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ABSTRACT

A challenging problem in oceanography is the dense estimation of the surface of the ocean in a statistically
meaningful manner, given sparse and irregularly sampled measurements of the surface. A previously devel-
oped highly efficient multiscale estimation framework is shown to be an appropriate tool for this task, and we
demonstrate the manner of application and present experimental results. The algorithm is capable of computing
250,000 surface estimates of the ocean with error statistics in five seconds on a Sparc workstation.
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1 INTRODUCTION

This work deals with the application of a random field multiresolution methodology to the particular problem
of the efficient estimation of ocean height. A map of ocean height is of considerable value to ocean modelers, as
it allows the identification and correction of errors in computer simulations of global ocean circulation models.
The primary reason for the recent increase in interest in the processing of such data is due to the launch of
the joint American/French Topex/Poseidon (TP) altimeter: a sateffite-based platform capable of characterizing
the shape of the ocean surface to unprecedented accuracy (about 5cm). The challenge of our research lies
in the necessity to perform statistically based, but highly efficient, computation of dense sets of ocean height
estimates and error statistics based upon sparse measurements. Figure 1 indicates the region of interest in this
initial work: the north-eastern Pacific basin from Hawaii to Alaska. What Figure 1 illustrates is the pattern of
data samples provided by the satellite over each ten day period (the pattern repeats every ten days). Observe
the sparsity, irregular sampling, and occasional data dropouts in the measurements. Such irregularity in the
data pattern presents a major challenge,4'2' as there is no regular structure that can be used to advantage.
Furthermore, there are sources of nonstationarity not only in the expected variability of the sea level in different
parts of the ocean, but also in the quality of measurements provided by the sateffite. In particular, the altimeter
provides direct measurements of the distance from the ocean surface to the satellite; what is actually desired is
a measurements of ocean height relative to the geoid'3"4 (the equipotential surface of the earth's gravitational
field). Thus the raw altimetric data are subjected to a series of corrections, most importantly for deviations of
the geoid from an effipsoid. Errors in the geoid translate directly into errors in the sea level estimates produced
by the corrected altimetry measurements.

The data set is moderately large (20,000 measurements over the north-Pacific region every ten days), however
what makes the task difficult is the number of ocean surface estimates desired. For the region shown in Figure 1,
in excess of 100,000 surface estimates are computed. Extrapolating this number to a full ocean basin, or to the
entire global surface, yields a formidable problem (particularly considering the requirement for estimation error
statistics).

Finally, scale is a critical issue. Although most natural processes are traditionally described on a single scale
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(via a differential equation, for example), the recent activity in exploring the fractal and self-similar properties
of many natural systems suggests that the richness of many such systems manifests itself by its interactions
across scales. The ability to capture this richness should ensure a more capable processing of observations made
upon this system.

A number of smoothing and data assimilation algorithms (e.g., Objective Analysis,'7 Optimal Interpolation,5
Kriging'6) have been developed, each of which have emphasized increasing degrees of statistical structure or
computational efficiency. Each of these methods have addressed some of the challenges of the previous para-
graphs, however they are unable to deal, in a computationally feasible manner, with the enormous size of
problems which we wish to consider.

The key to our approach is the explicitly multiscale nature of our model: rather than operating exclusively on
a single scale, we estimate aggregate variables on a hierarchy of scales. Such an approach has the combined
benefit of computational efficiency, as well as an opportunity to explicitly describe the scale to scale nature
of the system being observed. Furthermore, our modeling framework does not require a special regularity
or homogeneity of the measurements or the prior model; efficient estimation is achieved in the presence of
heterogeneous measurement locations, error variances, and multiscale model.

The purpose of this paper then is to demonstrate a novel application of a statistical multiscale modeling frame-
work. Section 2 describes the application of scale dependent signal processing to TP data processing and briefly
outlines our multiscale estimation framework. Section 3 presents various of the experimental oceanographic
results obtained from our efforts. Conclusions and a description of ongoing efforts are summarized in Section 4.
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Figure 1: Set of Topex/Poseidon measurement tracks in north Pacific
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2 MULTISCALE ESTIMATOR OVERVIEW

There are three basic properties of the ocean estimation problem that motivate the application of our estimation
methodology:

1. The oceans are extremely large, and need to be imaged at a fine (about 0.2 degree) resolution in order to
observe features of interest. This motivates the use of efficient algorithms.

