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A systematic approach to feature tracking of lumbar spine vertebrae from fluoroscopic
images using complex-valued wavelets

Alexander Wonga*, Nadine M. Dunkb and Jack P. Callaghanb

aDepartment of Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada; bDepartment of Kinesiology,
University of Waterloo, Waterloo, Ontario, Canada

(Received 10 September 2008; final version received 6 February 2009)

This paper presents a systematic approach to lumbar spine vertebrae tracking in fluoroscopic images using complex-valued
wavelets. The proposed algorithm is designed specifically based on a set of performance criteria associated with the
detection and tracking of feature points in lumbar spine vertebrae from fluoroscopic images. The algorithm handles contrast
and illumination non-homogeneities and noise in fluoroscopic images through the use of local phase information obtained
using complex-valued wavelets. The algorithm is capable of tracking feature points that undergo various geometric
deformations caused during the fluoroscopic imaging process by defining a descriptor that is invariant to scale and rotation
and robust to affine, projective and mild pin-cushion distortions. The algorithm has been tested using dynamic sagittal
fluoroscopic videos of the lumbar-sacral region and testing results indicate that the algorithm achieves good tracking
performance of lumbar spine vertebrae in fluoroscopic images that exhibit contrast and illumination non-homogeneities as
well as noise, with mean root mean square error of less than 0.40 mm under in all test sequences.
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1. Introduction

One of the most common and widespread problems

associated with industrialisation is low back pain.

The factors that contribute to low back pain are not well

understood, making it difficult to provide good clinical

diagnosis on this condition. Abnormal lumbar interseg-

mental motion has been identified as a potential culprit for

the development and persistence of low back pain (Breen

et al. 1989; Okawa et al. 1998; Teyhen et al. 2007).

Therefore, it is important to study the dynamic interseg-

mental motion patterns of the lumbar spine to better

understand the symptoms associated with low back pain to

improve diagnosis and treatment.

In recent years, one of the most effective methods of

capturing the motion of the lumbar spine is through the use

of fluoroscopic imaging. In traditional radiographic

systems, the number of images that can be acquired over

time is highly limited due to the level of radiation exposure

to the patient. As such, images captured using these

traditional systems are often limited to the neutral and

extreme positions of the lumbar spine motion. This makes

it very difficult to analyse mid-range motion character-

istics of the lumbar spine, where abnormal movement may

occur (Teyhen et al. 2007). Fluoroscopic imaging systems

incorporate an X-ray source, an image intensifier and a

video camera, and are capable of acquiring a series of

images. The distinguishing component of a standard

fluoroscopic system is the image intensifier. Image

intensifiers are far more sensitive than a standard 400-

speed screen-film cassette and can produce images using

less radiation (Cholewicki et al. 1991; Bushberg et al.

2002). Thus, fluoroscopy is an appealing alternative to

traditional radiography for studying lumbar spine motion.

There are many issues associated with lumbar spine

vertebrae tracking in fluoroscopic images, such as

distortion, low contrast resolution, and signal non-

homogeneity, that need to be addressed as a whole,

which will be discussed later in the paper. As such, a

tracking system that is robust to distortion, low contrast

resolution, signal non-homogeneity, and noise is greatly

desired. The goal of this proposed algorithm is to address

all of these issues, which current methods have not been

able to successfully address in their entirety.

The main contribution of this paper is a systematic

approach to lumbar spine vertebrae tracking in fluoro-

scopic images using complex-valued wavelets. The

intended use of the proposed lumbar spine vertebrae

tracking system is for post-imaging analysis to study the

motion patterns of the lumbar spine. The algorithm is

designed specifically to satisfy a comprehensive list of

performance criteria that are important to tracking

vertebrae features. The proposed algorithm employs techni-

ques based on complex-valued wavelets in the detection

and representation processes to address contrast and

illumination non-homogeneities and noise that may affect

tracking accuracy in the series of fluoroscopic images.
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The identified vertebrae feature points and their

associated descriptors are designed to be distinctive and

have a high probability of being tracked over time.

Robustness to various geometric deformations in fluoro-

scopic images is achieved by defining a local descriptor

that is scale and rotation invariant, as well as robust to

affine, projective and mild pin-cushion transformations.

