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ABSTRACT

This paper presents an adaptive multiple texture approach
to the problem of texture packing for 3D video games. In
modern graphics hardware, texture size is typically con-
strained to width and height dimensions that are powers
of two. To reduce the texture management overhead caused
by storing individual textures, texture packing algorithms
are used to pack multiple textures into a single powers-of-
two texture. Current texture packing techniques are very
limiting as they are capable of packing textures only into a
single texture of predefined size. This can result in signifi-
cant wasted texture space due to the powers-of-two texture
size restrictions. In the proposed technique, individual ar-
bitrarily sized rectangular textures are packed into multiple
textures in an adaptive manner. This approach reduces the
amount of wasted texture space in a more efficient man-
ner by adaptively determining the quantity as well as size of
textures being used during the packing process. Experimen-
tal results demonstrate the effectiveness of this technique in
packing textures in an efficient and automated fashion. This
makes it well suited for improving texture management in
future 3D video games, where resources are limited and a
high frame rate needs to be achieved to provide a truly im-
mersive experience.
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A fundamental technique used in modern 3D video games
is texture mapping [3]. In texture mapping, 2D images are
mapped to the surface of 3D models to give them the ap-
pearance of greater detail and color. The main advantage
of texture mapping is that it provides greater perceptual
quality to 3D models without the increased computational
complexity of using greater geometry for the models. This
makes it well suited for real-time 3D applications such as
video games, where a high frame rate needs to be achieved
to provide a truly immersive experience.

The increase in graphical detail and visual realism in 3D
video games have resulted in a dramatic increase in texture
content both quantitatively and qualitatively. Therefore, it
is important to keep the computational complexity given
the large volume of texture data being used in a real-time
3D environment. The use of a large volume of individual
textures results in performance penalties due to the need
for an increased number of context switches in the graph-
ics pipeline, as well as the performance cost of managing
individual textures.

One common approach used to address the aforementioned
problems is texture packing, where independent texture con-
tent are arranged in such a way that they can be stored in a
larger texture. By packing individual textures into a larger
texture, the number of context switches is significantly re-
duced as texture switches can be performed through texture
coordinate offsetting. Furthermore, it is much less complex
to manage a single texture than to manage a large number
of individual textures. An example of texture packing is
illustrated in Figure 1.

Many techniques have been proposed for the purpose of tex-
ture and and block packing [6, 5, 9, 11, 10, 8, 7]. We note
that the texture packing problem is not a problem unique
to graphics research. The problem of packing small rect-
angles into a single larger rectangle occurs, for example, in
operations research and in VLSI physical design (e.g., fixed-
outline floorplanning) [1, 2, 12]. Conventional texture pack-
ing techniques attempt to pack a set of individual textures
into a single texture in such a way that the smallest possible
area is utilized. A number of issues arise when these con-
ventional texture packing techniques are used in the context
of modern 3D video games. First, many of these algorithms



Figure 1: Example of a set of 9 individual textures
packed into a single larger texture

assume that the initial size of the texture within which the
individual textures are packed into is known a priori. There-
fore, the texture artist must manually decide on the initial
texture size, which can be difficult to do when a large num-
ber of textures are being packed into the single texture.

The second, and more serious issue, is that all current tex-
ture packing techniques assume that all textures must be
packed into a single large texture. However, current graphics
hardware have certain limitations when dealing with texture
data that can make single texture packing very inefficient.
First, current consumer graphics hardware are restricted to
maximum texture sizes of 4096 x 4096. Therefore, conven-
tional texture packing algorithms are unable to handle situ-
ations where the total area of the individual textures exceed
the maximum texture size. Second, a majority of consumer
graphics hardware only support textures with height and
width dimensions that are powers of two (with only lim-
ited support of non-power-of-two textures in recent graphics
hardware [4]). These dimension restrictions can result in
significant wasted texture space when conventional texture
packing algorithms are used.

For example, suppose that conventional texture packing al-
gorithms are used to pack nine 128 x 128 textures. Since
these techniques pack textures into a single larger texture,
the valid texture sizes that will fit these textures while min-
imizing wasted space are 512 x 512, 1024 x 256, 256 x 1024,
2048 x 128, and 128 x 2048. Examples of texture packing
using a 512 x 512 texture and a 1024 x 256 texture are illus-
trated in Figure 2. This results in 43.75% of texture space
being wasted in the texture packing process. This is worsen
by the fact that the absolute wasted texture space increases
substantially as the powers of two increases. Therefore, a
method that strikes a balance between the number of tex-
tures used for packing and the amount of wasted texture
space based on the set of individual textures being packed
is desired.

