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Abstract- Tracking the motion of cells in culture is a task,
which often still is undertaken manually, and for which
automated methods are strongly desirable. Researchers
visually perform cell motion analysis, observe cell move-
ments and cell shape changes for hours to discover when,
where and how fast it moves, splits or dies. Hematopoietic
Stem Cells (HSCs) proliferate and differentiate to different
blood cell types continuously during their lifetime, and are
of substantial interest in gene therapy, cancer, and stem-cell
research. In this paper a statistical method is introduced to
track HSCs over time. A statistical thresholding method is
combined with joint probabilistic data association in the
proposed HSC tracker.
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1. INTRODUCTION

Drug and disease research strongly rely on cell behavior
studies. Cell size, shape, and motility may play a key role in
stem-cell specialization or cancer development. Traditional
manual methods have been used to infer these values from
image sequences. Given the increasing amount of cell data
being collected, the manual methods are onerous and auto-
mated cell tracking and segmentation methods are in high
demand.

Automatic cell tracking is essentially an object tracking
problem. This problem is yet an attractive and challeng-
ing task which is closely related to the computer vision and
image processing research communities [1, 2, 3, 4, 5]. Ap-
plying advanced techniques in digital image processing and
pattern recognition to a huge number of bio-cellular images,
can improve our understanding of cellular and inter-cellular
events so that significant progress and new discoveries in
biological and medical research may be achieved.

The challenging task in microscopic cell image seg-
mentation is to adapt and extend available image segmen-
tation approaches to the applications of cell imaging. A
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Fig. 1. (a) Close-up of an original HSC phase contrast mi-
croscopic image phenotype2. (b) HSC phenotype2 phase
contrast image after background subtraction.

variety of semi-automatic or automatic methods have been
proposed to segment cell boundaries [6, 7]. These meth-
ods include thresholding, watershed, nearest neighborhood
graphs, mean shift procedure and deformable models.

Mean shift procedure method was proposed by Comani-
ciu et al [8] for cell image segmentation for diagnostic
pathology. Watershed have been used by Markiewicz et al
[9] for segmentation of the bone marrow cells. Geusebroek
et al [10] introduced a method based on Nearest Neighbor
Graphs to segment the cell clusters. Meas-Yedid et al [11]
proposed a method to quantify the deformation of cells us-
ing snakes. Kittler [12], Otsu [13] and Wu [14] have used
thresholding methods.

This paper proposes a statistical cell tracking method by
combining a thresholding approach and probabilistic data
association.

2. CELL IMAGING AND ANALYSIS

To produce the data for this study, HSC samples are first
extracted from mouse bone marrow and cultured in custom

2006 IEEE International 
Symposium on Signal Processing 
and Information Technology

0-7803-9754-1/06/$20.00©2006 IEEE 222



arrays having up to forty wells. HSCs are then imaged us-
ing manual focusing through a 5X phase contrast objective
using a digital camera (Sony XCD-900). Images were sam-
pled every three minutes over the course of several days. A
small fraction of a typical HSC microscopic image is de-
picted in Fig. 1.

Although cell staining techniques may be used to in-
crease the contrast between cell and background, different
parts of tissue are undesirably stained unevenly, causing in-
homogeneity. Moreover to minimize photo-toxicity and to
keep cells alive and healthy, light exposure must be con-
trolled during their life cycle. Limiting the light exposure
in each frame, and sampling the frames as far apart as pos-
sible lead to infrequent, poorly-contrasted images, directly
at odds with the data desired for easy tracking: frequent,
high-contrast images.

3. THE PROPOSED METHOD

In our previous work [15] we characterized a typical HSC
in microscopic image as an approximately circular object
with a darker interior and a bright boundary. Although the
proposed cell model works well to localize a specific HSC
phenotype, its performance drops with

• Significant illumination variations during phase con-
trast imaging.

• Different HSC phenotypes.

