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Abstract

A novel stochastic Retinex method based on adaptive

Monte Carlo estimation is presented for the purpose of il-

lumination and reflectance separation and color image en-

hancement. A spatially-adaptive sampling scheme is em-

ployed to generate a set of random samples from the image

field. A Monte Carlo estimate of the illumination is com-

puted based on the Pearson Type VII error statistics of the

drawn samples. The proposed method takes advantage of

both local and global contrast information to provide bet-

ter separation of reflectance and illumination by reducing

the effects of strong shadows and other sharp illumination

changes on the estimation process, improving the preser-

vation of the original photographic tone, and avoiding the

amplification of noise in dark regions. Experimental results

using monochromatic face images under different illumina-

tion conditions and low-contrast chromatic images show the

effectiveness of the proposed method for illumination and

reflectance separation and color image enhancement when

compared to existing Retinex and color enhancement tech-

niques.

1. Introduction

An ongoing challenge in computer vision is alleviating

unwanted global and local illumination variations. In prac-

tical computer vision applications such as video surveil-

lance [1] and face recognition [2], images and videos

are often acquired in different unconstrained environments

where illumination can vary significantly within the ac-

quired scene. For example, lighting in outdoor environ-

ments can change significantly over the course of the day,

resulting in images of the same scene acquired at different

times of the day to appear very different from an image in-

tensity perspective. Similarly, the same objects can appear

very different due to differing or changing lighting condi-

tions in indoor environments. Such global and local illu-

mination variations make it difficult for computer vision al-

gorithms to recognize objects in a reliable and consistent

manner. In the realm of photography, obtaining images

with good contrast is desired, which is often not possible to

capture directly due to illumination variations in the scene.

Therefore, methods for alleviating the effects of global and

local illumination variations are sought.

One particularly effective class of approaches for reduc-

ing the effects of illumination variations is that based on

Retinex theory [3], where images are decomposed into their

individual illumination and reflectance components prior to

further processing. Then the reflectance information can be

used to achieve reliable object recognition that is invariant

to illumination conditions. Also, the illumination informa-

tion can then be modified independent of the reflectance in-

formation to achieve improved image contrast while avoid-

ing a washed-out appearance.

Retinex methods can be generally divided into two main

groups: i) global Retinex methods, and ii) local Retinex

methods. In global Retinex methods [4, 5, 6], pixel in-

tensity information along multiple random walks around

the image (with each walk ending at the pixel being esti-

mated) are used to estimate the reflectance of the image,

from which the illumination of the image can be subse-

quently estimated. The primary difference between global

Retinex methods is in the path geometry used. By exploit-

ing global information in the reflectance and illumination

separation process, global Retinex methods are able to bet-

ter preserve the original photographic tone of the image.

However, global Retinex methods tend to have poor detail

recovering, particularly in dark regions [7]. In local Retinex

methods [8, 9, 10, 11], the neighboring pixel intensities are

used to estimate the illumination of the image, from which

the reflectance of the image can be subsequently estimated.

The primary difference between local Retinex methods is
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in the way in which the illumination information is esti-

mated. These include single scale Gaussian estimation [9],

multi-scale Gaussian estimation [10], and bilateral estima-

tion [11]. By exploiting local contrast information in the re-

flectance and illumination separation process, local Retinex

methods are able to better recover fine image details when

compared to global Retinex methods. However, since only

local information is used, the original photographic tone of

the image is often not well maintained. Furthermore, ex-

isting local Retinex methods are commonly based on the

assumption that illumination varies slowly. However, this

assumption is violated in situations where strong shadows

result in sharp illumination changes, resulting in false dis-

continuities in the estimated reflectance at these locations.

Finally, a problem faced by both global and local Retinex

methods is the amplification of noise in dark regions, which

can have significant negative effects on both image quality

and recognition capabilities of existing computer vision al-

gorithms. The underlying goal of the proposed method is

to combine the advantages of both global and local Retinex

approaches to address the aforementioned issues.

