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ABSTRACT
We develop a probabilistic color distance measure based on hy-
pothesis testing in order to achieve shading invariance in image
segmentation. We derive this new color distance measure based
on the Dichromatic Reflection Model and noise statistics. We show
preliminary results of using the new semi-metric in a color image
segmentation task to show its effectiveness.

1. INTRODUCTION

Humans can easily, even effortlessly, distinguish between separate
objects in an image scene. This has long been a key problem in
computer vision where a number of steps, from low-level to high-
level vision, are needed to understand an image or some portion of
it. A critical step is that of image segmentation — the partition of an
image into distinguishable subsets based on the premise that objects
having a distinct appearance can be visually separated. Images are
composed of pixels which depending on the sensors used to capture
it can represent light intensity values, colors or some other elec-
tromagnetic quantities. Image segmentation requires two distinct
components: pixel comparison and pixel grouping. The pixel com-
parison function requires the design of a pixel similarity criterion.
The pixel grouping mechanism, on the other hand, aggregates the
pixels with respect to this pixel similarity criterion.

In this paper, we focus on the second component of an image seg-
mentation algorithm. Without a reliable distance measure it is not
possible to determine which pixels should go together and which
constitute disparate parts. The appropriate distance measure needs
to reflect the kind of problem that is being solved and thus knowl-
edge about the problem is encoded in the distance measure either
implicitly (by carrying out comparisons in a feature space assumed
to be Euclidean) or explicitly (carrying out comparisons in the sen-
sor space which is not necessarily Euclidean).

Choosing an appropriate pixel distance measure for a particular
application can determine whether the algorithm devised to solve
the problem will be successful [2]. In the case of color image seg-
mentation, the choice of distance measure will depend on the color
space and color model being used to solve the given problem. This
paper discusses statistics- and physics based derivation of a color
distance semi-metric that are shading invariant in RGB.

Both Euclidean distance and vector angle have drawbacks:
1. Euclidean distance [2] is not an appropriate physics-based met-

ric in RGB since it is highly intensity dependent [7].
2. Vector angle [9], although shading invariant in RGB, is not an

appropriate physics-based semi-metric since distance calcula-
tions for low pixel values are unreliable.

3. Euclidean distance is shading invariant in normalized rgb [5],
however, it is susceptible to the same problems as vector angle.

As opposed to the Euclidean distance and the vector angle, statis-
tical distance measures depend on stochastic information encoded
in the data in addition to difference computation between the pixels
being compared. Since vector angle in RGB and Euclidean distance
in normalized rgb give highly unreliable results for low intensity
pixels, we will endeavor to develop a shading invariant metric that
is also noise resistant.

There are several important issues and assumptions that need to
be made under this basic premise:

1. A metric which is invariant to shading needs to factor out the il-
lumination. We will assume that the illumination varies linearly
with the pixel values (as the illumination intensity increases, so
will the RGB pixel values increase). This assumption is not al-
ways valid especially for very low (dark regions) and very high
(usually small highlight regions) intensity values. However, we
are not dealing with perceptually correct color differences such
as for example those achieved in CIE Luv [7] or CIE Lab where
small differences might matter.

2. We will assume that the illumination of the color scene is white
light or a white balancing step has occurred. In all cases, images
studied in this paper were obtained under white light and there-
fore we have no reason to believe that this assumption would
not hold.

3. We will assume that we are working in the RGB or sensor space
where we can easily apply the Dichromatic Reflection Model
[8]. Therefore, we need not be concerned with transformations
into a different color space.

4. Noise resistance can be achieved with respect to different types
of noise. Noise can frequently introduce errors in measurement
and it is important to take it into account. In this paper, we con-
sider pixel independent white noise stemming from the image
capture process which we model as an additive Gaussian dis-
tributed noise:

x = a +υ (1)

where x is the pixel vector, a is the true representation of x, and
υ is Gaussian-distributed noise with covariance R that depends
on a. Therefore, the noise for each x is independent of the other
noises.
However, additive Gaussian noise is not necessarily a good as-
sumption since real CCD camera noise is strongly dependent
on the image intensity level [6] and includes mainly five noise
sources: fixed pattern noise, dark current noise, shot noise, am-
plifier noise and quantization noise. The most important noise
element seems to be shot noise, the variance of which varies
linearly with intensity [12]. However, finding image regions
in order to estimate the noise level for different intensities and
colors is generally not possible since many regions will be too
small. Therefore, we will continue with our current (imperfect)
assumption.