To improve the previous cell model and resolve its short-
comings, a more general and robust cell model must be de-
signed. The goal here is modelling HSC so that with slight
changes in the model parameters it can represent different
HSC phenotypes and be robust against illumination varia-
tions as well.

The cell detection is essentially one of anomaly detec-
tion, the localization of groups of pixels inconsistent with
the random behavior of the image background. Our pro-
posed method consists of background estimation and sub-
traction in the first place, an anomaly detection model as the
next step and data association at the end which will prove to
be invariant to illumination variations and HSC phenotypes.

3.1. Background Estimation

Assume S and I are pure and corrupted sequence of K, N×
M images. S is corrupted by spatial illumination variations
v over time and temporal additive noise n in each frame.
Moreover we assume that v and n are identically distributed,
independent from each other and both independent from I

I = S + b (1)

where b = v + n. Each pixel Iijk represents a pixel in 3
spatio-temporal dimensions such that

Iijk = Sijk + bijk (2)

where

bijk = v
{[1:K]}
Spatial + n

{[1:N ][1:M ]}
Temporal = v

{[1:K]}
ij + n

{[1:N ][1:M ]}
k

(3)
Furthermore we assume that the spatio-temporal back-
ground noise can be modelled as a three dimensional
Gaussian density function. We consider a 2 − D spatial
Gaussian over time as

p(vij | θij), θij = (µij , Σij) (4)

where vij ∼ N(µij , Σij), and a 1 − D temporal Gaussian
for each image frame k

p(nk| θk), θk = (µk, Σk) (5)

where nk ∼ N(µk,Σk).
Spatial background intensity variations for pixel Iij are

caused by the spatial illumination variations and can be es-
timated by spatial mean µij of spatial Gaussian over time
(1 : K) as v̂ij = µij . Temporal background intensity
variations of pixel Ik are caused by the temporal additive
noise and can be estimated by temporal mean µk of tempo-
ral Gaussian on each frame as n̂k = µk. Therefore the pure
signal S can be estimated by

Ŝ = I − b̂ (6)

where for each spatio-temporal pixel Sijk we have Ŝijk =
Iijk − b̂ijk.

3.2. Cell Model

The next essential step is detecting and localizing HSCs in
the uniform background. Figs. 2(b) and 3(b) show typi-
cal HSC images, phenotype2 and phenotype1 after back-
ground subtraction respectively. As we can see, HSC can
be characterized as approximately circular object with high
intensity variations against the uniform background. Except
for phenotype1, the other HSC phenotypes cannot be mod-
elled as an object with dark interior and bright boundary,
however intensity variations in cell locations can be used as
an unique characterization for all HSC phenotypes. Thus a
general model for HSC can be characterized by the follow-
ing criteria

1. All HSC phenotypes have an approximate circular
shape.

2. Cell pixels are significantly different from the uni-
form background pixels, hence HSCs can be local-
ized by detecting the pixels with significant intensity
variations in the image.
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3. Neighboring pixels on the cell boundary have sym-
metric intensities.

Circular Mean Square Model. HSC is modelled as a circu-
lar anomaly which is represented by a set of pixels with sig-
nificant intensity variations against the uniform background.
Assuming (xc, yc) and r as center coordinates and radius of
the cell, the continuous circular cell is spatially discretized
as

|(xi − xc)2 + (yi − yc)2| ≤ r2, (7)

where (xi, yi) are coordinates of cell pixels. We construct
the function S(xc, yc, r, I), which is a vector returning the
set of inside cell pixels as

S(xc, yc, r, I) = {Iij | (xc − i)2 + (yc − j)2 ≤ (r)2 }, (8)

from which we extract sample mean of square-intensities of
cell pixels

S̄ =
∑

i Si
2

|S| (9)

Two Class Classification: Cell and Background. To recog-
nize cells from the uniform background, first (9) is applied
to the cell image and circular mean square is computed. As-
suming |S| = L, (9) can be rewritten as S̄ = (

