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Abstract

The extraction of contours using deformable models,
such as snakes, is a problem of great interest in computer
vision, particular in areas of medical imaging and tracking.
Snakes have been widely studied, and many methods are
available. In most cases, the snake converges towards the
optimal contour by minimizing a sum of internal (prior) and
external (image measurement) energy terms. This approach
is elegant, but frequently mis-converges in the presence of
noise or complex contours.

To address these limitations, a novel discrete snake is
proposed which treats the two energy terms separately. Es-
sentially, the proposed method is a deterministic iterative
statistical data fusion approach, in which the visual bound-
aries of the object are extracted, ignoring any prior, em-
ploying a Hidden Markov Model(HMM) and Viterbi search,
and then applying importance sampling to the boundary
points, on which the shape prior is asserted.

The proposed implementation is straightforward and
achieves dramatic speed and accuracy improvement. Com-
pared to four other published methods and across six dif-
ferent images (two original, four published), the proposed
method is demonstrated to be, on average, 7 times faster
with a 45 percent reduction in the mean square error. Only
the proposed method was able to successfully segment the
desired object in each test image.

Index Terms: Snake, Curvature guided importance
sampling, HMM, Viterbi Algorithm, Statistical data fusion

1. Introduction

Locating the exact boundaries of objects has many ap-
plications in object tracking [2], content based image and
video retrieval systems [10, 9], robotics and biomedical
engineering [7]. Energy minimizing splines, such as de-
formable snakes [11] or active contours, are the key ap-
proaches in the computer vision literature for such boundary
extraction problems.

The principal idea in active contour modeling is to mini-
mize the sum of internal (prior) and external (image-based)
energies to obtain an optimum boundary. The internal en-
ergy typically asserts a first- or second-order smoothness
constraint on the boundary, whereas the external energy ap-
plies a “force” on the boundary, creating an attractive force
towards areas of high gradient. Since the original devel-
opment of snake methods [11], many modifications have
been attempted to overcome various shortcomings, primar-
ily concentrated on altering the external energy, such as
pressure based balloon force [5], distance transformed im-
age gradient [6, 16], and gradient vector flow [18].

Amini [1] introduced the dynamic programming method
for finding global minima of active contours taking advan-
tage of the discrete nature of the problem. But, in dynamic
programming approach it is difficult to incorporate complex
shape priors. Further, Mortensen et.al [15] introduced in-
telligent scissor an user interactive dynamic programming
based graph search method to locate exact boundary. This
approach has limited use in automatic segmentations.

Traditional snakes have two problems. First, if the ini-
tial position is too far from the object boundary then the
snake requires many iterations (and thus a long time) to
converge, a particular concern in tracking or real-time prob-
lems. Second, standard snake algorithms do not guarantee
convergence and tend to be very sensitive to noise and false
weak edges. Both of these difficulties have seen consider-
able research attention, such as Gradient Vector Flow snake
(GVFS) and the distance-transform based snake (DTS) of
Cohen [6], designed to extend gradients throughout the im-
age to lessen sensitivity to initialization, although the com-
putational requirements are considerable. Similarly a bal-
loon based pressure force [5] has been proposed which at-
tracts active contours towards strong gradients, seeking to
avoid noise and false gradients. However in both cases there
remain a number of parameters for the user to tune, param-
eters which vary from image to image.

In this article a novel deformable model for the accurate
localization of object boundaries is introduced. The method
shares the same snake origins with conventional deformable
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models, however instead of minimizing the total energy of
a snake like most existing methods, our method performs
coordinate descent, alternately maximizing the external en-
ergy within a specified region, then applying the prior con-
straints to force the boundary to satisfy required smooth-
ness. The adaptivity of the method to sharp corners is satis-
fied by importance sampling [13] the snake boundary points
on the basis of curvature. Although our approach is para-
metric, users do not need to tune parameters for each im-
age as the parameters are derived implicitly from image
curvature and gradient. This proposed technique dramati-
cally reduces computation time and dramatically improves
the quality of the boundary solution compared to published
snake methods irrespective of boundary geometry, image
intensity and image noise.

The rest of paper is organized as follows. Section 2
briefly addresses conventional snakes. Section 3 explains
the proposed method, results of which and comparisons to
other methods are given in Section 4.