A fast and robust descriptor matching scheme is employed

in the proposed method to reduce the performance

overhead associated with matching vertebrae feature

points. Finally, a feature point rejection schemed based

on maximum distance sample consensus (MDSAC) is

used to provide an efficient and effective method of

reducing the effect of erroneous vertebrae feature point

matches on tracking accuracy.

In this paper, issues associated with tracking lumbar

spine vertebrae in fluoroscopic images are discussed in

Section 2. Previous work related to lumbar spine

vertebrae tracking is discussed in Section 3. The set of

performance criteria is described in Section 4. The theory

underlying the design process of each step in the proposed

vertebrae tracking algorithm is presented and explained in

Section 5. The instrumental and experimental setup

is presented in Section 6. The proposed algorithm is

validated using dynamic sagittal fluoroscopic videos of the

lumbo-sacral region and the results are presented in

Section 7. Finally, conclusions are drawn based on the

results in Section 8.

2. Issues with lumbar spine vertebrae tracking
in fluoroscopic images

There are many issues that make feature tracking of

lumbar spine vertebrae in fluoroscopic images a

particularly challenging problem to solve. As mentioned

before, fluoroscopy systems are equipped with an image

intensifier in line with the X-ray source. Image intensifier

technology requires electrons to be focused using an input

screen with a curved surface, thus resulting in ‘pin

cushion’ distortion in the output image (Cholewicki et al.

1991; Bushberg et al. 2002).

Fluoroscopic images often exhibit contrast and

illumination non-homogeneities. Due to the lower

exposure levels used in fluoroscopy, the contrast

resolution is lower than traditional radiographic systems.

Therefore, fluoroscopic imaging systems produce images

with relatively low signal to noise ratios. While contrast

resolution can be increased when higher exposure rates are

used (by increasing the X-ray current and/or voltage), this

has the major disadvantage of increased higher patient

radiation dosage (Bushberg et al. 2002). Furthermore, the

size or thickness of the patient will also affect the quality

of the output image. This is because thicker regions

attenuate more radiation, thus resulting in less radiation

from striking the image intensifier and generating less

illumination (Bushberg et al. 2002). Therefore, different

regions of tissue thickness and density will result in the

brightness of the same image content to vary spatially

across an individual frame, or temporally from frame to

frame.

Another issue associated with tracking lumbar spine

vertebrae features in fluoroscopic images is that the motion

of the patient can lead to minor viewpoint variations

between adjacent frames in a lumbar spine vertebrae

sequence. Furthermore, the motion of the lumbar spine

will lead to the motion of other internal anatomical

structures (such as the pelvis, or intestines). Consequently,

this can result in the visual occlusion and overlay of

lumbar spine vertebrae and anatomical features thereby

make it difficult to track features over time.

3. Previous work

Various methods have been proposed for the purpose of

tracking lumbar spine vertebrae in fluoroscopic images

(Muggleton and Allen 1997; Bifulco et al. 2001; Wong

et al. 2004; Zheng et al. 2004; Penning et al. 2005; Wong

et al. 2006). In several studies (Muggleton and Allen 1997;

Bifulco et al. 2001; Penning et al. 2005), a template

matching approach to lumbar spine vertebrate tracking

based on the cross-correlation cost function was utilised.

There are two major drawbacks to the aforementioned

approach. First, these methods use rigid templates for the

lumbar spine vertebrae, making them sensitive to

geometric distortions, which may occur to a certain

degree in the outer edges of the fluoroscopic image.

Second, the use of the cross-correlation cost function,

while robust against uniformly linear contrast variations,

is highly sensitive to illumination and contrast non-

homogeneities. This can be problematic in the case of

fluoroscopic imaging, where such non-homogeneities can

occur both spatially and temporally. Wong et al. (2004,

2006) used a learning-based approach, where texture

patterns modelled by Markov random fields (MRFs)

are learned using support vector machines (SVMs).

An active contour was then fitted around the edge using

the texture information and then tracked over time using a

Kalman filter (Kalman 1960). There are two main limita-

tions with this approach. First, the use of a learning-based

approach with active contours can be computationally

expensive, particularly for analysing long fluoroscopic

sequences. Furthermore, since it directly relies on intensity

in modelling texture patterns, it is sensitive to contrast and

illumination non-homogeneities.