∑
i Si

2)/L.
Moreover the variance is

σ2 =
∑

i(Si − µ)2

L
=

∑
i Si

2 −∑
i µ2

L
(10)

after simplification we have

S̄ =
∑

i Si
2

L
= σ2 + µ2 (11)

For uniform background σ2 = σ2
bkg , µ2 = µ2

bkg = 0 and
we have

S̄bkg =
∑

i Si
2

L
= σ2

bkg (12)

where Si ∈ {background | i = [1, L]}. In cell locations,
σ2 = σ2

cell, µ2 = µ2
cell and we have

S̄cell =
∑

i Si
2

L
= σ2

cell + µ2
cell (13)

where Si ∈ {cell | i = [1, L]}. For different cell pheno-
types one of the σ2

cell, µ2
cell or both are significantly higher

than those of background, therefore σ2
bkg is very small in

comparison with σ2
cell + µ2

cell and as a result circular mean
square, S̄, can be used to detect HSC in uniform back-
ground. To discriminate cells from background, the circu-
lar mean square image is classified to two classes, cell and
background, by minimizing the inter-class variance

σ2(T ) = lcell(T ) · σ2
cell(T ) + lbkg(T ) · σ2

bkg(T ) (14)

where lbkg(T ) and lcell(T ) are the number of pixels in
the background and the cell classes, σ2

cell(T ), σ2
bkg(T ) and

σ2(T ) are variance of background, variance of cell class
and inter-class variance considering the threshold (T ).

Anomalous Background Pixels. Considering the HSC
as a circular anomaly in the proposed method it can be
concluded that the cell center has the maximum distance
to the cell boundary in comparison with any other pixel in
the cell area. Thus to fit a circular shape to the classified
anomaly, we compute the Euclidean distance of anomaly
pixels from the background

Dcell =
√

(xcell − xbkg)2 + (ycell − ybkg)2 (15)

where (xcell, ycell) and (xbkg ,ybkg) are cell and background
pixel coordinates respectively and Dcell is the Euclidean
distance of cell pixels from the nearest background pixel.
As we can observe in Figs. 2(c) and 3(e) after computing
the Euclidean distance for the thresholded image the
resultant image has the highest values in the cell center
locations.

Probability Density Function of Cell Centers. An
exponential density function is proposed to integrate cir-
cular mean square and cell-background Euclidean distance
functions as

Pcell(xc, yc, r, I) = 1− exp{−λ ·Dcell · S̄} (16)

where λ is a constant. A probability map is generated by
computing Pcell for image I . Each value p in the generated
probability map shows the probability of a cell located at
(xc, yc) with radius r.

3.3. Cell Tracking

Cell center candidates are obtained by applying the pro-
posed cell model to the HSC image sequence, generating a
probability map, finding the local maxima which are at least
Ed apart in the probability map and thresholding the local
maxima map to obtain a set Sτ of local maxima which are
Ed apart and are greater than a threshold τ . The threshold
τ has been obtained empirically.

To associate the cell center candidates we apply a gated
joint probabilistic data association approach [16, 17, 18] in
which to reduce the number of association hypothesis, a val-
idation gate is computed to obtain a distance vector De for
each identified cell center in time step t − 1 based on its
Euclidian distance from the cell center candidates in time
step t. Assuming a random walk for cell motion, cell dy-
namics is modelled as

PV ∼ N(0, σ) =
1√
2π

exp (−D2
e

σ2
) (17)
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Fig. 2. (a) Circular mean square of HSC phenotype 2. (b) Classifying circular mean square to cell and background classes by
minimizing the inter-class variance. (c) Euclidean distance of cell pixels from the background. (d) Cell center locations after
thresholding the maxima map.

