changes in
cell shape for hours to discover when, where and how fast
it moves, splits or dies. This task is tedious and painful due
to the often corrupted or blurred images, the presence of
clutters, fixing eyes for a long time, and repeating the same
task for different cell types. Furthermore, with the extent of
cell imaging data ever increasing, manual tracking becomes
progressively impractical. As a result, automated cell track-

Fig. 1. Phase Contrast Microscopic Image.

Fig. 2. A mature cell dividing into two new cells.

ing systems are mandatory to further advance the study of
biological cells. Such a tracking system will require a com-
puter to perform automatic object tracking, usually under
challenging conditions, which also presents a very attrac-
tive yet difficult research problem for researchers in com-
puter vision and digital image processing. Due to the large
number of cell types having different features such as shape,
size, motility, and proliferation rate, designing a universal
cell tracking system is impractical. In this paper, we fo-
cus on Hematopoietic Stem Cells (HSCs), which proliferate
and differentiate to different blood cell types continuously
during their lifetime, and are of substantial interest in gene
therapy, cancer, and stem-cell research. As a crucial step
towards fully automatic cell tracking, an effective cell local-
ization/segmentation method is developed based on a novel
probabilistic cell model that incorporates key properties of
HSCs.
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Fig. 3. Cell model superimposed on original HSC image.

2. BACKGROUND

A variety of semi-automatic or automatic methods have
been proposed to segment cell boundaries [2, 3, 4]. These
methods include thresholding, watershed, nearest neighbor-
hood graphs, mean shift procedure and deformable models,
which can be divided into three major categories:

1. Boundary based, which generally employ deformable
models, such as snakes to find the cell boundaries.

2. Region based, such as split & merge, morphological
operators, watershed and region growing methods.

3. Thresholding, in which the cell classification is
achieved based on a threshold which is applied to
some extracted image feature.

Thresholding methods have been used by Otsu [5] and
Wu [6]. Different techniques have been used for choosing
a suitable threshold, such as calculating the image variance
to separate the cell from the background [6], assuming the
intensity of the background to be uniform with a low vari-
ance while cell intensity variance is high. Markiewicz et al
[7] have used watershed for segmentation of the bone mar-
row cells. Comaniciu et al [8] proposed a mean shift pro-
cedure method for cell image segmentation for diagnostic
pathology. Geusebroek et al [9] introduced a method based
on Nearest Neighbor Graphs to segment the cell clusters.
Meas-Yedid et al [10] proposed a method to quantify the
deformation of cells using snakes.

3. MATERIALS

HSC samples must be extracted and processed before imag-
ing. HSC sample preparation is a two stage process:

1. Extract and process the bone marrow from the mouse
to prepare HSCs.

2. Process and culture the HSCs.

The cells were imaged using manual focusing through a
5X phase contrast objective using a digital camera (Sony
XCD-900) connected to a PC computer by a 1394 connec-
tor. Images were acquired every three minutes. When a cell
division was observed, the progeny were imaged at higher
magnification using a 40X DIC objective.

4. METHODS

To keep cells alive and dynamically active, light exposure
must be controlled during their life cycle. The limited light
exposure and cell transparency both contribute to the very
low contrast of typical microscopic cell images. Moreover
most of the cell staining techniques which are used to in-
crease the contrast between cell areas and background unde-
sirably stain different parts of a tissue unevenly, causing in-
homogeneity. Fortunately the HSCs in our study have fairly
regular shape and brightness patterns. Hence, a segmenta-
tion method which exploit these useful information should
be able to perform better than simple thresholding methods.

Looking at microscope images in Figs. 1 and 2, we can
observe that HSCs can be characterized as an approximately
circular object with a dark interior and a bright boundary.
During splitting, a mature cell is divided to give birth to two
new cells, as marked by a circle in Fig. 2. The radius of
these new cells is slightly smaller than that of their parent.
Although HSCs can be identified by a bright boundary, the
phase contrast imaging technique leads to an asymmetric
cell boundary, one side dark and the other side bright. So
rather than a heuristic thresholding approach, the specific,
consistent cell attributes observed should allow us to formu-
late a far more specific model, essentially a matched filter, to
be more robust to noise and low contrast. The model consid-
ers Cell size, Boundary brightness, Interior brightness, and
Boundary uniformity (symmetry). These criteria are com-
bined to formulate the following probabilistic cell model

P (Ik|xc, yc, r) = Pcb(B̄(xc, yc, r)) ·
Pic(B̄(xc, yc,

r

2
))·

Pcdf (D(cdfn∈1:N (B(xc, yc, r)))) (1)

as a function of cell center locations (xc, yc) and radius r,
and the meaning of the individual terms Pcb, Pic and Pcdf

will be elaborated in the following sections. The probabil-
ity density functions and their parameters are obtained by
close investigation of ground truth results. Ground truth
have been produced by manual cell segmentation and ex-
tracting the cell boundary and interior intensities on several
image frames of different image sequences.