Few methods have defined a comprehensive set of

performance criteria for what constitutes an effective

method for tracking lumbar spine vertebrae in fluoroscopic

images. This lack of performance criteria formalisation

A. Wong et al.608
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is evident in the individual drawbacks exhibited by

existing techniques. The formalisation of performance

criteria is important as it allows for a systematic approach

to the design of an algorithm that addresses specific issues

that pertain to a problem. A prime example of how the

formalisation of performance criteria can aid in the design

of an effective algorithm is the edge detection algorithm

proposed by Canny (1986), which has been very successful

and widely used since its introduction. Therefore, the

proposed algorithm presented in this paper utilises a

systematic approach to lumbar spine vertebrae tracking

based on a comprehensive set of performance criteria.

4. Performance criteria

As mentioned earlier, there are a number of issues

associated with tracking lumbar spine vertebrae in

fluoroscopic images. To address these issues in a

systematic manner, performance criteria can be estab-

lished to tailor the design of the tracking system

specifically for lumbar spine vertebrae tracking. Several

important performance criteria can be defined as follows:

(1) Accuracy: The identified vertebrae feature points

should be highly distinctive and have a high

probability of being tracked from frame to frame.

There should also be a low probability of falsely

detecting feature points that appear distinctive due to

noise, since such points can lead to erroneous feature

point matches. This is particularly important in the

case of fluoroscopic images, which are often

characterised by low signal to noise ratios due to

low exposure levels. Furthermore, the points

identified as vertebrae feature points should be within

0.50 mm of the centre of the true anatomical feature,

which we will consider to an acceptable error for an

accurate study of lumbar spinal motions given that the

mean error of manual digitising on spinal fluoro-

scopic images is up to 10% of the translational range

of motion (Harada et al. 2000), or approximately

0.50 mm in the case of a seated forward flexion

motion (Takayanagi et al. 2001). Finally, the

vertebrae feature points should also be as consistent

as possible between different frames.

(2) Robustness: Over time (or from frame to frame), the

appearance of the lumbar spine vertebrae and the

internal anatomical structures often change due to

factors such as illumination and contrast non-

homogeneity, environment noise due to soft issue

scatter, changes in orientation and scale, occlusion,

and changes in viewpoint. Therefore, it is important

that the vertebrae feature points found in one frame

are matched with the corresponding vertebrae feature

points found in subsequent frames irrespective of

such changes.

(3) Efficiency: Since the system is designed for post-

imaging analysis, computational efficiency is not

critical for proper system functionality. However,

given that there are many images within each motion

sequence acquired, it is still important that the

computational overhead required to perform the

tracking process is as low as possible while

maintaining tracking accuracy in order to obtain

lumbar spinal motion results in a timely manner.

Furthermore, it is also important to minimise the

amount of user intervention required to perform the

tracking process.

The proposed algorithm attempts to satisfy all of the

aforementioned performance criteria in hopes of achieving

improved tracking performance of lumbar spine vertebrae

in fluoroscopic images.

5. Proposed method

The proposed algorithm utilises several techniques to

address the specific issues and challenges associated

with tracking lumbar spine vertebrae features in fluoro-

scopic images. As such, it is intuitive to use a syste-

matic approach to describe the design of the proposed

algorithm. Therefore, for each step of the proposed

algorithm, the key performance criteria that apply to the

corresponding step are discussed, the drawbacks associ-

ated with existing techniques are described, and the

techniques used to address these drawbacks are explained

in detail.

5.1 Vertebrae feature point detection

The first step in the proposed algorithm is to detect a set

of feature points pertaining to lumbar spine vertebrae

from the current frame and a subsequent frame,

respectively. Various algorithms have been proposed for

the purpose of feature point detection (Harris and Plessey

1988; Kovesi 2003; Fauqueur et al. 2006). However,

there are limitations to these techniques that make it

difficult to address the aforementioned challenges to

vertebrae feature point detection in fluoroscopic images.