The proposed gated joint probabilistic data association is
illustrated as

P (xt|zt) =
∏

Cdiv

PState ·
∏

j∈[1,Mt−1]

PV ·
∏

j∈[1,Mt−1]

max(PD · P j,i
De, PF ) ·

∏

New

max(PD · P j,i
De, PF )

(18)

where P j,i
De is probability of associating the cell center can-

didate i in time step t to the cell j in time step t − 1 based
on their Euclidean distance. PD and PF are probability of
cell detection and false alarm respectively and are assumed
to be constant. PState is cell state probability and is used
to penalize cell division based on size and age of the cell.
Cdiv is the set of dividing cells, New is the set of new de-
tected cell candidates, and Mt−1 is the number of cells in
the previous time step t− 1.

4. RESULTS

In our experiments, first the proposed background estima-
tion - subtraction has been applied to different HSC phe-
notypes to eliminate the noise and illumination variations
and to obtain images with uniform background. The pro-
posed probabilistic cell model (16) is then applied to the
subtracted resultant images and the probability map of the
cell centers is computed for each frame in which HSC is
characterized as a circular shape with radius r ∈ [r1, r2].
To further identify the cell centers, the probability map is
thresholded and local maxima are located. A 3 − D local
maxima map based on r ∈ [r1, r2] is generated as measure-
ment hypotheses which will be used in the tracking algo-
rithm.

Figs. 1(a) and 3(a) show the original HSC images
phenotype2 and phenotype1 respectively. As we can ob-
serve HSCs of phenotype1 have dark inside, bright and

uniform boundary while HSCs of phenotype2 are approxi-
mately evenly bright circular cells.

The results obtained for phenotype2 and phenotype1

after background subtraction using the proposed method are
depicted in Figs. 1(b) and 3(b) respectively. Figs. 2(a) and
3(c) show circular mean square images and classified im-
ages by minimizing the inter-class variance are depicted in
Figs. 2(b) and 3(d) for phenotype2 and phenotype1 re-
spectively. Circle fitting on detected anomalies is illustrated
on the classified images by computing the Euclidean dis-
tance of detected anomalous pixels from the background as
depicted in Fig. 2(c) and Fig. 3(e) for phenotypes2 and
phenotypes1 respectively. A probability map is computed
using the product of the circular mean square and Euclid-
ean distance images in which HSC centers are identified by
thresholding and locating the local maxima. HSC center
candidates are depicted in Fig. 2(d) and Fig. 3(f) for the
respected phenotypes. Fig. 4(a) shows the original HSC
phenotype2 sequence. Fig. 4(b) and (c) show local maxima
maps and tracking sequence which are obtained by applying
the cell model and gated joint probabilistic data association
respectively. Cell centers are correctly localized and asso-
ciated for mature, dividing and new-born cells by applying
the proposed method. Different colors show the cell center
association over time.

5. CONCLUSIONS AND DISCUSSIONS

Measure and extract cell properties from large volumes of
microscopic cell images demands for practical approaches.
As an important application of biomedical research, stem
cell biology and digital microscopic image processing, this
paper presents a statistical thresholding method for blood
stem cell tracking to locate and track different HSC pheno-
types in culture in phase contrast microscopic images. The
proposed method, which is constructed by observing HSCs
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Fig. 3. (a) Original HSC image. (b) HSC image after background subtraction. (c) Circular mean square model. (d) Classifi-
cation of circular mean square to cell and background classes by minimizing the inter-class variance. (e) Euclidean distance
of cell pixels from the background. (f) Cell center locations after thresholding the maxima map.

in typical image sequences, detects and associates HSCs
by extracting their key properties over time. After back-
ground estimation-subtraction a probability map of cell cen-
ters is generated by matching the image data with the cell
model for each frame. Cell centers are located by finding
and thresholding the local maxima in the probability map.
Cell center candidates are further associated using a gated
probabilistic data association. There are some cases where
associating the right cell centers over time is ambiguous,
for example having several close by dividing cells. Our fu-
ture work includes designing a parametric cell shape with
more degrees of freedom to adapt the proposed model to
other non spheroidal cell types and improving the tracking
method so that more challenging association cases can be
resolved correctly.
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