2 Snake Background

A deformable model or snake is a spline

v(s) = [x(s), y(s)], s ∈ [0, L] (1)

where s is the arclength along the snake and L is the total
length of snake. The “Energy” of a given snake is given by

Etotal =

L∫
0

[Eint(v) + γEext(v)]ds (2)

where we see two terms, an internal energy function

Eint(v) =α

∣∣∣∣∂vds

∣∣∣∣2︸ ︷︷ ︸
elasticity

+β

∣∣∣∣∂2v
ds2

∣∣∣∣2︸ ︷︷ ︸
rigidity

(3)

which behaves like a prior model, a smoothness constraint
on the snake, and a second energy term Eext, which is the
external image force, generally assigned as the negative gra-
dient of image intensity (−∇I). The various parameters
(α, β and γ) are weights, penalizing the slope or elasticity,
curvature or rigidity, and external forces respectively. By
definition, the optimum boundary is the one which mini-
mizes Etotal, whose closed form solution is not trivial (es-
sentially impossible because of the clutter and complexity
of the image termEext. Therefore, in the absence of closed-
form solutions, iterative dynamic curve evolution methods
are adopted to minimize Etotal numerically.

A key problem, not currently addressed in the literature,
is that parameters α, β and γ should really be functions
of position, since the degree of curve smoothness, and the

strength of the observed image gradient, can both be strong
functions of location, nevertheless all existing methods con-
sidered these parameters to be constant. In our proposed
method these parameters are chosen adaptively.

3 Proposed Method

This proposed method is briefly described by these three
iterative steps. Details on each component follow.

1. The problem is modeled as a Hidden Markov Model
(HMM) and a Viterbi search is used to find the optimal
solution by dynamic programming. In the absence of
image noise and shape prior, the Viterbi search will
identify all of the strongest local boundaries. Details
are developed in Section 3.1.

2. If spline points are uniformly spaced on the curve,
there is an excess of points in areas of gentle curvature
and too few points in areas of high curvature and com-
plex structure. Thus, the curvature of the boundary,
obtained from step one, is computed and importance
sampling with specific rejection criteria is used to gen-
erate samples. Details are developed in Section 3.2.

3. The prior constraints need to be accounted and a trade-
off between the strength and significance of the image
gradients versus the smoothness desired by the prior
must be established. Measurements at each sample lo-
cation are acquired and assigned a weight based on the
strength of the local gradient. The fused curve is esti-
mated statistically. Details are found in Section 3.3.

3.1 Viterbi algorithm

The probability at each node in a trellis and an associated
transition probability matrix define a hidden Markov model
(HMM). Under the first order Markovian assumption, the
Viterbi algorithm [17, 20] finds a sequence of nodes which
maximizes the overall hypothesis. Terminology that defines
the HMM in the context of a deformable snake model is
provided next.

• A discrete snake is defined as a collection of q − 1
discrete straight segments with q discrete locations (the
head and tail of the snake do not have to be connected).
An example of an initial snake is shown as a circle in
Fig 1(a) and mathematically expressed as:

v(sb) = [x(sb), y(sb)], sb ∈ [0, L], b ∈ [0, q − 1] (4)

• Assume a normal that crosses at each of the q discrete
locations and that each normal has p nodes distributed
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along its length. Each node represents a potential solu-
tion along that normal and, as a result, across all nor-
mals there are pq potential solutions. Mathematically,
vti is the ith snake at iteration t:

vti(sb) = [xti(sb), yti(sb)], t ∈ [0, T − 1], i ∈ [0, pq]
(5)

• The trellis stores the state of the HMM. Let uab define
the trellis which contains the positions of all potential
snakes:

uab = vti(sb), a ∈ [−p/2, p/2] (6)

The initial positions of a snake are v00(sb) represented as
a circle in Fig 1(a). Here, small circles represent the trellis
nodes. The external energy is calculated as the first deriva-
tive of a Gaussian kernel with σ = 3pixels. Mathemati-
cally, Eext = G

′

c ∗ I , where Eext, G
′

c, ∗ and I are external
force or the observations, Gaussian kernel of length c, con-
volution symbol and intensity of image respectively. The
confusion matrix (Bab) and state transition matrix Aab are
shown in (7) and (8) where D(ukb−1, uab) is the Euclid-
ian distance between ukb−1 and uab, k ∈ [−p/2, p/2] is
dummy variable used in Trellis.