The paper is organized in the following manner. First, we will
present the Dichromatic Reflection Model, what constitutes a metric
and the hypothesis testing framework. Second, we will demonstrate
why the vector angle and Euclidean distance are not appropriate dis-
tance measures especially when we would like to measure intensity
invariant distances in highly variable and dark areas. Next, we will
introduce the hypothesis testing probabilistic framework which will
be followed by the development of an intensity invariant and noise
resistant metric. We will show results based on well-known color
images in the literature.

2. PHYSICS-BASED COLOR REFLECTION MODELS
AND SPACES

Color models allow us to make certain assertions, regarding color
generation and perception, about the color space that we would like
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to use based on the laws of physics (optics). Physics-based color
models explain how light is reflected from objects in a scene based
on the physical properties of materials. They are used when algo-
rithms need to achieve perceive objects in the real world without
illumination effects such as is the case for humans.

Much work has been done on physics-based color modelling over
the years [8, 10, 11]. A commonly used physics-based model is
Shafer’s Dichromatic Reflection Model (DRM) [8], which assumes
that light reflected from objects can be separated into specular re-
flection and diffuse reflection. Specular reflection or highlight is
characterized visually by a glossy appearance and describes light
that is reflected in a mirror-like fashion from a surface. Diffuse or
body reflection is the light reflected in all directions from a surface,
giving a surface its colored appearance. By using the DRM, pixel
difference computations can be done directly in the RGB space. The
focus here will be on inhomogeneous dielectric materials such as
plastics and painted surfaces and we will base our analysis on the
work by Tominaga [10].

In the DRM, light reflected from an object surface o (called the
color signal) is described as a function co(λ, i, j) of wavelength λ
and pixel location {i, j}:

co(λ, i, j) = Body Reflection+ Interface Reflection

= ν(i, j)so(λ)e(λ)+η(i, j)e(λ) (2)

where e(λ) is the spectral power distribution of the light source,
so(λ) is the spectral-surface reflectance of object o, ν(i, j) is the
shading factor and η(i, j) is a scalar factor for the specular reflection
term.

Normalized color or rgb [5] is obtained by dividing the RGB
pixel elements by the pixel magnitude, i.e., x̄ = x

|x| . For matte ob-
jects the color representation in the normalized rgb space is invari-
ant with respect to illumination direction and intensity, as well as
the viewing direction and surface orientation [3]. It is still sensitive
to specular reflections, and inter-reflection. It is also not well de-
fined for pixels with low intensives. We will focus on the RGB and
normalized rgb color spaces.

3. EUCLIDEAN DISTANCE AND VECTOR ANGLE
LIMITATIONS

The key to color image segmentation is to apply the appropriate
color distance measure for the problem at hand. The choice of dis-
tance measure can greatly affect image segmentation or clustering
results [2]; therefore, it is critical to make sure that the similarity or
discontinuity measure being used is the appropriate for the assumed
color space.

The most often used distance or discontinuity measure due to
its mathematical properties and ease of use is the Euclidean dis-
tance [2]. However in the case of color images, where each pixel
is represented as a RGB vector, the Euclidean distance is a partic-
ularly poor measure of color similarity because the RGB space is
an-isotropic, especially when lighting effects such as specular re-
flection and shading are present in the image [7].

The vector angle measure or its variants has been used a few
times in the literature [9]. Because the dot product between the
vectors is divided by the magnitude of the vectors, vector angle will
be shown to be intensity invariant with respect to the Dichromatic
Reflection Model. The main problem with the vector angle is that
it gives very “noisy” results for vectors with small magnitudes [9]
and is undefined if |x| = 0 or |y| = 0.

