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Abstract— The goal of multi-frame image super-resolution is
to use information from low-resolution images to construct high-
resolution images. Current multi-frame image super-resolution
methods are highly sensitive to prominent large scale artifacts
found within the low-resolution images, leading to reduced image
quality. This paper presents a novel adaptive approach to large
scale artifact reduction in multi-frame image super-resolution.
The proposed method adaptively selects information from the
low-resolution images such that prominent large scale artifacts
are rejected during the reconstruction of the high-resolution
image. In addition, an efficient super-resolution algorithm based
on the proposed artifact reduction method and edge-adaptive
constraint relaxation is introduced. Experimental results show
that the proposed super-resolution algorithm based on the
proposed artifact reduction method improves the perceptual
quality of the resultant high-resolution image both quantitatively
and qualitatively when compared with standard super-resolution
methods in situations where prominent large scale artifacts exist.

Index Terms— artifact reduction, edge-adaptive, image super-
resolution.

I. INTRODUCTION

MAGE super-resolution is the process of reconstructing

high resolution (HR) images from information obtained
from low resolution (LR) images. Image super-resolution
methods play an important role in a wide variety of imaging
and computer vision applications. Some of these applica-
tions include ultrasound image enhancement [1], [2], text
enhancement for optical character recognition [3], digital video
enhancement [4], [5], and remote sensing image enhancement
(61, [71.

The increasing interest in producing HR images from LR
images have resulted in various useful super-resolution tech-
niques. In general, these techniques can be divided into two
main groups:

1) Single-frame super-resolution, and

2) Multi-frame super-resolution.

Single-frame super-resolution techniques [6], [7], [8] uti-
lize information from a single LR image to reconstruct a
HR image. As such, the HR image does not contain any
additional information compared to the original LR image
and are not very beneficial for computer vision or advance
image enhancement purposes. Therefore, single-frame super-
resolution techniques are mainly used for general visual qual-
ity enhancement of images such as digital video upscaling.
Recent research in super-resolution have focused on multi-
frame super-resolution techniques, where multiple LR images

are used to reconstruct HR images. Each LR image contains
unique information that is not found in other LR images. By
utilizing unique information from multiple LR images, it is
possible to reconstruct HR images by interpolating information
on a sub-pixel level. Therefore, a HR image constructed using
multi-frame super-resolution techniques contain more detailed
information than any of the individual LR images can provide.
Such details can greatly improve the perceptual quality of an
image. Furthermore, multi-frame super-resolution techniques
are particularly beneficial to computer vision applications,
where additional information can lead to improved perfor-
mance.

A large number of multi-frame super-resolution methods
have been proposed. A widely used group of multi-frame im-
age super-resolution techniques are those based on constrained
regularization. In such techniques, the super-resolution prob-
lem is formulated as a regularized optimization problem and
the resultant HR image is estimated by solving the regularized
optimization problem using techniques such as conjugate gra-
dient methods [9], [10]. Another popular group of multi-frame
super-resolution are those based on Projection on Convex Sets
(POCS) [13], [14]. In POCS-based image super-resolution
methods, an estimated HR image can be found for the super-
resolution problem by projecting it onto each constraint within
a convex constraint set. The constraint set is formulated such
that consistency is maintained with the LR images used to
reconstruct the HR image. Therefore, the estimated HR image
is updated as it is projected onto constraint sets until a desired
number of iterations or error condition is met. One of the
drawbacks to this approach is that there is no single optimal
solution. A hybrid approach that utilizes both maximum like-
lihood estimation and convex constraints has been proposed
to address this issue [16]. A similar approach to POCS-based
methods is the iterative back-projection method [15], where
an initial HR image estimate is back-projected to estimate a
set of LR images based on the degradation model. The error
between the estimated LR images and the actual LR images
is then calculated and used to refine the HR estimate. Other
approaches to multi-frame super-resolution include the use of
Bayesian estimation methods [11], [12], Maximum a Posteriori
(MAP) estimation methods [17], and neural networks [18].

Current research in multi-frame image super-resolution
methods have focused on reducing small-scale artifacts such
as ringing [14], [17] and quantization noise [19]. However,
research on multi-frame image super-resolution methods that
focuses on large-scale artifacts such as large dirt artifacts,
scratches, and large image defects have been largely ignored.
Such large-scale artifacts can lead to significant loss in per-



ceptual quality in the reconstructed HR image. The goal of
the proposed algorithm is to utilize both large-scale artifact
reduction and an edge-based model to improve perceptual
quality of the reconstructed HR image in a computationally
efficient manner.