Bab = p(Eext(uab)|Eext(uk(−p/2:p/2)b)) (7)

Aab = p(D(uab, ukb−1)|D(uab, uk(−p/2:p/2)(b−1))) (8)

Given observations Eext of states uab, the goal is to find
the best sequence of states zâb which will maximize the
probability function <ab along the path zâb [8]. Mathemat-
ically, let <ab accumulate the likelihood at each node and
<a1 = Ba1. With the assumption of a first order Markov
model, <ab, and knowledge of the previous likelihood path,
Oab can be computed using equation-(9) and (10).

<ab = max
k(−p/2:p/2)

(<k(b−1) +AkbBab) (9)

Oab = arg max
k

(<k(b−1) +AkbBab) (10)

The Viterbi algorithm computes the partial probability of
each node in the trellis uab. By solving the forward prob-
lem [20], the sequence of the most likely occurring path zâb
is determined. Due to noise and first order Markov assump-
tion the optimal snake obtained using the Viterbi method is
typically not the desired snake. Therefore, a novel curva-
ture based estimation technique is proposed which consid-
ers both curvature and prior shape model to pull the snake
towards true positions.

3.2 Curvature guided importance sam-
pling for curve evolution

In general, the prior model of objects are defined by con-
straints on its overall shape. Active contours traditionally

consider thin plate and membrane constraints to constitute
the prior model of the object which is not an accurate hy-
pothesis for high curvature object boundaries. Therefore,
the proposed method generates snake points using impor-
tance sampling of the local curvature(K) along the snake
which will ensure more samples in high curvature regions.
Importance sampling on the absolute value of curvature of
zâb is performed as described in (11), (12) and (13).

ρb ∝
(qb − qb−1)
(sb − sb−1)

∝ K (11)

∆smin < ∆s < ∆smax (12)
L

∆smax
� q � L

∆smin
(13)

∆smin and ∆smax represent the minimum and maximum
length of a segment in a snake. ∆s and ρb are the sampling
interval and sample density. To estimate the true shape, the
method measures at each location generated by importance
sampling of zâb. The sample locations are assigned to M ,
as defined in the next subsection, which will be treated as
measurements for further use.

3.3 Statistical estimation

There are two reasons motivating an estimation step.
First, while calculating M , shape priors were not consid-
ered, however prior models of shapes play a vital role with
high measurement uncertainty. Second, to directly incorpo-
rate complicated shape model directly into the Viterbi ap-
proach is difficult, even for second order constraint com-
plexity. The new approach computes the object boundary
from the observed image ignoring the prior model and then
fuses the measured boundary with the prior model statisti-
cally. Let M be the measurement vector at sampled snake
position and Z be the true boundary that needs to be esti-
mated. M can be expressed as:

M = CZ +W (14)

and an estimate of Z [4] is defined as:

Ẑ = (CtR−1C + P−1)−1CtR−1M (15)

where C is a rectangular matrix, W is the uncertainty in
measurements, W ∼ N(0, R), P is the shape matrix which
describes the object’s prior model. The most difficult task
is how to choose P and R. The first estimate for P includes
elastic and membrane constraints:

P = λ(££t)−1 (16)

where £ is a penta-diagonal banded matrix which contains
overall shape constraints:

£ = [α(Lx + Ly) + β(Lxx + Lyy)] (17)
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(a) (b) (c) (d) (e)
Figure 1. Illustration of one iteration of proposed method on a U-shaped object. (a) A circle (thick line) shows the initial positions
of the snake, the jagged line shows a potential snake solution, and the small circles shows the nodes of Viterbi trellis. (b) The thick
line shows the optimal snake after a Viterbi search. (c) Curvature of the curve obtained using Viterbi search (X-axis Arc length,
Y -axis Curvature(K)). (d) small green circles are the particles generated using importance sampling on curvature of optimal Viterbi
snake. (e) The thick line shows the estimated snake as the initial snake to start the next iteration.