In this paper, we propose a novel approach to illumi-

nation and reflectance separation using an adaptive Monte

Carlo Retinex method. By utilizing both global and local

contrast information to estimate the illumination and re-

flectance information of an image in a stochastic manner,

the proposed method aims to reduce the effects of strong

shadows and other sharp illumination changes on the es-

timation process, improve the preservation of the original

photographic tone, and avoid the amplification of noise in

dark regions. It is important to note that the stochastic na-

ture of the proposed method should not be confused with

purely global Retinex approaches which also utilizes ran-

dom sampling. Unlike these methods, the proposed method

also utilizes local information to better recover image de-

tail. This paper is organized as follows. A quick review of

Retinex theory is presented in Section 2. The mathemati-

cal background behind the proposed method is presented in

Section 3. Experimental results are presented and discussed

in Section 4. Finally, conclusions are drawn and future work

is discussed in Section 5.

2. Retinex Theory

The basic postulates of the Retinex theory used in ex-

isting Retinex approaches can be defined as follows. The

first postulate states that there are three independent mech-

anisms in the vision system for processing each of the three

color channels. Based on this postulate, each of the three

color channels can be processed independent of each other.

The second postulate states that the intensity image I corre-

sponding to a particular color channel is proportional to the

product of illumination L and a reflectance R,

I ∼ L ·R. (1)

Based on this postulate, the illumination component L and

reflectance component R of an intensity image I can be es-

timated by first estimating either one of the components and

then computing the second component as the ratio between

I and the estimate of the first component. In the global

Retinex approach, the reflectance R at a particular pixel

x = (x, y) is first estimated as the normalized sum of ratios

between the intensity I at x and the highest intensity trav-

eled by each of the M random walks {pi : i = 1, . . . ,M}
along the image, where each random walk ends at x,

R̂(x) =
1

M

M
∑

i=1

I(x)

I(hi)
, (2)

where hi is point along path pi with the highest intensity. In

the local Retinex approach, the illumination I at a particular

point x is first estimated as the weighted mean over a local

neighborhood ℵ centered at x,

L̂(x) =
∑

q∈ℵ

w(q, x)I(q), (3)

where w is the weight associated with neighboring point q

based on its relationship with x. In typical local Retinex

methods, the weight w is dependent on the spatial distance

between x and q. Based on the estimated illumination L̂,

the reflectance R of the image is typically estimated in its

logarithmic form r as the difference between the logarithms

of I and L̂,

r̂(x) = log (I(x))− log
(

L̂(x)
)

(4)

A general overview of the local Retinex approach is shown

in Fig. 1.

3. Adaptive Monte Carlo Retinex

As discussed in Section 1, global and local Retinex meth-

ods each have their own advantages, which are complemen-

tary to each other. While global Retinex methods provide

better preservation of the original photographic tone of the

image, local Retinex methods provide better recovery of

image detail, particulary in dark regions. As such, a hy-

brid method that possesses the advantages of both the local

and global Retinex methods is desired. One possible ap-

proach to achieving this goal is to integrate the random sam-

pling aspect of the global Retinex approach into the local

Retinex approach. This can be accomplished by extending

the neighborhood ℵ used in the estimation of L such that the

ℵ is comprised of a set of random points {q
1
, q

2
, . . . , q

N
}

sampled from a random field S representing all possible

pixels in the image. Based on this new formulation of ℵ,
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Figure 1. General overview of the local Retinex approach. First, the illumination information is esti-

mated using a local weighted mean approach. Based on the estimated illumination information, the

reflectance of the image is estimated in logarithmic form.

the estimate of L then becomes a weighted mean of the in-

tensities at the N random points in the image,

L̂(x) =

N
∑

i=1

w(q
i
, x)I(q

i
). (5)

This new formulation of L̂ allows for the utilization of

global information from across the image while enforc-

ing locality (e.g., spatial locality) through the weighting

scheme. One of the main drawbacks of the formulation

described in Eq. (5) is that, using existing local Retinex

convention, spatial locality is enforced on a pixel basis be-

tween x and q. This is based on the common assumption

that illumination varies slowly. However, this assumption

is violated in situations where there are sharp illumination

changes, such as strong shadows, resulting in false disconti-

nuities in the estimated reflectance at these locations. To ac-

commodate for sharp illumination changes while still ben-

efiting from the detail recovery advantages gained from en-

forcing spatial locality, we propose that the weight not be

determined based on the spatial distance between x and q,

but instead be determined by the accumulated error between

the neighborhoods ℵx and ℵq,

L̂(x) =

N
∑

i=1

w(ℵq
i

,ℵx)I(q
i
). (6)

By removing the spatial locality constraint between x and

q, the assumption of slow illumination variation is no

longer made and so discontinuities due to sharp illumina-

tion changes is well preserved in the estimated illumina-

tion of the image. Therefore, the effect of strong shad-

ows and other sharp illumination changes on the estimated

reflectance is effectively reduced. Furthermore, by deter-

mining the weight on local neighbors instead of individual

points, the detail recovery performance of the local Retinex

approach is retained.