Commonly-used feature detection algorithms such as

those proposed by Harris and Plessey (1988) and

Fauqueur et al. (2006), and the DoG maxima method

(Lowe 2004) are highly sensitive to illumination and

contrast non-homogeneity that are often found in

fluoroscopic images. Furthermore, many of these

techniques are highly sensitive to noise and utilise

Gaussian pre-filtering to suppress noise, which can also

significantly reduce the distinctiveness of vertebrae

interest points. This is especially problematic given the

low contrast resolution of fluoroscopic images.

Computer Methods in Biomechanics and Biomedical Engineering 609

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
W

at
er

lo
o]

 a
t 1

2:
43

 1
1 

Ju
ly

 2
01

1 



A more suitable approach is that proposed by Kovesi

(2003), which attempts to address the issue of illumination

and contrast non-homogeneity by using local frequency

characteristics obtained from complex-valued wavelets. By

utilising only the phase information, these detection methods

are largely invariant to illumination and contrast non-

homogeneity. Furthermore, this approach has been shown to

be highly robust to noise without the need for pre-filtering,

provide improved localisation and account for variations due

to orientation. These benefits make it better suited for

detecting vertebrae feature points in fluoroscopic images.

However, the technique proposed by Kovesi (2003) does not

provide the information that distinguishes feature points

detected at different scales. This is an important factor that

needs to be accounted for due to the scale distortions caused

by patient motion. As such, the proposed algorithm extends

upon the robust feature point detection method described

by Kovesi (2003) such that the dominant scale information

regarding each vertebrae feature point can be obtained from

each fluoroscopic image.

The proposed vertebrae feature point detection scheme

can be described as follows. Local frequency information

is extracted at each pixel over multiple scales and

orientations using directional over-complete complex-

valued wavelets such as Gabor wavelets and dual-tree

complex wavelets (Selesnick et al. 2005). The local

amplitude and phase for a given point x at wavelet scale n

can be computed as follows:

AnðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IðxÞ £ Fe

n

� �
2 þ IðxÞ £ Fo

n

� �
2

q
; ð1Þ

fnðxÞ ¼ tan21 IðxÞ £ Fe
n

� �
IðxÞ £ Fo

n

� �
 !

; ð2Þ

where Fe
n and Fo

n are the even- and odd-symmetric

wavelets at scale n. Using this information, the local phase

coherence at a point in the image x, orientation u, and over

a range of N scales can be defined as follows:

rðx; uÞ ¼

PN
n Wðx; uÞ4Anðx; uÞDFðx; uÞ2 T5P

nAnðx; uÞ þ 1
; ð3Þ

DFðx; uÞ ¼ cos fnðx; uÞ2 �fðx; uÞ
� �

2 sin fnðx; uÞ2 �fðx; uÞ
� ��� ��; ð4Þ

where W represents the frequency spread weighting factor,

An and fn represent the amplitude and phase at wavelet

scale n, respectively, �f represents the weighted mean

phase, T represents the noise threshold and 1 is a small

constant used to avoid division by zero. The parameters

used are the same as those described in Kovesi (2003).

Based on this formulation, as the complex-valued wavelet

coefficients come into phase, local phase coherence

approaches one (assuming non-zero amplitudes).

As the local phase coherence can vary as a result of

orientation, the vertebrae feature significance of a point

can be defined as the minimum moment of local phase

coherence mðxÞ over multiple orientations:

1
2

P
u

rðx_; uÞ
2 þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4
P
u

ðrðx_; uÞsinðuÞÞðrðx_; uÞcosðuÞÞ

� �
2

2
P
u

�
ðrðx_; uÞcosðuÞÞ2 2 ðrðx_; uÞsinðuÞÞ2

�� �
vuuuuuuut 2

ð5Þ

where rðx; uÞ is the local phase coherence at orientation u.

The minimum moment of local phase coherence increases

as the vertebrae feature significance increases.

Once the minimum moment of local phase coherence

has been determined, the vertebrae feature points are

located at the local minimum moment maxima. To avoid

the computational overhead associated with representing

and matching for large numbers of feature points, it is

necessary to restrict the number of vertebrae feature points

selected from each frame to a reasonable level. As such, a

method for selecting a fixed number of feature points is

desired. This is accomplished in the proposed algorithm by

retaining the k highest local minimum moment maxima.