The distance between two pixels can be computed in several dif-
ferent ways. Using the Euclidean distance, the distance becomes
intensity-dependent and, therefore, is not applicable to assessing
differences based on color. Figure 1 shows that there are high dif-
ferences with respect to pixel intensity but not shading invariance
for example. Note that a black square indicates that the colors are
similar, while a white one shows high disagreement. Shades of gray
illustrate the nuances in the color differencing results.
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Figure 1: Grayscales show Euclidean distances between various
colors in RGB. Lighter values imply larger distances. There is a
clear pattern of having low distances between pixels of similar in-
tensity and large distances between pixels of very different inten-
sities all without regard to the intrinsic pixel color. The RGB col-
ors correspond to the following values (from left to right and from
top to bottom): {1,1,1}, {125,125,125}, {250,250,250}, {1,0,0},
{125,0,0}, {250,0,0}, {0,1,0}, {0,125,0}, {0,250,0}, {0,0,1},
{0,0,125}, and {0,0,250}.

The vector angle in RGB is equivalent to the Euclidean distance
in the normalized color space rgb [5]. In addition, the normalized
covariance matrix is introduced here and given by R̄x = R

|x|2 . This

is shown in Figure 2. Since sinθ ≈ θ for similar colors, not much
error is introduced. A similar outcome to vector angle in RGB is
demonstrated in Figure 3. For very low intensity pixel values in
RGB, the distance measure behaves erratically. That is, for small
changes in low intensity pixel values, the angle can be arbitrarily
different. This means that a small amount of noise will create vastly
different results implying that using the vector angle the statistics
break down for very dim (or low intensity) pixels. This invalidates
the use of vector angle or Euclidean distance in normalized rgb even
though the intensity invariant feature is very attractive.

A

A’

BB’

Figure 2: The normalized rgb color space is demonstrated through
projecting RGB vectors onto the unit sphere (shown here in 2-D for
ease of viewing). The RGB pixels A and B (thick black arrows)
are projected onto the unit sphere at points A′ and B′ respectively
(small circles on the unit circle). The dotted lines are indicative of
the variance of the pixel values. Therefore, a pixel with low RGB
intensities that is projected onto the unit sphere will have relatively
higher variance on the unit sphere than pixels that have high RGB
intensities (shown by the arcs with double arrows).

4. HYPOTHESIS TESTING FRAMEWORK

In order to create a probability-based distance measure, we will first
need to introduce the concept of hypothesis testing. Then we will
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Figure 3: Shading Invariant Distances Between Various Colors in
RGB (vector angle) or equivalently in normalized rgb (Euclidean
distance). For example, notice that distances between pixels with
low intensity values such as {1,0,0} and other pixels can change
drastically with the change of just one pixel value. The same results
would be obtained with vector angle in RGB

describe a hypothesis test-based distance measures that can be used
as a shading invariant method with the desired characteristics.

The most commonly used method to formulate hypothesis testing
involves asking the question whether quantities (in this case pixel
values) are from the same class. In essence, this corresponds to the
following hypothesis tests:

H0 : x = y (3)

H1 : x �= y

where we test the null hypothesis H0.
We could also ask which class each pixel (of a set of adjacent

pixels) belongs to. The hypothesis tests then become

Hi j : x = ai (4)

y = a j

This formulation is seldom used since as the number of classes
grows, the number of tests grows quadratically which can quickly
become unmanageable. However, we can ask some questions about
ai and aj in order to reduce the number of tests to only one. For
example, instead of having formal classes we can estimate ai and
a j based on x and y by asking whether x and y are explained by the
same mean (i.e., ai = a j) or different means (i.e., ai �= a j). We will
call this the common mean hypothesis test.

We will begin with the common mean hypothesis test and see
that it is related under certain conditions to the classical hypothesis
test (3).

4.1 Common Mean Hypothesis Test Color Distance Measure

An original approach using hypothesis test (4) involves the estima-
tion of ai based on the values of x and y in order to find the ai that
maximizes the joint probability distribution p(x,y|ai). We can also
look for the ai that is equidistant in terms of standard deviations
from x and y, in other words the ai for which p(x|ai) = p(y|ai) is
true. For simplicity of notation and without loss of generality, we
will use a = ai for the developments in this section and the next one.

If we first assume that the means a are known, then we can esti-
mate the likelihood of p(x|a) using

p(x | a) =
1√

2π | R | e
− 1

2 (x−a)T R−1(x−a). (5)

(5) gives us the well-known measure of how likely it is for x to come
from a distribution with mean a. Note that we can transform this
probability into a distance measure by using − ln p(x|a). We now
assume that the prior means a are unknown and ask the question of

what is the likelihood that there is a common a which explains both
x and y?