The main contribution of this paper is an efficient adaptive
texture packing algorithm for packing individual textures
into multiple larger textures in an automated fashion. Based
on the set of textures that need to be packed, the proposed
method automatically determines the number and size of
textures used for packing such that the amount of texture
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Figure 2: Example of packing nine 128 x 128 textures
into a single 512 x 512 texture and a single 1024 x 256
texture. The hashed area represents wasted texture
space

space being wasted is kept as low as possible while reducing
the number of textures used. This allows for more efficient
texture management in future 3D video games while reduc-
ing resource requirements, thus allowing for an improved
game experience.

In this paper, the proposed texture packing method is pre-
sented in Section 2. A detailed analysis of the texture pack-
ing performance of the proposed method is presented in Sec-
tion 3. Finally, conclusions are drawn and future work is
discussed in Section 4.

2. PROPOSED ADAPTIVE TEXTURE
PACKING ALGORITHM

In the proposed method, a set of n input textures {74, T5, ..., T }

is packed into a set of m output textures {O1,O2,...,On},
where n > m. Each output texture has the following restric-
tions:

e The width and height of the texture are powers of two,
and

e The width and height of the texture cannot exceed the
maximum texture dimensions.

The number and size of output textures are not known a pri-
ori. Therefore, the set of output textures will vary based on
the input textures such that a balance between the number
of textures and the amount of wasted texture space. The
main advantage of the proposed method is that the amount
of wasted texture space can be substantially reduced while
keeping the number of textures being managed as low as pos-
sible. An overview of the proposed texture packing method
is illustrated in Figure 3. The set of input textures are ana-
lyzed and an initial guess for the size and number of output
textures is made. The set of input textures are then packed



based on the initial guess and analyzed to further adjust the
number and size of output textures to reduce wasted texture
space and produce the final set of output textures.

Input Textures {T ..., T }

SE T

Initial Texture Fitting

-

Multiple Texture Fitting Refine
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Output Textures {O,,..,0_}

-

Figure 3: Overview of the proposed texture packing
algorithm

2.1 [Initial Texture Packing

In the initial texture packing stage, it is necessary to deter-
mine an initial estimate for the size and number of out-
put textures needed to pack the set of n input textures
{T1,T»,...,Tn} during the multiple texture packing stage.
The dimension for each texture in the set of input textures
is known a priori. Let (w;, h;) be the width and height
dimensions of input texture 7;. As a first step to the es-
timation process, the total texture area covered the set of
input textures is computed as follows:

A= iwihi (1)
=1

Suppose we wish to pack the entire set of input textures into
a single square texture F. Since the width and height of a
texture must be powers of two, the texture F' would have
the dimensions (wr, hr) = (27,27), where j is a parameter
that controls the size of the texture. Therefore, the following
condition must hold true if the set of input textures were to
fit into the texture F:

A< 2¥ (2)
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Based on the above condition, a good initial estimate for
parameter j would be the following;:

=[] 3)

We note that j in Equation (3) is limited by the graphical
hardware limitations for texture size. In this case we restrict
j in which case the algorithm will obviously fail to produce
a solution if only a single output texture is used. However,
our algorithm handles this case as an ’over-fitted’ scenario
which is described later in the paper.

To determine an initial estimate of the number and size
of the output textures within which the input textures are
packed, the set of input textures are first packed purpose-
fully into the square texture F' so that the texture area usage
can be analyzed. In the proposed algorithm, a texture pack-
ing system based on the whitespace management concepts
presented in [12] and [1] was utilized. White space manage-
ment is a well-known technique that has been widely used in
user interfaces for the purpose of 2D and 3D layout. How-
ever, such a technique has not been utilized for the purpose
of automatic multiple texture packing, which has its own
set of requirements. The proposed texture packing system
allows multiple arbitrarily sized rectangular textures to be
packed into a texture area while accounting for the restric-
tions imposed by current graphics hardware. The proposed
texture packing system works as follows:

1. The set of input textures {T%,T5,..., T} are sorted in
decreasing order based on their texture area (i.e., from
largest to smallest).

2. The whitespace list is initialized with a single whites-
pace rectangle with the same dimensions as texture
F.

3. The largest unfitted input texture is packed into tex-
ture F' and the whitespace list is modified by replacing
the single whitespace rectangle with adjacent whites-
pace rectangles formed around the packed texture.

4. For the next largest unfitted input texture, the whites-
pace list is checked to find the smallest whitespace
rectangle that can hold the input texture. If no ap-
propriate whitespace rectangle is found, the algorithm
is terminated and texture F' is classified as "over-fitted’.
Otherwise, the input texture is packed into the appro-
priate whitespace partition within texture F. If all
input textures have been packed into texture F', the
algorithm is terminated and texture F' is classified as
fitted’.

5. The whitespace list is modified by recalculating the
largest available rectangles within texture F' and the
algorithm proceeds back to Step 4.