Based on testing, setting k ¼ 100 was found to provide

good results. Finally, to refine the location of the feature

points to achieve sub-pixel accuracy, a 2D quadratic

function is fitted to the minimum moment of local phase

coherence within a neighbourhood around each feature

point and the interpolated location of the maximum is

determined as the final location of the feature point.

Given the set of vertebrae feature points, the dominant

scale, s, at which the feature point is most distinctive is

determined as the minimum moment maxima of local

phase coherence at the location of the feature point over a

range of scales:

sðxÞ ¼ arg max
s

ðmsðxÞÞ; ð6Þ

where msðxÞ is the minimum moment of local phase

coherence at location x and scale s. Some sample feature

points are shown in Figure 1.

Figure 1. Sample feature points detected on a vertebra.
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5.2 Vertebrae feature point description

The second step in the proposed vertebrae tracking

algorithm is to create a descriptor for each vertebrae

feature point identified to represent the vertebrae feature

characteristics from the current frame and a subsequent

frame, respectively. Various descriptors have been

proposed for the purpose of feature point description

(Schiele and Crowley 1996; Schmid and Mohr 1997;

Lowe 2004; Wong and Clausi 2007). Most recent feature

point descriptors are invariant to similarity transform-

ations such as scale and rotation, as well as robust to

various affine distortions. Nevertheless, there are limita-

tions to these techniques that make it difficult to address

the aforementioned challenges to feature point description

as applied to vertebrae tracking in fluoroscopic images.

The descriptor proposed by Schmid and Mohr (1997) is

highly sensitive to illumination and contrast non-

homogeneities, making it ill-suited for representing

information in fluoroscopic images. Both Schiele and

Crowley (1996) and Lowe (2004) attempted to address this

issue by using normalisation techniques. The main

problem with this approach is that normalisation has a

tendency to amplify noise, making the descriptors highly

sensitive to the presence of noise. This is problematic

given the low signal to noise ratios that characterise

fluoroscopic images. Therefore, these descriptors require

pre-filtering to suppress noise, which can also significantly

reduce the distinctiveness of the vertebrae characteristics.

A more recent technique was proposed by Wong and

Clausi (2007), which addressed the issue of illumination

and contrast non-homogeneity by using local frequency

characteristics obtained from complex-valued wavelets.

By utilising only the phase information, the resulting

descriptors are largely invariant to illumination and contrast

non-homogeneity. Unfortunately, this descriptor is not scale

and orientation invariant, and is sensitive to localisation

errors in the actual feature point. Therefore, a descriptor that

is invariant to illumination and contrast non-homogeneity as

well as robust to noise and various geometric distortions is

desired for the purpose of vertebrae representation.

The proposed vertebrae feature point description scheme

can be described as follows. Based on the local phase cohe-

rence information extracted using complex-valued wavelets

during the feature point detection step, the structural signifi-

cance pertaining to a point can be defined as the maximum

moment of local phase coherence MðxÞ over multiple

orientations:

1
2

P
u

rðx_; uÞ
2 þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4
P
u

ðrðx_; uÞsinðuÞÞðrðx_; uÞcosðuÞÞ

� �
2

þ
P
u

�
ðrðx_; uÞcosðuÞÞ2 2 ðrðx_; uÞsinðuÞÞ2

�� �
vuuuuuuut 2

ð7Þ

where rðx; uÞ is the local phase coherence at orientation u.

According to this formulation, the maximum moment

of local phase coherence increases as the structural

significance increases. Therefore, maximum moment of

local phase coherence can be used to represent vertebrae

structural characteristics.

Once the maximum moment of local phase coherence

has been determined, the maximum moment gradient

orientation can be defined as follows:

uðx; yÞ ¼ tan21 ð›Mðx; yÞ=›yÞ

ð›Mðx; yÞ=›xÞ

� �
: ð8Þ

To determine the dominant orientation pertaining to a

particular vertebrae feature point, an orientation histogram is

constructed based on the maximum moment distribution

within a neighbourhood around the feature point at its

dominant scale. Each entry into the orientation histogram is

weighted by the product of the corresponding maximum

moment and a 2D Gaussian function centred at the location

of the feature point. Similar to the approach taken in Lowe

(2004), any local peaks in the orientation histogram that are

within 80% of the maximum peak is selected as a dominant

orientation and a vertebrae feature point descriptor is created

for each of these dominant orientations. This is done to

reduce the effect of erroneous dominant orientation

information on the feature point matching process.