Through the independence property (we can assume that x and
y are conditionally independent since their noises are independent),
we can state that p(x,y | a) = p(x | a)p(y | a). Therefore, given that
we would like to find out how consistent x and y are with respect to
each other, the desired likelihood is

p(x,y) = max
a

p(x,y | a) (6)

where the max operator is computed over all possible a. This can
be a computationally expensive task depending on whether the set
of reals or integers is used to represent a. Making the conditional
independence assumption we have

p(x,y) = p(x | a)p(y | a) (7)

which can also be written by

Φ(x,y) = − ln[p(x | a)]− ln[p(y | a)] (8)

The distance metric can therefore be represented by

ΦC(x,y) = (x−a)T R−1(x−a)+(y−a)T R−1(y−a) (9)

This metric is very easy to calculate and has no trouble with dark
pixels assuming that we can somehow find a good a. However,
it is dependent on intensity and will not work with non-trivial
illumination-dependent error covariances. To transform (9) into an
intensity invariant measure we project the vectors x, y and a onto
the unit sphere using normalized rgb. Then we obtain the following
distance measure:

ΦC(x̄, ȳ) = (x̄− ā)T R̄−1
x (x̄− ā)+(ȳ− ā)T R̄−1

y (ȳ− ā) (10)

Distance measure (10) is a semi-metric since it violates the triangle
inequality due to the pixel projection on the unit sphere; however,
this is not of major concern since we are only concerned with rela-
tive distances and not absolute one. This distance measure is very
easy to calculate, has no trouble with dark pixels, is intensity in-
variant and will work with non-trivial illumination-dependent error
covariances.

ā is not considered to be a region prototype that is commonly
accepted in the literature [2]. Rather, the idea is to find an ā which
best explains both x̄ and ȳ and to use this intermediary quantity as
a means of assessing the distance between x̄ and ȳ. As mentioned
at the beginning of this section, there are two different ways to de-
termine ā. First, we could determine the ā which maximizes the
joint conditional probability p(x̄, ȳ|ā). Other options exist as well.
In essence, we want to find the optimum ā on the unit sphere.

4.2 Finding the minimum mean

To keep the analysis tractable we will assume that R = σ2I and for
the intensity invariant case we have R̄x = σ̄2

xI and R̄y = σ̄2
y I. In

order to minimize (10), we perform a component-based differentia-
tion with respect to ā j where j represents the jth component of the

vector, and set these partial derivatives to 0, i.e., ∂
∂ā j

p(x̄, ȳ|ā j) = 0.

For each component ā j the we have

−2σ̄−2
x (x̄ j − ā j)−2σ̄−2

y (ȳ j − ā j) = 0 (11)

Rearranging terms we obtain

ā j =

x̄ j

σ̄2
x
+ ȳ j

σ̄2
y

σ̄−2
x + σ̄−2

y
(12)
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which simplifies to

ā j =
x̄ jσ̄2

y + ȳ jσ̄2
x

σ̄2
x + σ̄2

y
(13)

or in vector notation

ā = (x̄T R̄y + ȳT R̄x)(R̄x + R̄y)−1 (14)

Note that if |x̄|= 0 or |ȳ|= 0, ā will correspond to the null set which
is the desired behavior.

Interestingly. it is easy to show that substituting (14) into (10)
will yield

ΦS(x̄, ȳ) = (x̄− ȳ)T (R̄x + R̄y)−1(x̄− ȳ) (15)

which corresponds to a derivation under hypothesis (3) in normal-
ized rgb. Therefore, we no longer need to compute means ā for
this probabilistic distance reducing the computational complexity
of each distance computation. Note that in this formulation, R̄x now
varies with the magnitude of x.

Note that (15) is very similar in structure to the Mahalanobis
distance [2] with one crucial difference: the Mahalanobis distance
assumes that x̄ and ȳ have the same noise distribution whereas we
do not make that assumption. Also, note that we did not pick the
Mahalanobis distance to derive the new semi-metric; instead, we
started with basic principles from which a generalized Mahalanobis
distance emerged.

