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ABSTRACT 

A new framework for color image segmentation is in- 
troduced generalizing the concepts of point-based and 
spatially-based methods. This framework is based on 
Markov Random Fields using a Continuous Gibbs Sampler. 
The Markov Random Fields approach allows for a rigor- 
ous computational framework where local and global spatial 
constraints can be globally optimized. Using a Continuous 
Gibbs Sampler enables the algorithm to adapt continuous- 
valued regional prototypes in a manner analogous to vector 
quantization while the discrete Gibbs Sampler is used to ad- 
just region boundaries. 

1. INTRODUCTION 

In computer vision, several steps are needed to understand 
an image or some portion of it. A critical step is image seg- 
mentation. Image segmentation can be subdivided into three 
broad categories: point-based techniques [7]. spatially- or 
region-based methods [61 and hybrids [ Z .  91. 

Point-based methods act only on single pixels and do 
not take spatial information into consideration. They are 
usually set up to minimize the mean squared error or other 
quantity [I]. This is usually done using vector quantization 
(VQ) or some type of energy minimization such as Bayes 
[I .  91 or Minimum Description Length [I]. VQ has many 
forms and depending on the end application different al- 
gorithms have been developed. Some of the better known 
are the k-means [ I ]  and mixture of principal components 
algorithms 171 (vector angle is used as similarity criterion 
instead of Euclidean distance). The primary drawback of 
point-based techniques is their inabilityto take into account 
local variation to avoid the formation of many small extra- 
neous regions. 

Region-based methods are spatially based and locally 
optimized 161. Usually, no global information is used to ob- 
tain a result which means that many small regions may pro- 
liferate in areas of high texture and a region could include 

two vastly different color regions due to a small gradient 
between the two distinct colored regions. This is a causal 
method in that every included pixel is related to the previ- 
ously included pixels. 

Hybrids of point-based and region-based methods in- 
clude Markov Random Fields [2, 31, region competition [9]. 
Markov Random Field-based methods and region competi- 
tion try to achieve image segmentation by minimizing local 
error and maximizing regional differences. The Both ap- 
proaches are considered "a-causal'' in that decisions to in- 
clude a pixel in a region are independent of the order in 
which they were visited. In MRF-based solutions. edges 
and textures can be modelled directly in the image segmen- 
tation process [3,8] which makes this framework desirable 
for further development. 

Color is a very important visual quality for human per- 
ception. Many objects cannot be correctly identified with- 
out analyzing their color. Therefore, this paper builds on 
previous work in color image segmentation using Markov 
Random Fields (MRF) 121 and extends it to an adaptive 
prototype-based MRF framework. The main motivation for 
doing this is to be able to overcome any initialization er- 
rors. The region prototypes will be adjusted in the MRF 
framework using Continuous Gibbs Sampling. Preliminary 
experimental results are presented and discussed. 

2. MARKOV RANDOM FIELDS 

The modeling problems in this paper are addressed from the 
computational viewpoint by using Markov random fields to 
model the image segmentation process. There are two pri- 
mary concerns: how to define an objective function for the 
optimal solution of the image segmentation problem, and 
how to find its optimal solution. It is reasonable to define 
the desired solution in an optimization sense given the var- 
ious uncertainties in the imaging process. In this case, the 
solution to our segmentation problem would be interpreted 
as the optimum solution to the optimization objective. 
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Gibbs Random Fields (GRFs) [3. 81 provide a natural 
way of modeling context dependencies between, for exam- 
ple, image pixels of correlated local features [41. One of the 
motivating developments is the improved insight and avail- 
able methods for Gibbs sampling (discrete and continuous) 
and Simulated Annealing. 

We propose to define the spatial context using a 
GibbdMarkov approach. Certainly others have used 
Markov random fields for image segmentation [4. 81: how- 
ever, normally these methods involve Gauss-Markov ran- 
dom fields, where the GMRF defines a spatial texture. from 
which segmentation can proceed as a separate hypothesis- 
testing procedure applied to the GMRF likelihood [41. Our 
approach is quite different: we wish to find the segmented 
image directly as the result of energy minimization of some 
appropriately-defined Gibbs random field. Furthermore the 
regions are not distinguished on the basis of texture, rather 
on intensity differences (whether in one or more dimen- 
sions). 

The formulation of our Gibbs model will be similar to 
others used for segmentation [3, 41 except that we con- 
sider global constraints in addition to local ones used in 
classic MRF research. We demonstrate the advantages of 
constructing an energy function for Markov Random Field- 
driven color image segmentation using these global con- 
straints. 