The local descriptor pertaining to a particular vertebrae

feature point can then be constructed based on the maximum

moment distribution of neighbouring points with respect

to maximum moment gradient orientation. Similar to the

dominant orientation selection process, a Gaussian weighted

orientation histogram is constructed based on the maximum

moment distribution within a neighbourhood around the

feature point at its dominant scale. The Gaussian weighting

reduces the effect of localisation errors in the actual feature

point on the local descriptor. Furthermore, the orientation

histogram is normalised by the number of sample points

within a neighbourhood such that descriptors can then be

compared between feature points of different scales. For

each dominant orientation pertaining to a vertebrae feature

point, a local descriptor is created by performing a circular

shift on the aforementioned orientation histogram relative

to the dominant orientation. This vertebrae feature point

description scheme is illustrated in Figure 2. The proposed

feature point descriptor is relatively simple to construct

and also allows for fast feature point matching, which is

important in situations where a large number of feature

points are needed.

5.3 Vertebrae feature point matching

The third step in the proposed algorithm is to match

vertebrae feature points from the current frame to the

Computer Methods in Biomechanics and Biomedical Engineering 611
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vertebrae feature points from a subsequent frame in the

fluoroscopic sequence. Various similarity metrics have

been used for the purpose of feature point matching. One

of the most commonly used similarity metrics for

vertebrate feature matching is the cross-correlation

coefficient (Muggleton and Allen 1997; Bifulco et al.

2001; Penning et al. 2005). The use of the cross-correlation

coefficient to compare intensity values, as done by existing

methods, is very sensitive to contrast and illumination

non-homogeneity. Even if used to compare the proposed

invariant vertebrae descriptor, the cross-correlation

coefficient still runs into problems as it is relatively

sensitive to outliers. This is problematic given the fact that

fluoroscopic images are characterised by low contrast

resolution, low signal to noise ratio, and minor geometric

distortions which can result in outliers. To reduce the

influence of outliers on the vertebrae feature point

matching process, a Pearson Type VII distance metric is

utilised:

dð f ; gÞ ¼
X
u

ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ Of ðuÞ2 OgðuÞ

� �
2

q� �
; ð9Þ

where f and g are vertebrae feature points from the current

frame and a subsequent frame, respectively, Of and Og the

local descriptors that correspond with feature points f and

g, respectively, and u the maximum moment gradient

orientation. The Pearson Type VII distance metric is a

redescending estimator and so the influence of outliers on

this metric tends to zero. Furthermore, it is relatively

efficient to compute, particularly for a compact feature

vector such as the proposed vertebrae descriptor. To further

improve computational overhead, the search space is

restricted to a radius of 20% of the smallest frame

dimension. This is a reasonable restriction for the purpose

of lumbar spine vertebrae tracking as the motion can be

assumed to be relatively small from frame to frame given

the physical limitations of the lumbar spine.

5.4 Vertebrae feature point rejection

The final step in the proposed algorithm is to prune

erroneous vertebrae feature point matches from the set of

matched feature point pairs. Various algorithms have been

used for the purpose of feature point rejection purposes.

Some of the most widely used feature point rejection

techniques are those that utilise data resampling. These

include the random sample consensus (RANSAC)

algorithm (Fischler and Bolles 1981), least median of

squares (LMS) (Stewart 1999) and more recently the

MDSAC (Wong and Clausi 2007). Such techniques are

popular for several reasons. First, no a priori knowledge

regarding the distribution of feature points is required,

which makes them well suited for a wide range of

applications. In addition, these techniques are relatively

simple and can be implemented in an efficient manner.

Finally, these techniques have proven to be very effective

for identifying outlier measurements.

The proposed rejection scheme is based on the

MDSAC algorithm, which is a variant of RANSAC that

has been shown to provide good robustness in situations

characterised by high outlier-to-inlier ratios while

achieving faster convergence than standard RANSAC.

The algorithm used to prune erroneous vertebrae feature

point pairs in the proposed algorithm can be described as

follows. First, feature point pairs are drawn randomly from

the pool of feature point pairs to form multiple data sets.