A example of the proposed texture packing system is shown
in Figure 4.
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Whitespace List

Figure 4: Example of the proposed texture packing
system

2.1.1 Fitted Scenario

If the texture F' was classified as 'fitted’, the percentage of
wasted texture space, W, is calculated as follows:

Once the percentage of wasted texture space has been calcu-
lated, it is necessary to determine whether a single texture
solution or a multiple texture solution provides a better fit
for the current set of input textures. To determine whether
a multiple texture solution is necessary, a check is performed
to see if either of the following conditions are met:

1. The area covered by an individual input texture is
greater than 25% of texture F.

2. The total area covered by the set of input textures is
greater than 75% of the texture F.

If either of the conditions hold true, then the packed texture
F' is set as the final output texture O1, as the single texture
fitting provides a very good fit for these scenarios and no
further output textures are needed. If the conditions are
not met, an initial estimate utilizing multiple textures is
desired.

The initial estimate utilizing multiple textures was derived
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in the following manner. First, by failing to satisfy the afore-
mentioned conditions, it is reasonable to make the assump-
tion that the entire set of input textures can be packed into
three quarters of the square texture F. However, due to
the fact that the dimensions of the output textures must be
powers of two, it is not possible to construct a rectangular
output texture with an area equal to 3(2%7) /4. One approach
to addressing this problem is to subdivide the square texture
into four 27/2 x 27/2 square textures, thus retaining dimen-
sions that are powers of two. Since only three of the smaller
textures are needed, the fourth texture can be discarded.
This approach leads to a texture space savings of 25% when
compared to that used by the texture F. However, this
approach also results in three times as many output tex-
tures. To reduce the number of output textures required,
two of the remaining output textures can be merged into a
27 x 29/2 rectangular texture. This reduces the number of
output textures from three to two.

Based on the above reasoning, in the event that a multiple
texture estimate is desired for the under-fitted case, the ini-
tial estimated set of output textures consists of the following
two textures:

1. An output texture (O;) with dimensions (w1, h1) =
(27,2772).

2. An output texture (O2) with dimensions (w2, h2) =
(21'/272]'/2).

2.1.2  Over-fitted Scenario

If the texture F' was classified as ’over-fitted’, the initial es-
timates for the output textures can be derived based the
following logic. As previously mentioned, the square tex-
ture F' was constructed such that its area is greater than
or equal to the total area covered by the set of input tex-
tures. Therefore, the fact that the texture F' cannot hold
the entire set of input textures implies that the dimensions
of the input textures are not powers of two. Furthermore,
the total area of the remaining input textures that did not
fit into F cannot exceed 2% — Apacked, where Apacked is the
total area of all input textures that can be packed into F. In
the situation where the area covered by an individual input
texture is greater than 25% of F', then it is not possible to
fit more than one texture within F'. As such, a very good fit
for this situation is a single output texture with dimensions
(w1, h1) = (2%9,27). In the situation where the area covered
by an individual input texture is less than 25% of F', the
remaining textures is likely to fit within an output texture
with dimensions (wa, ho) = (27/2,27/2), which has an area
that is a quarter of texture F'.

Based on the above reasoning, the initial estimates for the
over-fitted scenario can be determined in the following man-
ner. First, a check is performed to see if the area covered
by an individual input texture is less than 25% of the tex-
ture F'. If the area covered by an individual input texture
is less than 25% of the texture F, the initial estimated set
of output textures consists of the following two textures:

1. An output texture (O1) with dimensions (w1,h1) =
(27,2%).



2. An output texture (O2) with dimensions (ws,h2) =
(29/2,99/2),

If the area covered by an individual input texture is greater
than 25% of the texture F, the initial estimated set of output
textures consists of one output texture (O1) with dimensions
(’11)17 hl) = (22]'7 Qj).

2.2 Multiple Texture Packing

Once the initial estimates for the number and size of output
textures has been established, texture packing is performed
on the set of initial output textures in the following manner:

1. The texture packing system described in Section 2.1
is used to pack the set of input textures into output
texture O.

2. The remaining textures that cannot be packed into O
are packed into O» in situations where multiple output
textures exist.

Once the initial multiple texture packing has been performed,
an analysis of texture space usage is performed on O3 to fur-
ther refine the size and number of output textures used.

2.2.1 Fitted Scenario

For the cases where the texture F' was classified as 'fitted’,
the size and number of output textures can often be refined
to obtain a better fit for the set of input textures. The main
obstacle to reducing the texture space needed to store the
set of input textures is the fact that the output textures
must maintain power-of-two dimensions. Therefore, refine-
ments in output texture sizes must satisfy the restrictions
in texture dimensions to function properly on the majority
of consumer graphics hardware. The approach taken by the
proposed texture packing method is to decrease the area of
output textures by half in alternating dimensions until the
minimum power-of-two texture size is found.