4.1. Probability of Cell Boundary Pcb

As depicted in Fig. 3, to model a dark region surrounded
by a bright boundary, the proposed cell model consists of
two concentric circles, with the radius of the internal circle
being half of that of the external one. The external circle
represents the bright boundary while the internal one repre-
sents the dark region inside a cell. Assuming (xc, yc) and
r as center coordinates and radius of the exterior circle re-
spectively, the continuous circle is discretized spatially as

|(xi − xc)2 + (yi − yc)2 − r2| ≤ ε2, (2)

where (xi, yi) are coordinates of circle boundary pixels and
ε is half a pixel. Function Bi(xc, yc, r), which is a vector
returning the intensity of all boundary pixels, is defined as

Bi(xc, yc, r) = {I(xi, yi), |(xi − xc)2 + (yi − yc)2 − r2|
≤ ε2 and i = 1, 2, ..., N}, (3)

where N is the total number of pixels located on the cell
boundary. In our implementation, a rotation angle of 20◦

is adopted, and the total number of boundary pixels (N ) is
equal to 18. The probability of cell boundary Pcb is assumed
to be Gaussian with mean µcb and variance σ2

cb

Pcb(B̄(xc, yc, r)) ∼ N(µcb, σ
2
cb), (4)

where µcb and σ2
cb are estimated over several frames by ex-

periment and B̄(xc, yc, r) is the average cell boundary in-
tensity

B̄(xc, yc, r) =
∑N

i=1 Bi(xc, yc, r)
N

. (5)

4.2. Probability of Cell Interior Pic

The interior dark region of a cell is represented by the in-
ternal circle in the proposed model. Assuming (xc, yc) and
r
2 as center coordinates and radius of the interior circle, it is
discretized as

|(xi − xc)2 + (yi − yc)2 − r

2

2
| ≤ ε2. (6)

The probability of dark region inside the cell Pic is assumed
to be another Gaussian distribution with mean µic and vari-
ance σ2

ic

Pic(B̄(xc, yc,
r

2
)) ∼ N(µic, σ

2
ic), (7)

where µic and σ2
ic are estimated over several frames by ex-

periment and B̄(xc, yc,
r
2 ) is the average intensity of cell

interior region.

4.3. Probability of Uniformity of Cell Boundary Pcdf

Despite having an asymmetric boundary, both dark and
bright sides of the cell boundary maintain almost uniform
intensities. To maximize the likelihood of cell detection, an
empirical cumulative density function (CDF) is calculated
to discriminate uniform background from the cell boundary.
The CDF on cell boundary pixel intensities is computed by

cdfn(B̄(xc, yc, r)) =
∑n

i=1 Bi(xc, yc, r)
B̄(xc, yc, r)

, n ∈ 1 : N (8)

A distance function D(cdf) is defined to find the maximum
non uniformity of cell boundary, i.e., the maximum cumu-
lative distance of cell boundary intensities from local mean:

D(cdf) = max
n∈[1:N ]

|cdfn − n

N
| (9)

An exponential function Pcdf (D) is used to penalize the non
uniformity in cell boundary:

Pcdf (D) = exp{−2 ·N ·D(cdf)} (10)

5. RESULTS

By applying our proposed probabilistic cell model (1) to
the phase contrast microscopic images, a probability map
of cell centers is obtained for each frame, which character-
ize the HSCs having circular shape with an average radius of
about 2.5 pixels. In the generated probability map, to further
identify the cell centers, the probability map is thresholded
and local maxima are located.

Fig. 4(a) and (b) show the original cell images and
the results obtained by applying the proposed model. The
non splitting mature HSCs are depicted in Fig. 4(a), while
Fig. 4(b) shows a splitting case. The identified HSC cen-
ters after thresholding the probability map and locating lo-
cal maxima are depicted in Fig. 4(c). As can be observed
from Fig. 4(c), by applying our probabilistic cell model to
two typical HSC images, it is able to identify all cell centers
correctly not only in the non splitting case but also in the
more challenging splitting case.

6. CONCLUSIONS AND DISCUSSIONS

Image cytometry is a practical approach to measure and ex-
tract cell properties from large volumes of microscopic cell
images. As an important application of image cytometry,
this paper presents a probabilistic cell segmentation method
to locate HSCs in phase contrast microscopic images, which
is the main stage of a fully automatic cell tracking system.
Our statistical cell model, which is constructed after care-
fully observing HSCs in typical image sequences, captures
the key properties of HSCs. By matching the image data



(a) Mature HSCs

(b) Splitting HSC

(c) Located cell centers

Fig. 4. From left to right: (a) and (b); original image, prob-
ability of the cell boundary, probability of the inside cell,
probability of the uniformity of the cell boundary and the
probability map, i.e., the product of all three probabilities.
(c)Located non splitting and splitting cell centers.

with the cell model, a probability map of cell centers is
generated for each frame. Cell centers are located by fur-
ther thresholding the probability map and locating the local
maxima. It can be seen from the previous section that such
a probabilistic cell segmentation method has produced very
promising results.

However, our current method is not without limitations,
e.g., the final result is somewhat sensitive to the threshold
used in processing the probability map, especially when
cells are splitting since at that time they don’t have a
fixed circular shape. Our future work includes further
improving the cell model to more accurately reflect unique
properties of the cells under different conditions and to
fuse information from adjacent image frames to make the
method more robust to noise and clutters. Designing a
parametric cell shape with more degrees of freedom has
also been considered as future work to adapt the proposed
model to other cell types.
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