Based on the formulation described in Eq. (6), the adap-

tive Monte Carlo Retinex method can be described as fol-

lows. Given an image I , consider a random field S repre-

senting all possible pixels within I(x), and X be a random

variable in S. For a given point xc, a set of N random points

{q
1
, q

2
, . . . , q

N
} are generated from S based on a spatially-

adaptive probability density function p,

p(x|xc) =
1

(x− xc)
α

, (7)

where xc is the point in L being estimated and α is the

sampling density decay factor (based on empirical testing,

a suitable decay factor is kept constant at α = 1.3). This

spatially-adaptive sampling scheme encourages spatial lo-

cality by decreasing the sampling density as we move away

from xc, while still taking advantage of global information

by allowing for the possibility of distant points in the image

being sampled.

Given the set of N random points q
1
, q

2
, . . . , q

N
, the

weight w associated with q
i

in estimating L(xc) can be

computed as the exponential of the negative cumulative

Pearson Type VII error [12] between the respective local

neighborhoods ℵq
i

and ℵx
c

w(ℵq
i

,ℵx
c
) = exp

[

−Φ(ℵq
i

,ℵx
c
)

d

]

, (8)

where d is the weight decay constant (based on empirical
testing, a suitable constant is kept at d = 0.15) and,

Φ(ℵq
i
,ℵx

c
) =

∑

ln

(

√

1 +
(

I(ℵq
i
)− I(ℵx

c
)
)

2

)

.

110

Authorized licensed use limited to: University of Waterloo. Downloaded on December 20, 2009 at 19:34 from IEEE Xplore.  Restrictions apply. 



Based on this weighting scheme, the Monte Carlo estimate

of L at xc based on the set of random points q
1
, q

2
, . . . , q

N
can be computed as

L̂(xc) =

N
∑

i=1

I(q
i
)w(ℵq

i

,ℵx
c
)

N
∑

i=1

w(ℵq
i

,ℵx
c
)

. (9)

Finally, the reflectance of the image can then be estimated

using the formulation described in Eq. (4).

4. Experimental Results

To evaluate the effectiveness of the proposed adaptive

Monte Carlo Retinex method, two sets of experiments were

devised. The first set of experiments involves performing

illumination and reflectance separation on monochromatic

face image test sets constructed based on the Yale Face

Database B [13]. Each face test set consists of single light

source images of a human subject under three different am-

bient illumination conditions. For comparison purposes, the

single scale Retinex (SSR) method proposed by Jobson et

al. [9], the multi scale Retinex (MSR) method proposed by

Jobson et al. [10], and the bilateral filtering Retinex (BFR)

method proposed by Elad [11] were also tested. All of the

tested methods are implemented using the parameters pro-

posed in the original works. Proper illumination and re-

flectance separation is very important in computer vision as

it allows for object recognition that is robust to local and

global illumination variations. The second set of experi-

ments involves performing color image enhancement using

the proposed method on two low-contrast chromatic images

from the work by Elad [11] and Yamasaki et al. [1] respec-

tively. For comparison purposes, color image histogram

equalization was also tested for color image enhancement.

Proper color image enhancement is very important in im-

proving the perceptual quality of an image while maintain-

ing the tone of the original image.

The illumination and reflectance separation results for

the monochromatic face image test sets are shown in Fig. 2,

Fig. 3, and Fig. 4. The strong shadows are better preserved

in the estimated illumination using the proposed method in

all test cases. This preservation of strong shadows in the

illumination component is much desired as they are due to

sharp illumination changes and as such should be retained

in the illumination component as opposed to appearing in

the reflectance component. Consequently, the estimated

reflectance using the proposed method exhibits noticeably

less illumination-related artifacts than the other tested meth-

ods. This is particularly noticeable in Fig. 2, where the

strong shadow artifacts present near the nose of the human

subject exhibited by the other tested methods is noticeably

reduced in the proposed method. This allows for a more

consistent representation that is more robust to illumina-

tion variations in the environment. Therefore, these results

demonstrate the effectiveness of the proposed method for

separating the illumination and reflectance components in

an image under varying illumination conditions.