Algorithm 1 Pseudo code of proposed method

1: t = 0, e =∞, ε = 1(−10)

2: Initialize object boundary manually as v00(s)
3: while e ≥ ε do
4: Generate discrete search space uab normal to vt0(s)
5: Find the best curve zâb using Viterbi search
6: Compute curvature of zâb and perform impor-

tance sampling on it to generate more sample near
high curvature region. Consider each sample as
measurements(M )

7: Calculate ˆz(t)
8: e = ||ẑ(t)− ẑ(t− 1)||
9: v(t+1)0(s) = ẑ(t)

10: t = t+ 1
11: end while

Lx,Lxx,Ly, and Lyy are shape elastic and membrane con-
straints along the x and y direction. Lx,Lxx,Ly, and
Lyy are banded matrices whose values at center rows are
[1,−1], [1,−2, 1], [1,−1]t and [1,−2, 1]t respectively. λ is
weight factor for shape constraints. Further, R is a diago-
nal matrix whose diagonal elements r11, r22...rbb...rqq are
derived from the probability distribution of external force.

rbb ∝
1

Eext
(18)

In principle rbb have lower values in regions where the ex-
ternal forces are high. Pseudo code for complete approach
is provided in Algorithm (1)

4 Testing

4.1 Test images and initialization

To authenticate the capability of the proposed method,
testing has been conducted on both original and published

images. Two synthetic binary images are tested, one with
a V shaped object and the other with a heart shaped object.
The four standard images are brainweb [12], disc on a com-
plex background [16], starfish [3], thin u-shape [18]. The
labels A, B, C, D, E and F are assigned to V-shape, heart
shape, ball in complex background, brain, starfish and thin
u-shape images, respectively, as illustrated in Fig. 2. Exper-
iments are performed on 2.61 GHZ, 2GB DD RAM, AMD
Athlon 64X2 dual core machine .

For comparison purposes, published MATLAB code for
the Gradient Vector Flow (GFV) snake, Traditional snake,
Balloon Force (BF) snake and Distance Transformed Force
(DTF) snake were downloaded [19]. The downloaded orig-
inal codes took a long time to run and we modified them
to perform vector optimization within MATLAB to fairly
compare completion times against the proposed method’s
implementation. The initial location of the snake is always
specified using a circle. The initial length of each segment
is ∆s. For all test images values of ∆smin and ∆smax are
set to be 0.5 pixels and 3 pixels. The minimum and maxi-
mum values of rbb are set to 1 and 30. Parameters for the
other four methods were set according to [18] and fixed for
all test sets.

4.2 Results

Results are shown in Fig. 2 and Table 1. Fig. 2 illustrates
separate images for the initial contour, the solution for the
proposed method, and the solution for the four other meth-
ods. Table 1 shows the quantitative values of Mean Square
Error (MSE) and Execution Time (ET) of all five methods.

In the proposed method, parameters of the discrete snake
are guided by curvature and external force. As a result, the
proposed method works effectively for all six images with-
out adjusting any parameters. In contrast, the four compar-
ative methods are sensitive to fixed parameters and no other
method can effectively identify the necessary boundary for
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Table 1. Comparison table showing Mean Square Error(MSE) and Execution Time (ET) in second of Proposed Method against
four other methods for different images. Text in bold letter indicates best performance among their peers for a particular image

Proposed Snake Traditional Snake DTF Snake BF Snake GVF Snake
MSE ET MSE ET MSE ET MSE ET MSE ET

(A) 0.89 14 1.4 91 110 42 1.4 93 1.1 112
(B) 1.1 29 2.9 91 2.6 36 1.2 93 2.5 104
(C) 1.5 4.5 1.55 36 DNC 38 DNC 70 1.53 52
(D) 1.8 3.5 1.83 47 2.1 46 1.9 42 1.85 73
(E) 2.1 26 42 145 DNC 40 DNC 119 351 171
(F) 2.7 31 12 91 16 48 9.5 94 6 114

all test images. In particular, only the proposed method
found the appropriate boundary for the starfish (E) image.
The starfish shape (E) has a complex boundary and also
has an intensity that is highly non-uniform. The disc (C)
poses challenges with a variety of edge strengths through-
out the image and two of the methods (DTF snake and BF
snake) did not converge for this image, however, the pro-
posed method successfully segments the object. For some
cases, the algorithm did not converge (DNC), which means
that the snake shrunk to a single point or expanded outside
of the image plane.

Table 1 shows that the proposed method gives the best
performance for both speed and MSE for all images across
all snake algorithms. On average, across all images and
compared to all snake methods, the proposed method is
found to be 7 times faster with a 45 percent reduction in
MSE.