2. Although subject to considerable uncertainty, we do have some understanding of the spatial statistics of
the ocean surface. This motivates the use of methods which make explicit use of our knowledge of ocean
statistics.

3. The calculation of estimation error covariances is required if the altimetric observations are to be incorpo-
rated into global circulation models. The interest in such models motivates the application of smoothers
which are not only statistically based, but also capable of generating error statistics.

The general class of problems to which we address our efforts is the class of maximum a posteriori (MAP)
problems, described as follows:

(1)

N(j, ,.2) represents a normal distribution of mean j and variance o2. represents the prior model (or,
equivalently, the a priori covariance) of the state vector x.

y=Cz+v vJtf(O,R) (2)

C describes the measurement model, where y is a set of measurements (linear functions of z) corrupted by
Gaussian noise v. The general solution to the MAP problem is

(P;' + CTRC)5 = cTRy (3)
E [( — )(2 — )T] (P;' + CTRC) (4)

This problem formulation and solution is also known as optimal interpolation.5 In the context of the ocean
surface estimation problem, z represents the height field of the ocean, stacked into a vector; y represents the
set of measurements obtained from the sateffite.

Simple smoothing algorithms (such as local least squares, low-pass filtering or interpolation etc.) chosen for
their efficiency tend to be based upon model parameters chosen in a relatively subjective or ad-hoc manner. The
model assumed by such smoothers is implicit, and need not bear any resemblance to known ocean statistics.
Furthermore these methods do not produce error covariances. Among more general accelerated methods, most
of these achieve efficiency through constraints which we feel to be inappropriate for problems such as large-scale
data assimilation. For example, most accelerated FFT methods require a regularly sampled grid of measurements
- nothing like the sparse irregularly sampled data set of TP.

A direct implementation of Equation 3 is possible only for vectors i of relatively low order. Practical imple-
mentations of optimal interpolation typically estimate only a small subset of at a time, thus only a relatively
small degree of the correlations contained in the prior model P are represented in the computed estimates.
The novelty of our approach2'3'68 lies in the fact that the prior model P represents the state a over multiple
scales or resolutions. That is, the elements of z describe the behavior of the system represented by z at various
resolutions; P is the model which describes the correlation of states over and across scales.

In our framework the prior model P1, is not specified explicitly, rather it is built up implicitly in a scale-recursive
manner. Specifically, a prior covariance P0 is specified at the root (top) of the tree, and is built recursively
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Figure 2: Simple multiscale tree example showing the connections between nodes on three different scales

towards finer scales. Such an implicit specification of P is not an unfamiliar concept. For example a difference
equation driven by white noise

z=Q+w (5)

where Q describes the model for z (e.g., nearest neighbor) and w is white noise, implicitly generates the
covariance structure (I —Q)' for z.

The efficiency of our approach is exacted by insisting upon a special structure of P which spans a considerable
class of models, including 1/f processes and Markov random fields. For prior models P, possessing this special
structure, we are able to solve the associated MAP problem exactly; that is, we are able to perform optimal
smoothing, but in an efficient manner. Of even greater importance, the estimation error covariance is calculable.
The full error covariance matrix is far too large to calculate explicitly: our approach calculates the diagonal
elements of this matrix explicitly, and contains a formulation for the calculation of arbitrary off-diagonal terms.

The multiscale model is built on a tree, of which Figure 2 is a simple two-dimensional example. The efficiency
of this scheme is gained via a sort of divide-and-conquer strategy: conditioned on any node on the tree, each
of the subtrees connecting to this node are conditionally independent. Rather than jointly estimating a great
number of values in one single state vector, leading to enormous covariance matrices, the estimates of the values
at given space scale are divided among the tree nodes at that scale (with correspondingly smaller covariance
matrices at each node). The joint statistics between estimates distributed across a tree scale are captured by
estimates of aggregated values at nodes on coarser scales.

The statistical prior model that describes the system of interest is explicitly multiscale: the state vector at each
tree node is written in terms of its parent node with an additive process noise term. The multiscale model may
be written as

Zm+l = AmZm + BmWm 1Dm .N"(O, I) (6)
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where Xm represents the collection of all state vectors on scale m, and Wm5 a white noise driving process for
the mtI scale; m = 0 represents the coarsest, or root, scale; m = M represents the finest scale. Similarly there
is a multiscale measurement model:

YmCmXm+Vm VmN(O,R) (7)

where Ym 5 a vector of measurements corrupted by noise Vm• The measurement model permits the observation
of states at any scale; that is, this framework permits the incorporation of measurements at various resolutions.
Estimates of z are computed at all points on the tree using the multiscale analogy of a fixed interval smoother
such as the Rauch-Tung-Striebel (RTS) algorithm, a non-iterative approach which performs a single upwards
pass from the leaves to the root of the tree, followed by a downwards pass. The computational efficiency of this
estimation framework is excellent: a grid of 250,000 estimates with error covariance information can be computed
from 20,000 surface measurements of the ocean in about 5 seconds on a Sun Sparc-1O. Such performance times
make very real the possibility of gridding observations from a much larger area, such as the whole Pacific ocean.