The color image enhancement results for the low-

contrast chromatic images are shown in Fig. 5 and Fig. 6.

While both the proposed method and color image histogram

equalization noticeably improves the contrast for both test

images, the proposed method does a significantly better job

at preserving the original photographic tone of the image.

This is particularly noticeable in Fig. 5, where the image

produced by color image histogram equalization appears

over-exposed, while the image produced by the proposed

method provides good contrast while preserving the original

photographic tone of the image. Furthermore, the images

produced by the proposed method exhibit noticeably less

noise in dark regions. This is evident in Fig. 5, where block-

ing artifacts become very visible in the histogram equalized

image but not noticeable in the image produced by the pro-

posed method. Similarly, noise artifacts are noticeably am-

plified in the dark regions of Fig. 6 in the histogram equal-

ized image, which is not the case for the proposed method.

These results illustrate the effectiveness of the proposed

method in enhancing the contrast of color images while

preserving the original photographic tone of the image and

avoiding noise amplification in dark regions.

5. Conclusions

In this paper, a novel Retinex method based on adaptive

Monte Carlo estimation is presented. A spatially-adaptive

scheme is introduced for sampling random points from the

image field. An adaptively weighted Monte Carlo estima-

tion scheme for estimating the illumination and reflectance

components of an image is introduced based on the drawn

set of random points. By exploiting both global and lo-

cal image information, the proposed method is designed to

provide better illumination and reflectance separation by re-

ducing the effects of sharp illumination changes and noise

on the estimation process, while still preserving the origi-

nal photographic tone of the image. Experimental results

demonstrate that the proposed method achieves improved

illumination and reflectance separation as well as color im-

age enhancement when compared to existing Retinex and

color enhancement techniques. Future work involves inves-

tigating alternative point sampling approaches and weight-

ing schemes, as well as applying the proposed method to

illumination invariant object tracking.
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Figure 2. Illumination and reflectance separation results for Face Test 1. Rows represent the same
face imaged under varying illumination conditions. In each case, the proposed method preserves

strong shadows and other sharp illumination changes in the illumination images much better than
any of the other three methods (SSR [9] , MSR [10], BFR [11]), consequently resulting in noticeably

less illumination-related artifacts in the reflectance images.

Figure 3. Illumination and reflectance separation results for Face Test 2. Rows represent the same
face imaged under varying illumination conditions. In each case, the proposed method preserves

strong shadows and other sharp illumination changes in the illumination images much better than

any of the other three methods (SSR [9] , MSR [10], BFR [11]), consequently resulting in noticeably

less illumination-related artifacts in the reflectance images.

112

Authorized licensed use limited to: University of Waterloo. Downloaded on December 20, 2009 at 19:34 from IEEE Xplore.  Restrictions apply. 



Figure 4. Illumination and reflectance separation results for Face Test 3. Rows represent the same

face imaged under varying illumination conditions. In each case, the proposed method preserves

strong shadows and other sharp illumination changes in the illumination images much better than
any of the other three methods (SSR [9] , MSR [10], BFR [11]), consequently resulting in noticeably

less illumination-related artifacts in the reflectance images.

Figure 5. Color image enhancement results for Color Test 1 [11] for the proposed method and his-
togram equalization. While both methods noticeably improves image contrast, the proposed method

does a significantly better job at preserving the original photographic tone of the image. Further-

more, the image produced by the proposed method does not exhibit the strong blocking artifacts
visible in the image proposed by color image histogram equalization.
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Figure 6. Color image enhancement results for Color Test 2 [1] for the proposed method and his-
togram equalization. While both methods noticeably improves image contrast, the proposed method

does a significantly better job at preserving the original photographic tone of the image. Further-

more, the image produced by the proposed method exhibit noticeably less noise in dark regions
when compared to that produced by color image histogram equalization.
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