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ABSTRACT 
In this work, we consider the adaptive Wiener filtering 

of noisy images and image sequences. We begin by using an 
adaptive weighted averaging (AWA) approach to estimate 
the second-order statistics required by the Wiener filter. 
Experimentally, the resulting Wiener filter is improved by 
ahout IdB in the sense of peak-to-peak SNR (PSNR). Also, 
the subjective improvement is significant in that the annoy- 
ing boundary noise, common with the traditional Wiener 
filter, has been greatly suppressed. 

The second, and more substantial, part of this paper ex- 
tends the AWA concept to the wavelet domain. The pro- 
posed AWA wavelet Wiener filter is superior to the tradi- 
tional wavelet Wiener filter by about 0.5dB (PSNR). Fur- 
thermore, an interesting method to effectively combine the 
denoising results from both wavelet and spatial domains is 
shown and discussed. Our experimental results outperform 
or are comparable to state-of-art methods. 

1. INTRODUCTION 

Images and image sequences are frequently corrupted by 
noise in the acquisition and transmission phases. The goal 
of denoising is to remove the noise, both for aesthetic and 
compression reasons, while retaining as much as possi- 
ble the important signal features. Very commonly, this 
is achieved by approaches such as Wiener filtering [ I ,  21, 
which is the optimal estimator (in the sense ofmean squared 
error (MSE)) for stationary Gaussian process. 

Since natural images typically consist of smooth areas, 
textures, and edges, they are clearly not g/obaUy stationary. 
Similarly, nonstationarity in video may further be caused 
by inter-frame motion. However, image and video can be 
reasonably treated as being /oca/& stationary, as shown by 
Kuan [ I ]  and Lee [2] for images, and similar arguments can 
be made for motion-compensated video. 

These insights have motivated the design of adaptive 
Wiener filters, called local linear minimum mean.square er- 
ror (LLMMSE) filters. The LLMMSE filter proposed by 
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Lee [2] (the so-called Lee filter), extensively used for video 
denoising, is successful in the sense that it effectively re- 
moves noise while preserving important image features (eg., 
edges). However the Lee filter suffers from annoying noise 
around edges, due to the assumption that all samples within 
a local window are from the same ensemble. This assump- 
tion is invalidated ifthere is a sharp edge within the window, 
for example; in particular, the sample variance near an edge 
will be biased large because samples from two different en- 
sembles are combined, and similarly the sample mean will 
tend to smear. The main problem, then, is how to effectively 
estimate local statistics. 

More recently there has been considerable attention 
paid to wavelet-based denoising because of its effectiveness 
and simplicity. Both wavelet shrinkage [3, 41 and wavelet 
Wiener [5 ,  61 methods have shown to be very effective in 
signal and image denoising, although the latter Wiener ap- 
proach is the one of interest in  our context. It is well estab- 
lished that the wavelet transform is an effective decorrelator, 
and thus a reasonable approximation to the Karhuen-Loeve 
basis. Consequently a local wavelet Wiener filter should 
be more effective than its spatial counterpart, however the 
nonstationary local second order statistics must still be esti- 
mated. 

In this paper we formally develop adaptively weighted 
averaging (AWA), proposed by Ozkan el a/ [7], however our 
work differs from [7] in that we use AWA to estimate local 
statistics instead of using it directly for denoising. A final 
section illustrates an effective way to combine our spatial 
and wavelet-based AWA filtering results. Experimental re- 
sults confirm a significant improvement in image denoising. 

2. LOCAL ADAPTIVE WIENER FILTERING 

Consider the filtering of images corrupted by signal- 
independent zero-mean white Gaussian noise. The problem 
can be modeled a s  

Y ( i > j )  =.(Gj) +n(i , j )  (1) 

where y ( i , j )  is the noisy measurement, z ( i , j )  is the noise- 
free image and n ( i , j )  is additive Gaussian noise. The goal 
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is to remove noise, or "denoise" y ( i , j ) ,  and to obtain a lin- 
ear estimate ?(i,j) of z(i,j) which minimizes the mean 
squared error (MSE), 

N 

where N is the number ofelements in x ( i ,  j). 
When z(i,j) and n( i , j )  are stationary Gaussian pro- 

cesses the Wiener filter is the optimal filter [I] .  Specifically, 
when x(i:j)  is also a white Gaussian process the Wiener 
filter has a very simple scalar form: 

where u2, p are the signal variances and means, respec- 
tively, and where we will normally assume the mean of 
the noise to be zero. The effectiveness of the simple form 
Wiener filter (3) was documented in [ I ,  21. In particu- 
lar, Kuan proposed a nonstationary mean and nonstationary 
variance (NMNV) image model; conditioned on this model, 
for natural images the residual process can be well treated 
as white Gaussian processes. 

To use (3) we need to determine p z ( i , j ) ,  uz(i , j )  and 
u:(i*j). We will assume that the noise mean and vari- 
ance are known (for the well-established problem of noise- 
variance estimation readers are referred to [3,4] and refer- 
ences therein). Instead, we focus on the local estimation of 
p z ( i , j )  and u ; ( i , j ) .  Normally [2] the local mean and lo- 
cal variance are calculated over a uniform moving average 
window of size (27 + 1) x (27- + 1): 

( 5 )  
As discussed in the Introduction, (4) and (5) tend to blur 
the mean and increase the variance near edges. Thus, the 
resulting denoised image is poor and looks noisy (Fig. 1 (c)). 