A considerable amount of effort2'7 has been devoted towards exploring the class of systems which may be
represented by multiscale models of the form of Equation 6. One of the most important classes, and the one
of direct interest here, is the class of 1/f models.'9 1/f processes (such as Brownian motion) possess many
interesting properties, relating to fractals and self-similarity over scales —the sort of property which we are
interested in capturing in natural systems. Selection of the multiscale process values to vary as

Bm f341m/2 . j (8)

where I represents the identity matrix and m represents the scale of the node in question allows the approxi-
mation of a l/f1L spectrum.2°

One additional benefit of our framework is the ability to perform multiscale-model hypothesis testing.7 That
is, given a multiscale prior model and a set of observations, we can compute the relative likelihoods of a set of
competing multiscale models. This algorithm permits, for example, a determination of the appropriate values
for /3 and IL in Equation 8.

3 EXPERIMENTAL RESULTS

3.1 A. Multiscale Ocean Model Selection

The experimental results of this section are based upon TP altimetric data, repeats nine through thirty-nine. The
usual corrections are applied to the data: atmospheric,'0 tidal,'5 orbital," inverse barometer (or atmospheric
pressure loading), and geoidal.'3"4 Given a collection ofcorrected raw satellite data and a multiscale framework
from Section 2, the task which remains is the determination of the specific parameters within the multiscale
model (i.e., the Am, Bm, Cm, and Rm of Equations 6 and 7).

Figure 3 shows a sample power spectrum determined from TP data. The process noise of a multiscale model
which reproduces this power spectrum is

z(child) = i(parent) + 52 . 2_m)w(child) (9)

A sample power spectrum of data synthesized from this model is also shown in Figure 3. Roughly speaking, this
model asserts that the expected height offset between two points on the ocean surface is an increasing function
of their separation. The prior covariance P0, representing the prior knowledge of the mean value at the root
node (corresponding roughly to the aggregate mean height of the ocean), is set to be very large ( 1O). In
other words we presume no prior knowledge of the overall mean ocean height.
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Empirical Power Spectrum Synthesized Power Spectrum

Figure 3: Comparison of power spectra

The measurement model is particularly simple, since our observations are direct measurements of a subset of
ZM , where m = M corresponds to the finest scale. That is,

Cm0 O<m<M (10)

(C • — The th component of ZM does not correspond to a TP observation.
' M)t — The th component of M corresponds to an observation point.

We assume two sources of measurement noise:

. The error in estimating the distance from the sateffite to the ocean surface, assumed to be 5cm white
Gaussian noise.

. The error in the geoid model.

The highest quality geoid models currently available are quite effective at capturing large scale and moderate
scale geoid fluctuations, but are less accurate in regions of sharp local changes. Such a result is not surprising:
geoid models are constructed as a truncated spherical harmonic expansion, which exhibits larger errors near
abrupt changes. Furthermore, navigation errors in the satellite in areas of steep geoid gradient lead to greater
uncertainty in the geoid correction than in other regions in which the geoid is smoothly varying. As a result,
altimetric measurements in the vicinity of steep geoid slopes represent a less accurate assessment of the corrected
ocean surface. Consequently we argue the following measurement noise model:

RM (5cm)2 + g(Geoid Slope) (12)

where g is an increasing function (and is detailed in the next section).

The spatial position of the multiscale tree on the ocean is somewhat arbitrary; that is, there is no particularly
natural orientation for the multiscale tree, and the validity of the multiscale estimates should not change if
the multiscale tree is shifted a few degrees east or west. Figure 4 shows a given field with four possible tree
orientations. Given the multiscale model of Equation 9, the four children of some tree node s are correlated
only through their common parent. The motivation behind the use of multiple trees is the reduction of artifacts
due to decorrelation across coarse boundaries of the tree. In order to attenuate possible artifacts we compute
ocean surface estimates for each of ten trees (each shifted with respect to the others) and average the results.
It should be emphasized that this is not at all like spatial low-pass filtering or interpolation.
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Figure 4: Four possible tree positions, shifted with respect to one another.