Based on the above reasoning, the following texture refine-
ment process is performed:

1. Check if the texture usage of Oz is zero. If the texture
usage is zero, set O to size (w1/2,h1) and set Oz to
size (w1/2,h1/2) and repack. If all textures fit within
these two textures, terminate the algorithm. Other-
wise, set O1 back to its original size, remove Os, and
terminate the algorithm.

2. Check if the textures that cannot be packed into O
can be packed into O. If the textures cannot be
packed, remove Oz and set F' as O; and terminate
the algorithm. Otherwise, divide the height of Oz by
half, repack, and proceed to Step 2.

3. Check if the refined Oz can hold all remaining textures.
If the textures cannot be packed, revert to the previ-
ous size of Oz, repack, and terminate the algorithm.
Otherwise, divide the width of Oz by half, repack, and
proceed to Step 3.

193

4. Check if the refined Oz can hold all remaining textures.
If the textures cannot be packed, revert to the previous
size of O2, repack, and terminate the algorithm. Oth-
erwise, divide the height of Oz by half, repack, and
proceed to Step 2.

An example of this refinement process is shown in Figure 5.

r_\ﬂj

(b)
(c)

Figure 5: Example of the refinement process for

(d)
the fitted scenario. The texture is reduced by half
in alternating dimensions until the minimize size is
achieved.

2.2.2 Over-fitted Scenario

For the cases where the texture F' was classified as ’over-
fitted’, the texture refinement process is refined iteratively
in the following manner. First, a check is performed to see
if all input textures can be packed into the current set of
output textures. If the input textures cannot be packed, the
width and height of the smallest output texture is doubled
in an alternating manner until either:

e All input textures can be packed into the refined set
of output textures, or

e the size of the smallest output texture is equal to the
size of the largest output texture.

If all the input textures can be packed into the refined set of
output textures, then a fit is found and the resulting set of
output textures are used as the final set of output textures.
If the size of the smallest output texture is equal to the size
of the largest output texture and a fit is still not found, a
new output texture with a size equal to the smallest output
texture prior to refinement is added to the set of output
textures and the refinement process is performed repeatedly
until all the input textures can be packed into the set of



output textures. Once the final number and size of output
textures are determine, the input textures are packed into
the set of final output textures.

3. TEXTURE PACKING PERFORMANCE
ANALYSIS

To demonstrate the effectiveness of the proposed adaptive
texture packing method, texture packing was performed on
four test sets of generated input textures. A brief description
of each test set is provided below.

TEST 1: Set of 133 [32 X 32] textures.
TEST 2: Set of 31 [50 x 50] textures.
TEST 3: Set of 149 [64 x 64] textures.
TEST 4: Set of 10 [300 x 300] textures.

To judge the effectiveness of the proposed method quanti-
tatively, the percentage of wasted texture space was deter-
mined. For comparison purposes, the test input textures in
each test set was packed into the smallest possible power-of-
two texture.

The percentage of wasted texture space for each scenario is
shown in Table 1. It can be observed that the amount of
wasted texture space was significantly reduced using the pro-
posed method when compared to the use of a single texture.
Examples of the resulting packed output textures are shown
in Figure 6, Figure 7, and Figure 8. This demonstrates
the effectiveness of the proposed texture packing method in
providing a balance between the amount of textures and the
amount of texture space used.

4. CONCLUSIONS AND FUTURE WORK

This paper proposes a novel adaptive texture packing algo-
rithm that utilizes multiple textures in an automated man-
ner. The proposed method adapts the size and number of
output textures based on the set of arbitrarily sized input
textures to reduce the amount of wasted texture space while
maintaining a small number of textures. It is believed that
the proposed technique can be used effectively for the pur-
pose of texture packing to improve texture management in
future 3D video games. Future work include investigating al-
ternative packing methods to further improve texture pack-
ing efficiency.
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Table 1: Percentage of wasted textures space for test scenarios

Scenario | Input Textures | Output Textures Wasted Texture Space | Wasted Texture Space
(Quantity/Size) | (Quantity/Size) | Using Proposed Method | Using Single Texture
TEST 1 133/(32 x 32) 1/(512 x 256) 2.26% 48.05%
1/(128 x 64)
TEST 2 31/(50 x 50) 1/(256 x 256) 21.16% 40.87%
1/(256 x 128)
TEST 3 149/(64 x 64) 1/(1024 x 512) 6.88% 41.80%
1/(512 x 256)
TEST 4 10/(300 x 300) 1/(1024 x 1024) 31.34% 57.08%
1/(512 x 512)

(a) (b)

Figure 6: TEST 1: a) Texture packing using single texture, b) Texture packing using proposed method
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Figure 7: TEST 2: a) Texture packing using single texture, b) Texture packing using proposed method

(a) (b)

Figure 8: TEST 3: a) Texture packing using single texture, b) Texture packing using proposed method
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