The main contribution of this paper is a novel adaptive
approach to large scale artifact reduction in multi-frame image
super-resolution. The proposed method adaptively selects in-
formation from the low-resolution images such that prominent
large scale artifacts are rejected during the reconstruction of
the high-resolution image. Furthermore, an efficient super-
resolution algorithm based on the proposed artifact reduction
method and edge-adaptive constraint relaxation is introduced.
In this paper, a formulation of the super-resolution problem
is presented in Section II. The underlying theory behind the
proposed algorithm is discussed in Section III. The methods
and data used to test the effectiveness of the algorithm are
outlined in Section IV. Experimental results are presented
and discussed in Section V. Finally, conclusions are drawn
in Section VL

II. SUPER-RESOLUTION PROBLEM FORMULATION

The multi-frame super-resolution problem can be defined in
the following manner. Suppose there exists a set of LR images
Iir1,lLR,2;s ---; [LR,n- Each LR image can be modelled as a
HR image Iygr degraded by various imaging conditions such
as motion blur, decimation, and warping. This relationship can
be written as the following expression:

Itr = Hlgr +e (D

where H is the overall degradation operator, [yyg and Irr are
the HR and LR images respectively, and e is the additive noise.
The overall degradation operator encompasses the overall
degradation model, which may consist of multiple degradation
operators. For example, a typical degradation model used for
the multi-frame super-resolution problem consists of decima-
tion and blur operators. Therefore, (1) can be written as the
following expanded expression:

Ig = (H Di> Ing + e )

where D; is an individual degradation operator (e.g. blur,
decimation, warping, and etc.) and H = ][] D;. Since each

LR image contains unique information that is not found in
other LR images, the overall degradation operator is different
for each LR image. Therefore, the relationship between the
HR image and the j** LR images can be expressed by:

Iig,; = <H Di,j> Iyr +€;,1<j<n 3)

where n is the number of LR images used to reconstruct
the HR image. Based on the this relationship and known
degradation operators, the super-resolution problem can be
seen as an inverse problem, where the original model Iy must
be obtained from the observed data Itr 1, I R 2, s ILR,n. In

most real-world situations, the multi-frame super-resolution
problem is generally ill-posed and result in underdetermined
systems where there is no single optimal solution.

III. THEORY

Prior to outlining the proposed algorithm, it is important
to present the background theory behind some of the key
concepts in the algorithm. First, a definition for large scale
artifacts as well as the difficulties associated with such artifacts
are presented. Second, the theory behind problem partitioning
and how it relates to large scale artifact reduction is explained.
The method used to identify and reduce the effect of large
scale artifacts on the reconstructed HR image is presented.
Finally, the adaptive regularized optimization method used to
reconstruct the HR image is presented.

A. Large Scale Artifacts

As discussed in Section I, current research in multi-frame
image super-resolution methods have focused only on reducing
small-scale artifacts such as ringing [14], [17] and quanti-
zation noise [19]. Examples of some small scale artifacts
are shown in Fig. 2. These are considered to be small-scale
artifacts for a number of reasons. First, they generally account
for a very small fraction of the overall image content. For
example, ringing artifacts occur primarily around prominent
edges, which make up a small portion of the actual image
content. Second, the loss in perceptual quality as a result
of small-scale artifacts such as ringing artifacts is generally
relatively low. Finally, the general characteristics of small-
scale artifacts are typically known and can be reduced in a
more systematic fashion. For example, quantization noise are
generally most noticeable at the block boundaries for images
compressed using block transforms. Therefore, such noise can
be significantly reduced systematically at the block boundaries.
Similarly, ringing artifacts are localized around prominent
edges and can be significantly reduced systematically by
filtering at these edges.

Fig. 1. Example of small scale artifacts. Left: ringing artifacts; Right:
quantization noise

Large scale artifacts can be defined as artifacts that possess
the following characteristics. First, large scale artifacts cover
a relatively large area in a LR image. Due to such artifacts, a
significant portion of the LR image may contain erroneous
information that contribute to the HR image in a negative



manner. Therefore, common filtering techniques cannot be
used to correct such large artifacts. Hence, large scale artifacts
result in a significantly loss in perceptual quality in the recon-
structed HR image. Furthermore, the general characteristics of
large-scale artifacts are not known as they can vary greatly
from one LR image to another. This makes it difficult to
use filtering techniques based on specific characteristics or
properties. Based on the above definition, some examples of
artifacts that fall into the category of large scale artifacts
include:

1) large dirt and dust artifacts,

2) large scratches,

3) artifacts due to camera defects or damage, and
4) objects that move in and out of frame.