The MRF-based segmentation model is defined by 
the contextual relationships within the local neighborhood 
structure. Since our goal is the assertion of local constraints, 
rather than an accurate modeling of spatial textures [4], we 
shall only be concerned with first order random fields, both 
simplifying the model and limiting the computational com- 
plexity. 

It has been shown that color images can be highlight 
invariant using the following transformation (5, 71 : 

(1) 

where C;,j represents a pixel vector (in this case composed 
of the three RGB values), 4,j is the highlight invariant 
color vector and AVG denotes the average value of the ele- 
ments of a single pixel - in this paper these are R, G and B.  
The average for each pixel is calculated based only on the 
individual elements of that pixel. The vector angle and in- 
ner vector product have been shown to be shading invariant 
distance measures (71. This concept was further extended 
to a Markov Random Field framework 121. This framework 
with respect to global constraints will be now summarized. 

Suppose we are given a color image on a pixel lattice 
L = {i,j}. Each pixel {RGB); , j  is transformed to its nor- 
malized representation d,j using (I). 

The primary drawback with strictly local, pixel- 
neighbor models is that they suffer from the same prob- 
lems as other region-growing approaches [Z]. For example, 

d 
ci .3 . = < , j - A V G  

two vastly differently colored pixels may be grouped into a 
single region if they are linked by noisy or intermediately- 
colored pixels. A global model is necessary to overcome 
drawbacks of local models. If we associate with label I 
(each pixel (i, j )  is assigned an integer label 0 _< I(i, j )  < 
N to associate it with a’region color) a global transformed 
color {Z l ]  then each region is forced to be well defined: 

where p controls the relative constraints on the degree of 
region cohesion and fragmentation. while & ( i , j ) ~ , i , j t i )  is 
1 when both labels are the same and 0 otherwise. The re- 
gion colors {&} were originally fixed [Z]: that is. the sam- 
pling and annealing took place only over the label indices 
{l(i, j)} themselves. The {Zj} were found by a preceding 
step, such as vector quantization [7]. However, in this pa- 
per as mentioned earlier this assumption will not he made 
and the region colors {&} will be allowed to adapt: in other 
words, the sampling and annealing will take place not only 
over label indices { l ( i , j ) } ,  but also over the region colors 
{<I}. This will allow for the correction of errors done by 
vector qunatization or other initialization algorithms. 

Finally, the degree to which the region color is to be as- 
serted at each pixel should be spatially-varying, now for two 
reasons. First, the color-dependent effect of noise, particu- 
larly for dark and highlight pixels. 

Second, we are normally not interested in pixels in re- 
gions of high color gradient; at the very least. rhese pixels 
shouid not unduly influence the Gibbs energy by being in- 
consistent with the region color {&]. 

If we let [Z] 

that is, the first variance is a point-wise one (based on a 
noise model) and the second is a spatial one (computed over 
a local neighborhood N). then our segmentation model be- 
comes 

This gives us a concise and coherent representation of 
the color image segmentation problem by incorporating 
both local and global constraints. The global constraints are 
defined by global color region labels obtained through some 
vector quantization process such as the one presented in [7]. 
Local constraints are included by virtue of using pixel level 
constraints in the MRF model. 
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Model (4) is a trade-off between a completely local re- 
gion growing approach, where many spurious regions can 
be created. and a global color clustering approach where 
regions of differing color can be inadvertently merged. Fur- 
thermore. the use of vector angle accuracy weights (3) al- 
lows the less reliable calculation of vector angle for small 
highlight-invariant values (cf. (1)) to be appropriately mod- 
ulated. 

3. CONTINUOUS GIBBS SAMPLING 

For the region colon { < I }  in models ( 2 )  and (4) to adapt, 
the sampling and annealing has to take place over the re- 
gion colors. Since region colors are inherently continuous 
values (not discrete values like the region labels), the oper- 
ations have to be done in the continuous domain using the 
continuous Gibbs sampler. 

Let's recall that the Gibbs distribution is written as: 

where H ( Q )  is the energy being minimized, T is the tem- 
perature and the partition function Z is defined as 

Calculating Z can be a very difficult problem especially 
for large spaces 13. 41. However, in the continuous case, 
the problem becomes even more difficult as the summation 
changes to an integral. 

Cawing out this integral is generally intractable. How- 
ever, i t  is possible to compute the conditional probability 
of a particular MRF configuration by quantizing the Gibbs 
distribution space. Therefore. probabilities for all quantized 
values of {a']} are calculated for a particular energy config- 
uration. This is done first by evaluating c - H ( n ) / T  for all 
possible quantizations of R. Next, the integral correspond- 
ing to (6) is computed numerically using the previous re- 
sults. The probabilities (5) can now be calculated. Thus, 
the obtained probability distribution function can be used 
to find the conditional distribution function from which we 
can obtain a sample. This conditional distribution function 
needs to be recalculated for every pixel at every iteration. 
Drawing samples from the conditional distribution function 
of the Gibbs distribution implements the continuous Gibbs 
sampler. 