3.2 Gridding Results

Having determined a multiscale model suitable for processing ocean altimetric data we are in a position to
perform preliminary data assimilation tests. A sample map of ocean surface estimates is shown in Figure 5.
This map is based upon a single repeat cycle, or ten days, of data (about 20,000 data points). The 250,000
estimates and associated estimation covariance information were computed in about 1 minute on a Sun Sparc-10
(the map shows the combination of ten trees of estimates; each multiscale tree requires a computation time of
about 5 seconds).

The ocean height variations shown in the figure are consistent with the known large-scale oceanographic behavior
of the region: there is a predominant gradient in the north-south direction with surface height offset on the order
of one meter. The estimates offer far higher resolution than has heretofore been available for ocean modelers
for use as part of their ocean circulation studies. It is this very leap in resolution that makes the assessment of
our results difficult - we have come across no other altimetric maps of sufficient resolution to support or refute
our plots.

A set of estimate error variances corresponding to the above estimates is shown in Figure 6. The distribution
of measurement dropouts in this data set can be inferred from Figure 1. As before, the results are computed
as the average over ten multiscale trees. Because of the spatially varying uncertainty in our measurements due
to geoid error, the occurrence of data dropouts, and the irregular pattern of data collection, we would expect
that the uncertainty pattern in the optimal estimate of our ocean height map would be highly variable and
would, to some extent, reflect these features. The map of the estimation error variances (Figure 6) supports this
argument. In particular, observe that the regions oflowest uncertainty (the lightly shaded regions in the figure)
correspond with the points at which we have sateffite measurements; a careful inspection of the figure will also
reveal occasional darker breaks along these regions, corresponding to data dropouts. In addition, because of
our spatially-varying noise model, the measurements near the Aleutian and Hawaiian chains (which induce a
significant geoid gradient) are modeled as being noisier, resulting in elevated covariance values. The large region
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Figure 6: Estimation error variances based on one repeat cycle of data; darker regions represent greater uncer-
tainty
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of uncertainty at the top of the figure is due to the Alaskan land mass.

The examination of measurement residuals, the differences between the sateffite measurement and the ocean
surface estimates, can serve to verify the validity of our multiscale models. In particular, by normalizing these
residuals with respect to their expected standard deviations (computed from the error covariance produced
by our algorithm) we can isolate statistically significant outliers. For example, the nature of the geoid slope
dependent term in the measurement error (Equation 12) can be examined. A set of estimates and residuals
were computed using a measurement noise of

Rm (5cm)2 (13)

The resulting distribution of statistically large residuals is shown, superimposed upon a map of the geoid gradient
in Figure 7. The correlation between large residual locations and steep geoid slope is unambiguous, and argues
convincingly in favor of our geoid slope-corrected measurement noise model. As an additional comparison, the
same locations of large residuals are shown superimposed on a plot of ocean bathymetry contours (the shape of
the ocean bottom, which heavily influences the shape of the geoid) in Figure 8. Computing the RMS value of
residuals as a function of geoid slope allows a quantitative assessment of the geoid-slope dependent term in the
measurement noise model (function go of Equation 12). Since the efficiency of our framework is derived from a
particular structure of the prior and measurement models and not from a regularity of measurement locations
or error variances, the implementation of a spatially varying measurement noise (due to the heterogeneity of
gQ) is easily implemented and costs little computationally. Similarly spatial inhomogeneities in the prior model
(that is, in the scale to scale process noise weights Bm), due perhaps to the prior knowledge of the location of
a strong ocean current, are just as easily incorporated with essentially no computational burden.

4 CONCLUSIONS

We have demonstrated the application of a multiscale estimation framework to a significant estimation problem
in oceanography. The results of this paper are of interest from a statistical estimation point of view, since every
successful application broadens the class of problems which may be addressed by the methodology. This paper
concentrates on the methodology and application of the multiscale framework, rather than on the details of
the application itself. We are collaborating with colleagues in oceanography, an anticipate making more direct
contributions to that field in the near future.
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Geoid Slope with Large Residual Overlay

Figure 7: Overlay of geoid gradient map and sites of large residuals; regions of lighter shading represent steeper
geoid gradient.
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Figure 8: Overlay of ocean bathymetry contours and sites of large residuals
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