Examples of large scale artifacts are shown in Fig. ??.
All large scale artifacts result in significant occlusion of
information in the LR images that can be otherwise be used
to reconstruct the HR image. As such, large scale artifacts
can be further be generalized into two main groups: i) tem-
porary occlusions, and ii) permanent occlusions. Temporary
occlusions are artifacts that appear and disappear over a period
of time. As such, a LR image captured when the temporary
occlusions appear contain large occlusions that do not appear
in other LR images captured at a different time. Furthermore,
temporary occlusions may appear at different locations in
different LR images. For example, a leaf moving in the wind
may appear at one location in one LR image but a different
location in another LR image captured using the same camera
at a different time. Permanent occlusions are artifacts that are
always present regardless of time. An example of this is large
artifacts caused by dirt on the lens of a camera. Unless the
dirt is cleaned off of the lens, all image captured using this
camera will exhibit the same dirt artifacts. It is necessary to
deal with both types of occlusions to reduce the effect of large
scale artifacts on the reconstructed HR image.

Fig. 2. Example of large scale artifacts. Left: large dirt and dust artifacts;
Right: objects that move in and out of frame

Current super-resolution methods do not account for the
presence of such large scale artifacts. Therefore, such tech-
niques blindly make use of all information from the LR images
whether it is erroneous information or not. Therefore, any
erroneous information due to large scale artifacts are used in
the reconstruction of the HR image, resulting in significant
loss in perceptual quality. The goal of the proposed algorithm

is prevent such erroneous information from contributing to the
final HR image.

B. Problem Partitioning

The first step in the proposed algorithm is to partition the
full multi-frame super-resolution problem into a number of
smaller multi-frame super-resolution problems. This serves
two main purposes:

1) Reduce computational cost, and

2) Allow for local artifact detection.

Let us first discuss the computational cost reduction gained
from partitioning the full super-resolution problem into a
number of smaller super-resolution problems. Let there exist
n [M x N] LR images and the desired resolution enhancement
is R. The multi-frame super-resolution problem in Section II
can be rewritten in matrix-vector form as:

(Ir;), =H; Iyg), +¢,1 <j<n )

where (Ipp ;) is a [MN x 1] vector representing the j'* LR
image lexicographically ordered, (Iyg), is a [(R2MN) x 1]
vector representing the HR image lexicographically ordered,
H; is a [(MN) x (R*M N)] matrix representing representing
the degradation model, and e;a [M N x 1] vector representing
the additive noise in the j*" image. Combining the n equations
(one for each LR image) as expressed by (4) yields the

following:

i (lLR,l): T [ Hy ] [ e ]
(lLRQ): H, ey
: =| ¢ L)+ | 5
(lLR,j): Hj (7HR). Qj ( )
L (lLR,n): . L Hn i L §n .

This can be expressed in a simplified form as:

Iig =H(Iyg) +e (6)

As stated earlier, the super-resolution problem is ill-posed in
most practical situations, since they involve underdetermined
systems. To make the problem well-posed, a prior model can
be introduced. The problem posed (6) can be formulated as
a regularized optimization problem. This can be expressed as

follows:
-~ . I H A
IHRzargmln{H{BR]—{ _\/XL:|IHR } @)

where L is the constraints matrix and ) is the relaxation values
that controls the degree of approximation of the system. This
regularized optimization problem can be solved efficiently
using the LSQR algorithm [20], a fast iterative linear systems
solver that is designed for large least-squares problems. One
of the biggest issues is that, even when a efficient solver
such as LSQR is used, it is still very computationally ex-
pensive to solve the full multi-frame super-resolution problem




as a whole. In the case of n M x N LR images and a
resolution enhancement factor of R, the estimated cost of
LSQR per iteration is 2(R?M N )(M N (n+1)) multiplications
per iteration. Suppose that the problem is now partitioned
into K2 sub-problems, with each problem representing a
[RM/KRN/K] section of the final HR image. The estimated
computational cost of performing LSQR on this sub-problem
becomes (1/K*)2(R?2M N)(M N (n + 1)) multiplications per
iteration. Since K2 sub-problems need to be solved, the
computational cost of solving the problem in this manner
is (1/K?) of solving the problem as a whole. Furthermore,
the memory requirements for solving each sub-problem is
approximately (1/K*) the size of solving the problem as
a whole. Therefore, significant computational and memory
performance gains can be achieved by partitioning the problem
into smaller sub-problems.