4.3 Algorithm sensitivity

• Sensitivity to initial position:

Typically, for the proposed method to be effective, the
initial snake is of reasonable size with a boundary cov-
ering its solution boundary. Fig. 3 shows three differ-
ent initial snake contours and their successful conver-
gence using the proposed method. In contrast, the bal-
loon force (BF) snake requires that the initial snake be
placed fully within the solution boundary [18]. Also,
the Traditional snake requires an initial snake close to
its solution to encourage speed of convergence and ac-
curacy [18]. Further, slower convergence speed is a
consistent concern for the GVF snake method.

• Sensitivity to parameter change:

Performance of existing contour extraction techniques
are dependent upon appropriate values of parameters
such as α, β and γ. However, the proposed method
adaptively chooses parameters as given below where
ρb (11) and rbb are functions of spatial locations.

[α, β, λ] ∝ ρb (19)

and
[α, β, λ] ∝ 1

rbb
(20)

therefore, α, β and λ also function of spatial locations.
The proposed method does not have γ term, because
external and internal forces are decoupled. While com-
puting the visual boundary of an object γ is embedded
implicitly within the trellis of HMM. However α

β is
significant for rate of convergence which is beyond the
scope of the article. Therefore, in our experiment α,β,
and λ are set to be 0.28, 0.04 and 1 to accomplish rea-
sonable advantage on speed.

A thorough rigorous experiment has been conducted to
understand the effect of parameter estimation on the fi-
nal solution for each of the five methods. That the final
solution of the proposed method does not vary signif-
icantly for a wide range of parameters within the do-
main of our test case has been observed. However, for
other methods, proper values of parameters are impor-
tant for the snake to converge to the true solution. As a
result, the proposed method is less sensitive to param-
eter changes, while other methods are more sensitive
to these parameters.

• Sensitivity to noise:

Fig. 4 shows the effect of varying noise on mean square
error (MSE) as a function of the number of iterations
given the binary diamond shape in Fig. 5. For lower
values of noise variance (higher values of PSNR), the
proposed method takes less time to converge. Fig. 5
compares the proposed method to the other four meth-
ods for a PSNR of 6 given a noisy image with a dia-
mond shape. Clearly, the proposed method is robust to
noise relative to its peers since the proposed method is
the only method to successfully identify the diamond.
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Initial Snake Proposed Snake Traditional
Snake [11]

DTF Snake [6] BF Snake [5] GVF Snake [18]

Figure 2. Column 1 shows the initial circular snake; column 2 the snake generated using the proposed method; column 3 to 6
shows results using four other snake techniques [11, 5, 6, 18]. Black lines bounded by yellow lines are final contours. First two
rows (A and B) show two synthesized images. Last four rows (C, D, E, and F) show images obtained from [16, 18, 12, 3]. The
proposed method is the only one that can properly identify the object boundary in each case. No other method works for more than
four images. Some test cases did not converge
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(a) (b) (c)

Figure 3. Behaviour of convergence pattern of proposed snake on initial positions for a u-shaped object.

Figure 4. Effect of noise PSNR on convergence time and MSE for proposed snakes to converge using image in Fig. 5. Range of
intensity of image is between 0 and 1.

Proposed Snake Traditional
Snake [11]

DTF Snake [6] BF Snake [5] GVF Snake [18]

Figure 5. Performance of each method in presence of noise with σ = 0.65, µ = 0.1, and PSNR = 6. Only the proposed method
works effectively in the noisy image.
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5 Conclusions and Future Efforts

A novel discrete snake for accurate boundary extraction
regardless of noise and geometry of the object boundary is
designed and implemented. This discrete snake adjusts its
parameters iteratively as a function of the current snake so-
lution. Each iteration of the discrete snake is carried out
in three steps: Viterbi search, importance resampling, and
statistical estimation. Validation of the proposed method is
demonstrated experimentally using two original synthetic
images and other four published images. The method is
demonstrated to be robust to initial parameter setting re-
gardless of the nature of the image. Convergence of pro-
posed method is guaranteed empirically and robustness to
noise is shown experimentally.

In the future, parametric testing will be conducted to bet-
ter understand the contribution of each parameter to the final
solution. A design that can enable identification of bound-
aries for images with multiple objects is also under consid-
eration.
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