Kuan et a/. [ I ]  proposed using a weighted form of (5) 
to estimate ua(i , j )  while still using (4) as the estimate of 
P z ( i , A :  

i+r j+r 

+:(id = 4 i , j , P , d ( Y ( P , d  - b o ( i , j ) ) 2  
p=*--rq=j-r 

(6 )  
To determine the nonstationary weights w( i , j , p ,  q )  Kuan 
suggested using a monotonically decreasing function (e.g., 

Gaussian) to put more confidence on the center variance es- 
timates, however the idea was not developed formally. 

Rather than a deterministic Gaussian weight, for an im- 
age which may contain abrupt edges and other changes in 
behaviour, it is far more appropriate to consider an adaptive 
approach to selecting 1.0. For example, the pixels used to 
compute the local variance rz of some point (i:j) should 
be biased in favour of those pixels having values similar to 
y ( i 5 j ) :  

where we assert that w( i , j , z : j )  = 0, and K ( i , j )  is anor- 
malization constant, given by 

K ( i , j )  = 

The quantities a > 0 and E = 2 . 5 ~ ~  are the parameters of 
the weight function (see [7] for the determination of these 
parameters). We choose a such that ae2  >> 1 to exclude 
outliers from the weight function w(). Given ?U() we esti- 
mate both the local mean and the local variance adaptively 
as 

i+r j+7 

: ; ( i , j )  = c u J ( i , j , P , ' J ) ( Y ( P , Y )  - b ~ ( & j ) ) ~  
p=t--'q=3-7 

(10) 
In summary, our AWA-based parameter estimation aims, as 
much as possible, to use samples belonging to one consis- 
tent class in estimating pz and U:, which should lead to 
improved performance near edges. Our method is different 
from Kuan's [ I ]  in three respects: 

In [ I ]  only the local variance is estimated in a 
weighted form. In comparison, we apply AWA to es- 
timate both local mean and variance, which should 
reduce mean blur effects near edges. 

Kuan put more confidence on the center estimates, 
whereas we set the center weights to zero, which we 
have experimentally found to better suppress singu- 
larities, especially in smooth regions. 

Kuan's weights are deterministic and not adaptive to 
image features, whereas we are adapting to edge and 
other abrupt features. 

111 - 350 



3. LOCAL ADAPTIVE WAVELET WIENER 

Recently, wavelet-based denoising has attracted extensive 
attention because of its effectiveness and simplicity. The 
most common wavelet denoising methods can be classified 
into two groups: shrinkage [3,4] and wavelet Wiener [5 ,6 ] .  
The intuition behind wavelet shrinkage the wavelet trans- 
form’s effectiveness at energy compaction allows small co- 
efficients to be interpreted as  noise, and large coefficients as 
important signal features. 

The wavelet Wiener method is based on the observa- 
tion that because a natural image can be well modeled in 
the spatial domain as a NMNV Gaussian random process, 
from which it follows that the wavelet coefficients can are 
similarly NMNV Gaussian. By properly estimating local 
means and variances wavelet Wiener has comparable de- 
noising performance to wavelet shrinkage [4,5]. 

Based on the success o f  AWA-based spatial Wiener fil- 
tering, we wish to further develop these ideas in the wavelet 
domain. However several points should be emphasized 

I .  The mean values of all subbands above the lowest 
frequency are very small, and can reasonably be as- 
sumed to be zero. The only problem detected with 
this assumption is that the denoised images suffer 
from more ripple-like artifacts around edges. Con- 
versely, using an AWA-estimated local mean yields 
much better edges but leads to structured artifacts in 
smooth regions. In the presented experiments we use 
a zero mean assumption, therefore only the local vari- 
ance is estimated. 

2. Although the wavelet transform is an effective decor- 
relator, there do remain structured correlations among 
the wavelet coefficients [6]. For example, the hor- 
izontal high frequency subband has much stronger 
correlation in the horizontal than in the vertical di- 
rection. Therefore the shape of the adaptive window 
really should be modulated based on some prior un- 
derstanding of wavelet statistics; this more advanced 
approach is let? as a future direction, and is not the 
focus of this paper. 