Figure 4 shows the distance computations using the new distance
measure. The distances between dark pixels are now a bit lower than
distances between dark pixels and other colors with higher intensi-
ties (e.g., compare distances between “dark red” and “dark green”
and between “medium red” and “dark green” in Figures 3 and 4).
Furthermore, the distances between colors with high intensity val-
ues are large as they were before. This analysis suggests that low
intensity pixels will most likely merge with pixels of high intensity.
This is desirable in areas where a shadow falls upon an object which
results in some parts of the object being very dark. However, other
areas which are adjacent to this dark region might become merged.
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Figure 4: Probabilistic shading invariant distances between various
colors in RGB. Notice that distances between pixels with low in-
tensity values are now very small compared to distances between
higher intensity pixels while remaining “0” for pixels of exactly the
same color as compared with Figure 3.

5. RESULTS

We perform the segmentation using a Markov Random Field-based
hierarchical image segmentation procedure with the hierarchical
edge-based Potts model first detailed in [13]. Details of the exact
pixel grouping algorithm are given in [14]. In this case, we use Iter-
ated Conditional Modes as a greedy optimization method [1]. The
number of labels used will be K = 10 and does not represent the
number of regions. We will assume that the variance of the noise

Figure 5: Original Toys image (size: 256×256) and Peppers image
(size: 512×512).

σ2
i for each color band i ∈ {R,G,B} is the same and is given by the

user. Original images are shown in Figure 5. For the Toys1 image,
we assumed σ2

i = 42 while for the Peppers image we assumed a
σ2

i = 82.

Vector Angle

β = 0.0045 β = 0.0015

Common Mean Hypothesis Color Distance Measure

β = 2.5 β = 2.5

Figure 6: Results on the Toys image using the Common Mean Hy-
pothesis color distance measure in RGB. The Potts models used
were β = 0.0045 and β = 0.0015. A higher β is needed to pro-
duce less noisy vector angle-based results at the cost of one region
merging into the background. Some regions of differing color are
merged together with the Common Mean Hypothesis Test Distance
Measure usually through the intermediary of a dark region.

Figure 6 shows the results for the Toys image [3]. Note that vec-
tor angle results for a lower β are generally worse especially around
highlight areas whereas for a higher β the resulting image appears
much cleaner, however, one object (in the upper left panel) has been
completely absorbed by the background from the image. Regions
of very low intensity help to separate objects from the background
(e.g., the ball in the lower left panel). Regions of constant color are
grouped together and separated from others. One very dark shadow
in the lower left panel causes the ball object to merge with the back-
ground color (expected result). Many edge pixels are grouped sep-

1Toys image [4] publicly available at the following website
http://www.science.uva.nl/research/isla/themes/
FeaturesAndColor.php.
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Vector Angle

Probabilistic Color Distance Measure

Figure 7: Results on the Peppers image using the probabilistic color
distance measure in RGB. We used β = 0.015 for vector angle,
and β = 0.65 for the probabilistic distance measure. Note that dark
regions appear as individual regions or are merged with similarly
colored lighter regions. Some regions of differing color are merged
together usually through the intermediary of a dark region. Two
different segmentation runs are shown.

arately from the objects due to jpeg compression artifacts in the im-
age. Furthermore, the proliferation of small regions along the edges
causes large regions such as the background and the sphere to have
only a few pixels of common border which increases the likelihood
of region spilling.

Figure 7 shows an example of the segmentation of the Peppers
image. As opposed to the vector angle results where areas of dark
pixels contained a proliferation of small regions, the results for the
probabilistic distance measure show that pixels in dark regions can
be grouped together or grouped with an adjoining region with a well
defined color. However, regions of different color can still merge to-
gether if they are connected by a darker region. Also, note that high-
light areas are detected as separate regions since this semi-metric is
not highlight invariant.

6. CONCLUSIONS

In this paper, we have demonstrated an intensity invariant and noise
resistant distance measure. The distance measure has been derived
from first principles and is well grounded in statistics. The dis-
tance measure is a metric in Euclidean spaces and a semi-metric
in projected spaces like normalized rgb. It allows the extension of
vector angle and the Euclidean distance in normalized rgb to noise
resistance. Its effectiveness has been validated by image segmen-
tation results on several images. However, some segmentation re-
sults suffer from region-to-region spilling which could potentially

be avoided by using a local region prototype-based segmentation
model where between region differences are calculated based on
region means and not just edge differences [14]. Furthermore, a
comprehensive model which also includes specular reflection has
been devised and will be presented in the near future.
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