The general color image segmentation algorithm is now 
described: 

All pixel labels are randomly initialized 

Region colors {a']} are initialized to some vector 
quantized values using (1) and the Mixture of Prin- 
cipal Components algorithm 171 

Repeat for several iterations: 

- At each pixel in the image until a minimum is 

* Minimize the energy in models (2) or (4) 
by sampling labels using the discrete Gibbs 
sampler 131 

* Draw a sample from the conditional Gibbs 
distribution (i.e.. what we described as con- 
tinuous Gibbs sampling) for annealing the 
region colon 

- Lower the temperature T 

reached: 

If the temperature reduction occurs slowly enough, this 
annealing process should converge in probability to the 
global minimum [3], However. applying simulated anned- 
ing to the usual 256 quantization levels present in grayscale 
images and 2563 levels in color RGB images is computa- 
tionally prohibitive (in the case of R'G'B' this would be 
approximately 5123 because of the negative and positive 
coordinates). Therefore. the region color associated with 
a particular label is obtained by drawing a sample from the 
distributionrepresenting all the pixels that have this label. A 
practical implementation would only require that potential 
color regions be sampled from pixel vectors associated with 
that region label. Although this does not allow the use of 
intermediate or interpolated pixel values for color regions, 
in practice this is not necessary as we are trying to identify 
homogenous color regions. 

4. RESULTS 

The Gibbs Sampler (31 was used to optimize both (2) and (4) 
in their fixed and adaptive forms. For the fixed global model 
(4) the label colors a' are determined using the algorithm 
presented in [7]. For the adaptive global model, the initial 
prototypes are of course selected randomly. 

Results were prepared an artificial image of colored 
bands, shown in Figure 1 respectively. The artificial image 
varies in intensity horizontally (i.e.. from left to right and a 
saturated highlight is present near the right border). Some 
additive uniform uniformly distributed noise was added to 
this image. 

The MPC result on the artificial image is shown in Fig- 
ure l(b). The highlight part is clearly a mixture of the three 
other segmentation classes due to having a nearly null vec- 
tor representation in the R', G', B' space, and the absence 
of spatial constraints prevents the ambiguity from being cor- 
rected. For the MRF models, the results in Figure 2(a) 
and Figure 2(b) clearly illustrate the problems of hound- 
ary length discussed in [2l. because of the lack of region- 
defining constraints such as characteristic region vector. 
Figure 2(c) demonstrates the type of result that is obtained 
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5. CONCLUSIONS 

Fig. 1. Color band image: (a) Original, (b) MPC segmenta- 
tion. 

(a) Local Model [Z ]  (b) Weighted Local Modcl [2] 

.. . . .~ . _.,. 

, 
(d) Weighted Fixed Model (41 

I I 
(e) Global Adaptive Model (2) (e) Weighted Adaptive Model (4) 

Fig. 2. Color Band image: Results of two proposed MRF 
models compared with previous results. 

using Model (2). As desired, no highlight parts remain as 
these areas have been subsumed into their adjacent regions. 

Figure 2(d) shows the results for the same color bands, 
but now the vector angle calculation is weighted in terms of 
the accuracy to which to the angle can be determined (which 
is affected by darkness or degree of highlight), as in (4). The 
main difference between models (2) and (4) seems to be the 
faster speed of convergence of the latter over the former (for 
the example image presented). 

Similar results are obtained for the adaptive prototype 
case and are shown in Figure Z(e) and (0. The main differ- 
ence between these results and the previous ones was that 
the adaptive models were initialized using a random set of 
prototypes. The adaptive models ran for approximately the 
same number of iterations on average as the fixed models. 
However, each iteration (i.e., cycle through all points in the 
image) was considerably more computationally intensive in 
the adaptive model case. 

A new framework for adaptive color image segmentation 
using Markov Random Fields and continuous Gibbs sam- 
pling has been presented. 'The new method presents several 
advantages: adaptability of global constraints (region col- 
ors) to the data, sampling over both region labels and region 
colors using the Gibbs sampler (both discrete and contin- 
uous), optimization of local contextual constraints (taking 
into account local features) with a global energy function 
(making sure that regions are optimally segmented with re- 
spect to each other). Hybrid methods have been introduced 
recently including region computation. However. none of 
these methods provides a framework as flexible as MRFs 
which not only adaptively and globally optimizes local con- 
straints. but can also easily integrate texture handling and 
edge detection (line processes) within the segmentation pro- 
cess. 
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