The second purpose of partitioning the full multi-frame
super-resolution problem into smaller sub-problems is to allow
for the detection of large-scale artifacts in a local manner.
As mentioned earlier, the general characteristics of large scale
artifacts are not known as they can vary greatly from one
LR image to another. This makes it difficult to detect large-
scale artifacts globally based on specific characteristics or
properties. By partitioning the global problem into smaller
local problems, large-scale artifacts can be identified more
easily within a smaller sample window based on local char-
acteristics. For example, a large dust artifact may account
for 5% of the total image content and thus appear to be
relatively insignificant quantitatively if taken on a global
scope. However, this large dust artifact becomes quantitatively
significant within a local window that covers 6% of the total
image content.

In the proposed algorithm, the full super-resolution prob-
lem is divided into ¢ smaller super-resolution problems that
represent a partition in the HR image that overlaps parts of
its neighboring partitions. Once the individual sub-problems
are solved, they are recombined to form the final HR image.
While the size and the overlap amount of the partitions are
set depending on the situation at hand, it is intuitive that
the overlap amount should be kept reasonable low to reduce
computational cost while remaining large enough to reduce
blocking artifacts that result due to discontinuities between
partitions. The size of the partitions should also be small
enough such that the presence of a large scale artifact has a
significant effect on the local characteristics but large enough
such that it is not overly sensitive to small variations.

C. Artifact Detection

Once the full super-resolution problem has been partitioned
into smaller sub-problems, local artifact detection is performed
on each sub-section. As stated earlier, the general character-
istics of large scale artifacts are not known as they can vary
greatly from one LR image to another. This makes it difficult
to detect large-scale artifacts based on specific properties. For
example, a circular-shaped dust artifact may appear to obstruct
the scene at one location in the first LR image (captured
by the first camera) while a different dust artifact with an

irregular shape may appear at a different location in the second
LR image (captured by a second camera). However, since
multiple LR images are captured of the same scene, the fact
that different large scale artifacts act differently from one LR
image to another can be exploited to isolate these artifacts
from true image content.

While large scale artifacts may appear with different prop-
erties at random locations, one general assumption that can
be made is that the probability that the same artifact appears
at the same location in all the LR images is relatively low.
In the case of permanent occlusions, a particular artifact may
appear in all LR images produced by one camera but not in
the LR images proposed by the other cameras. In the case of
temporary occlusions, a specific particular artifact may appear
in LR images produced within a certain time frame but not
in LR images produced at another time frame. Therefore,
large scale artifacts can be classified as all information that
is not largely consistent with the information contained in the
majority of LR images used to reconstruct the HR images.
Otherwise, if the same large scale artifact appears at the same
location in all LR images, no additional information can be
obtained about that occluded region in any case since the no
“correct” information was captured there in the first place.

One method of isolating information that is inconsistent
with the majority of LR images is to determine the dissimilar-
ity between the information contained within one LR image
with the information contained in all other LR images. If the
dissimilarity between the information from one LR image and
that in all other LR images is sufficiently high, it can be said
that the information is inconsistent with the majority of the LR
images and therefore is classified as a large scale artifact. In the
proposed algorithm, the following artifact detection method
was performed for each sub-problem:

1) For each image partition P;, calculate the RMSE be-
tween the partition and every other image partition P;
as follows:

RMSE (P, P;) = | E ((Pi - Pj)Q) )

where F() is the expected value.
2) The dissimilarity metric R between F; and all other
partitions is computed as:

1

n—1

R(P) =

> RMSE(P,P) (9
i£]
where n is the number of image partitions.
3) The image partition P; is classified as a large scale
artifact if the following condition is satisfied:
R(P) >t (10)
where ¢ is a threshold value that separates between non-
artifacts and artifacts. The value of ¢ can be adjusted
based on the distinctiveness of the large scale artifacts.
The more distinctive the artifacts are from the actual
image content, the greater the value of ¢ can be set to
avoid false positives.