The cumulative Euclidean distances between the feature

point pairs within each data set are computed. The data set

with the maximum cumulative Euclidean distance is

selected and used to estimate the motion model of the

Figure 2. Vertebrae feature point description process: for a
given neighbourhood around a vertebrae feature point at a
given scale (a), a weighted orientation histogram is created
(b). A circular shift is performed based on the dominant
orientation (c).
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target objects. The number of inlier feature point pairs is

then determined based on a root mean square error

(RMSE) distance between the actual feature point location

and the estimated feature point location. This process is

repeated over K iterations and the estimated motion model

that yields the greatest number of inlier feature point pairs

is selected. The number of iterations is determined as

follows:

K ¼
logð1 2 pÞ

log 1 2 ðninliers=NÞs
� � ; ð10Þ

where p is the desired probability of selecting at least one

motion model that is freeof outlierswithinK iterations,ninliers

the number of feature point pairs that satisfy the current

estimated motion model, N the total number of feature point

pairs and s the minimum number of feature point pairs

necessary to estimate the motion model. The feature point

pairs that do not satisfy the estimated vertebrae motion model

are pruned from the set of feature point pairs. The remaining

inlier vertebrae feature point pairs can then be used to refine

the estimated vertebrae motion model.

6. Instrumental and experimental setup

To investigate the motion of the lumbar spine, videos were

obtained using a fluoroscope system while the participants

moved their spine from an upright-seated posture to a

slouched seated posture. The video fluoroscope (Siremobil

Compact (L) Mobile X-ray Image Intensifier system,

Siemens Medical Solutions USA, Inc., Malvern, PA,

USA) was equipped with a 9-inch. image intensifier and a

source to image intensifier distance of 100 cm. The

average X-ray technique factors were 3.4 mA and 107 kV

and the total imaging time did not exceed 20 s. The total

effective dose was less than 6 mSv, which was less than

that of a typical CT examination. The FDA also estimates

that 10 mSv of X-ray exposure increases the risk of fatal

cancer by 0.05%, which is considered insignificant. The

video feed from the fluoroscope was captured at 30 Hz

directly to a computer hard drive using a digital video

capture device and software (DVD Xpress DX2, ADS

Technologies, Cerritos, CA, USA). To evaluate the

effectiveness of the proposed algorithm, an individual

vertebra was tracked over time in six different test

dynamic sagittal fluoroscopic videos (acquired from three

males and three females) of the lumbar-sacral region

ranging from the top of the sacrum to the top of the third

lumbar vertebra. The resolution of each of the test sets is

0.222 mm. A summary of the test sets is shown below:

. Male1: male (age ¼ 22; height ¼ 1.80 m;

mass ¼ 77.6 kg)
. Male2: male (age ¼ 28; height ¼ 1.71 m;

mass ¼ 69.0 kg)

. Male3: male (age ¼ 28; height ¼ 1.76 m;

mass ¼ 70.0 kg)
. Female1: female (age ¼ 22; height ¼ 1.68 m;

mass ¼ 49.9 kg)
. Female2: female (age ¼ 25; height ¼ 1.70 m;

mass ¼ 59.0 kg)
. Female3: female (age ¼ 24; height ¼ 1.57 m;

mass ¼ 45.8 kg)

A sample frame from each sequence is shown in

Figure 3. To evaluate the tracking performance of the

proposed algorithm, the RMSE (in mm) was computed

between the estimated position of detected feature points

for the vertebra and the ground-truth locations of these

feature points manually selected by an expert over the

video sequences. For comparison purposes, the tracking

methods proposed by Penning et al. (2005) and Bifulco

et al. (2001) were also evaluated using the test sets. All

tested methods were implemented in MATLAB, with all

tests were performed on an Intel Core 2 Duo 1.67 GHz PC

with 2 GB of RAM. Due to the randomness of the

vertebrae feature point rejection process, a total of 30 trials

was performed for each test set and the minimum, mean

and maximum RMSE for each test set is reported. The test

sets used to validate the proposed method exhibited low

contrast resolution and were characterised by contrast and

illumination non-uniformity. Furthermore, the data sets

were also contaminated by high levels of noise due to soft

tissue scatter and the differing densities of the tissues in the

abdomen. Finally, due to the motion of the lumbar spine

as well as the surrounding anatomical objects, partial

occlusion also occurred. All these characteristics inherent

to the test data sets make them well-suited for testing

robustness against different issues associated with target

representation and localisation. For test purposes, the

proposed method was configured such that the maximum

number of feature points found during the detection step

was 100 points for each frame.