4. COMBINED DENOlSlNG 

Although there have been are many attempts [SI to combine 
spatial and temporal denoising results in image sequence 
denoising, we are not aware of any other work in the litera- 
ture that tries to combine spatial and wavelet denoising re- 
sults. Because the remaining noise has quite different struc- 
tures in the spatial and wavelet domains (we have dot-like 
remaining noise in the spatial domain and ripple-like re- 
maining noise in the wavelet domain), we hope to suppress 

them further by taking advantage of this difference. Theo- 
retically, ifthe two error images are uncorrelated we can get 
a gain of about 3dB in PSNR. Experimentally, the two error 
images are correlated, of course, as the error is mostly con- 
centrated around edges, however the correlation coefficient 
relatively low (about OS), so experimental results show an 
improvement in PSNR of about 0.5dB. The subjective im- 
provement is also considerable. Our proposed combination 
equation is shown below: 

?comb = 0 .6*~WA- -wauekt  + 0 . 4 ? ~ w ~ - s p a t i a i  (1 1) 

where ? A W A - ~ ~ ~ ~ ~ ~ ~  and ? ~ ~ ~ - ~ ~ ~ t i ~ i  are the denoised 
results in the wavelet and spatial domain. The weights (0.6, 
0.4) in are chosen to emphasize the observation that the 
MSE in the wavelet domain tends to be smaller than that 
in the spatial domain. Theoretically, optimal combination 
weights should be the function of the correlations and vari- 
ances in the estimation errors. 

5. RESULTS AND DISCUSSION 

We first apply the developed AWA method (in both the spa- 
tial and wavelet domain) to noisy image Lena. The denoised 
results are shown in Fig.1. 

The main observations of this experiment are 

I .  In the sense of PSNR the spatial AWA filter out- 
performs the spatial Lee filter by about 1dB-1.5dB. 
However, subjectively the spatial AWA filter tends to 
oversmooth edges. It seems to us that this problem 
can be well handled by adapting AWA method 
to the activity of different regions. Specifically, 
at smooth areas the center sample in the moving 
window should be neglected to suppress subjectively 
annoying singularities, whereas in rough areas the 
center sample should be properly used. 

2. In the sense of PSNR the wavelet-based denoising 
outperforms the spatially denoising by about 0.5dB. 
This is mainly due to the energy compaction ability 
of wavelet transforms. Subjectively, the wavelet- 
based denoising methods preserve more details. 
The main problem with wavelet-based denoising 
methods are the ripple-like artifacts around edges. 
The wavelet-based AWA approach can effectively 
suppress the artifacts. 

3. Experimentally we find that properly combining the 
wavelet-based and spatially denoising results can fur- 
ther improve PSNR by about 0.5dB. Subjective per- 
formance of the combination result is also consider- 
ably improved. 
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(a) Original 

( c )  SDatial Lee (29.3dB) ~. . 

(e) Wavelet Lee (30.40dB) 

(g) Combined (31.28dB) 

(d) Spatial AWA (30.27dB) 

(0 Wavelet AWA (30.79dB) 

(h) Bayeshrink (30.5dB) 

Fig. 2. Denoising result for the third frame of the Missa 
sequence. (a) Noisy observation (PSNR=26dB), (b) Com- 
bined filtering (PSNR=36SdB) 

The average improvement of PSNR is above IOdB. Figure 
2 shows the denoising result of the third frame of Missa. 

6. REFERENCES 

[I] D.T. Kuan, A. A. Sawchuk,T. C .  Strand, andP. Chavel, 
“Adaptive noise smoothing filter for images with signal- 
dependent noise,” IEEE Trans. PAMI, vol. 7, pp. 165- 
177, 1985. 

[2] J. S. Lee, “Digital image enhancement and noise filter- 
ing by use of local statistics,,” IEEE Trans. PAMI, vol. 
2,pp. 165-168,1980. 

[3] S. G. Chang, B. Yu, and M. Vetterli, “Image denoising 
via lossy compression and wavelet thresholding,” IEEE 
Trans. IP, vol. 9, pp. 153246,2000. 

[4] S. G. Chang, B. Yu, and M. Vetterli, “Spatially adaptive 
wavelet thresholding with context modeling for image 
denoising,” IEEE Trans. IP, vol. 9, pp. 1522-31,2000. 

[ 5 ]  M. K. Mihcak, 1. Kozintsev, and K. Ramchandran, 
“Spatially adaptive statistical modeling of wavelet im- 
age coefficients and its application to denoising,” in 
Proc. IEEE ICASSP, SnowBird, 1999, pp. 3253-56. 

[6] 2. Azimifar, P. Fieguth, and E. Jemigan, “Wavelet 
shrinkage with correlated wavelet coefficients,” in Proc. 
IEEE ICIP, Greece, 2001, pp. 162-165. 

Fig. 1. Comparing the results of various methods. PSNRs 
are shown in the brackets. [7] M. K. Ozkan, M. I .  Sezan, and A. M. Tekalp, “Adap- 

tive motion compensated filtering of noisy image se- 
quences,” 
1993. 

IEEE Trans. CSVT, ;ol. 3, pp. 277-289, 

In the second experiment we apply AWA denoising 
methods to the image sequence Missa. TO filter image se- 
quences we use 3-D AWA method which is an extension 
of the proposed 2-D AWA method. We use simple block 
matching for motion estimation. The block size is 16 x 16. 
We observe that the 3-D AWA method can well adapt to 
the error of motion estimation and sudden scene change. 

[8] J. C. Brailean, R. P. Kleihorst, S .  Efstratiadis, A. K. Kat- 
saggelos, and R. L. Lagendijk, “Noise reduction filters 
for dynamic image sequences, a review,” Pmc. IEEE, 
vol. 83,pp. 1272-92, 1995. 

111 - 352 