D. Adaptive Regularized Optimization

Based on the large scale artifact detection results from
Section III-C, each sub-problem is adaptively constructed by
discarding image partitions that are classified as large scale
artifacts and retaining a subset of non-artifact partitions. The
resultant adaptive regularized optimization problem formula-

tion for each sub-problem can be expressed as:

o = B ][, o

1HR, 0 VL, | TR

(1D

where Ly, A\, are the constraints matrix and relaxation values
for the k*" sub-problem, and I}y , and Hy, represent the sub-
set of non-artifact partitions and its corresponding degradation
operators respectively for the k" sub-problem. As such, the
problem formulation will be adaptively adjusted based on the
number of non-artifact partitions in each sub-problem. What
this does is effectively prevent erroneous information caused
by large scale artifacts from affecting the reconstructed HR
image by removing them from the problem altogether.

So far, the selection of A\ values have not been discussed.
The M\ values control the degree of approximation of the
system. Large A\ values improve the conditioning of the
regularized optimization problem but in a poor approximation
of the original problem. Therefore, the selection of A\ values
become a tradeoff between smoother estimations (large values)
and closer resemblance to the original information obtained
from the LR images (small values). In the proposed algorithm,
the relaxation values are adaptively adjusted based on the
edge characteristics derived from the LR images. The human
vision system is highly sensitive to blurring in edge regions
but less sensitive to noise in edge regions than smooth regions.
Therefore, pixels that lie in edge regions should be assigned a
lower relaxation value to preserve edge detail and thus improve
perceptual quality. For test purposes, pixels in edge regions are

assigned a A value of 0.2 while those in non-edge regions are
assigned a A value of 1.

IV. TESTING METHODS

To investigate the effectiveness of the proposed algorithm,
three test sets consisting of sixteen 8-bit grayscale LR images
were used. A brief description of the test sets is provided
below.

1) TEST1: Set of LR images generated from an image of
a jeep. The LR images are contaminated by large dirt
artifacts.

2) TEST2: Set of LR images generated from an image of
an altar in a church. The LR images are contaminated
by large dirt artifacts.

3) TEST3: Set of LR images generated from images of a
highway. The LR images are contaminated by moving
cars.

Each LR image was synthetically generated from the orig-
inal HR image(s) by applying translational motion, blur, and
decimation by a factor of four for each dimension. In the case
of TEST1 and TEST2, the LR images are then contaminated

by randomly generated large dirt artifacts. In the case of
TEST1 and TEST2, two base HR images are used to generated
the LR images, one containing no cars and one containing cars.
The LR images are then generated from either of the two HR
images. The proposed algorithm was then used to reconstruct
a HR image at four times the resolution of the LR image using
only 9 of the 16 LR images. To provide a quantitative measure
of quality for the reconstructed HR image, the Peak Signal-to-
Noise Ratio (PSNR) was calculated between the reconstructed
HR image and the original HR image.

V. EXPERIMENTAL RESULTS

A summary of the PSNR between the original image and
the images produced with and without the proposed artifact
reduction method is presented in Table I. It can be observed
that HR images produced with the proposed artifact reduction
method shows noticeable PSNR gains for all test sets when
compared to not using the proposed artifact reduction method.
These results demonstrate the effectiveness of the proposed
method at reducing the effect of large scale artifacts on the
reconstructed HR image. Examples of the resultant HR images
using the proposed method are shown in Fig. 3, Fig. 4, and
Fig. 5. It can be observed that the perceptual quality for the
reconstructed HR images produced using the proposed method
are noticeably improved when compared to those constructed
without using the proposed method.

TABLE I
PSNR FOR TEST SETS

PSNR
Test Set | Without Artifact | With Artifact | PSNR
Reduction Reduction Gain
TEST1 29.6607 31.2243 +1.5636
TEST2 27.4590 28.0660 +0.6070
TEST3 28.0811 28.8895 +0.8084

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have introduced a novel adaptive approach
to large scale artifact reduction in multi-frame image super-
resolution. By utilizing information from different LR images,
prominent large scale artifacts are detected and adaptively
prevented from contributing to the construction of the HR
image. Experimental results showed high perceptual quality
can be achieved using the proposed method to reduce the
effects of large scale artifacts. It is our belief that the proposed
method can be used successfully for the purpose of multi-
frame super-resolution in situations where prominent large
scale artifacts exist in the LR images.

ACKNOWLEDGMENT

This research has been sponsored in part by the Natural
Sciences and Engineering Research Council of Canada.



Fig. 3.
reduction

Super-resolution results of TEST 1; From Left to Right: a) bilinear interpolated from a LR image, b) without artifact reduction, c) with artifact

Fig. 4.
reduction

Super-resolution results of TEST 2; From Left to Right: a) bilinear interpolated from a LR image, b) without artifact reduction, c¢) with artifact
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