7. Results

The RMSE between the estimated locations of corre-

sponding vertebrae feature points over the frames of the

video sequences and the ground-truth locations for each of

the tested methods is summarised in Table 1. It can be

observed that the mean RMSE for the proposed algorithm

was noticeably lower than the other tested methods for

all test fluoroscopic sequences. The mean RMSE of the

proposed method was below 0.40 mm for all test

fluoroscopic sequences, which satisfies the accuracy

criteria of 0.50 mm. The peaks in RMSE, as indicated by

the maximum RMSE, generally occur in situations where

there is fast lumbar spine motion, resulting in large jumps

between the position of the vertebrae. Nevertheless, the

maximum RMSE for all test fluoroscopic sequences are
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reasonable low, demonstrating the robustness of the

proposed method in situations of fast lumbar spine motion.

Sample tracking results for the Female3 and Male1

sequences are shown in Figures 4 and 5, respectively.

The white square indicates the estimated location and

orientation of the tracked vertebrae. By visual inspection,

it can be seen that the estimated location and orientation of

the tracked lumbar spine vertebrae is accurately tracked

from one frame to the next. This demonstrates that the

proposed algorithm is capable of satisfying the robustness

criteria for various conditions inherent in fluoroscopic

images.

Finally, the average processing time of an individual

video frame for all test fluoroscopic sequences is

summarised in Table 1. It can be observed that the

average processing time of the proposed method is

47.25 s/frame, which is noticeably lower than the methods

proposed by Penning et al. (2005) and by Bifulco et al.

(2001). This demonstrates that the proposed algorithm is

capable of satisfying the efficiency criteria. As such, the

experimental results show that the proposed method

satisfies all three of the defined performance criteria

(Table 2).

8. Conclusions and future work

In this paper, we have introduced a systematic approach to

the problem of lumbar spine vertebrae tracking in

fluoroscopic images. Specific issues and challenges

associated with detecting and tracking vertebrae features

Table 1. Tracking accuracy for fluoroscopic images.

Test set

RMSE (mm)

Penning et al. (2005) Bifulco et al. (2001) Proposed

Min Mean Max Min Mean Max Min Mean Max

Male1 0.19 0.95 1.56 0.28 0.84 1.23 0.11 0.29 0.49
Male2 0.35 0.76 1.02 0.34 0.73 0.97 0.15 0.24 0.35
Male3 0.39 0.73 0.95 0.23 0.66 0.85 0.12 0.28 0.36
Female1 0.22 1.14 1.96 0.35 0.92 1.67 0.17 0.38 0.65
Female2 0.34 0.70 0.94 0.32 0.85 1.01 0.15 0.34 0.46
Female3 0.47 0.96 1.25 0.19 0.87 0.92 0.15 0.32 0.56

Figure 3. A sample frame from each test sequence (clockwise from top-left): (a) Male1, (b) Male2, (c) Male3, (d) Female1, (e) Female2
and (f) Female3.

A. Wong et al.614

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
W

at
er

lo
o]

 a
t 1

2:
43

 1
1 

Ju
ly

 2
01

1 



are addressed during each step of the proposed algorithm

in an attempt to achieve better tracking performance.

Experimental results show that good tracking accuracy of

lumbar spine vertebrae can be achieved for fluoroscopic

image sequences when compared to existing methods.

Future work includes an extensive investigation of

different robust estimators to improve the number of

correct feature point matches, as well as techniques for

improving the pruning of mismatched vertebrae feature

point pairs. Eventually the goal is to develop a system that

accurately tracks lumbar spine vertebrae and provides

useful motion information about the linear and angular

displacements of the vertebrae in order to describe

intersegmental motion. A robust, fast and easy-to-use

vertebral tracking system is desirable for improving low

back pain diagnosis, treatment and evaluating clinical

outcomes.
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