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Abstract

The features based on Markov random field (MRF) mod-
els are usually sensitive to the rotation of image textures.
This paper develops an anisotropic circular Gaussian MRF
(ACGMRF) model for modelling rotated image textures
and retrieving rotation-invariant texture features. To over-
come the singularity problem of the least squares esti-
mate (LSE) method, an approximate least squares estimate
(ALSE) method is proposed to estimate the parameters of
the ACGMRF model. The rotation-invariant features can be
obtained from the parameters of the ACGMRF model by the
one-dimensional (1-D) discrete Fourier transform (DFT).
Significantly improved accuracy can be achieved by apply-
ing the rotation-invariant features to classify SAR (synthetic
aperture radar) sea ice and Brodatz imagery.

1 Introduction

The development of reliable, robust methods for the con-
sistent classification of SAR (synthetic aperture radar) sea
ice imagery has been elusive, even though considerable ef-
fort has been made [1]. Tonal features and texture features
are two types of features commonly employed to identify
sea ice from SAR data. It is indicated [1] that texture fea-
tures are more suitable than tonal features for describing sea
ice image information. Among all kinds of texture features,
gray level co-occurrence texture features [2] are commonly
used for classification of SAR sea ice imagery. However,
this method is restricted since many parameters such as
quantization, orientation, displacement, window size, and
statistics must be set by the user.

A Markov random field (MRF) model [3] [4] is a pow-
erful tool to model the probability of spatial interactions in
an image and has been extensively applied to extract tex-
ture features for image classification. The application of
MRF models to SAR sea ice classification in the research
literature is recognized to be minimal. Given the success
of MRF models in other domains, the potential of apply-
ing MRF models to classify SAR sea ice imagery should be
better explored.

There are a number of signatures of SAR sea ice imagery
that can be well represented by MRF models. First, a ran-
dom nature often exists in all types of sea ice. Second,
sea ice shows directional information such as ridges, rub-
ble, rims and deformation due to compression forces [5].
Different sea ice types may have different combinations of
directional information in SAR data. The GMRF model is
able to describe directional information but the captured di-
rectional information is sensitive to image rotation which
is a common phenomenon in sea ice imagery. Within the
same SAR image, the same sea ice class may show any ro-
tation, depending on the look direction, wind, water current
and orientation to coast lines. Due to the rotation of sea ice,
directional information captured by the GMRF model is in-
consistent and thus leads to a poor performance of classi-
fication. Rotation-invariant features based on MRF models
should be developed to improve the performance of classi-
fying sea ice.

Some research has considered the frequency domain to
extract rotation-invariant features for image textures [6] [7]
[8]. Analysis of rotation-invariant features using filters
takes advantage of the filters’ ability to mimic properties
of the human visual system. However, the features obtained
through filtering cannot be used to re-generate the original
image texture, and filters should be carefully selected for
specific image data. Features based on MRF models can be
used to re-generate the original texture and take advantage
of characterizing random nature in natural images. A new
MRF model is therefore developed in this paper to extract
rotation-invariant features for texture classification.

The features based on MRF models are generally
rotation-variant [8]. Kashyap and Khotanzad [9] con-
structed an isotropic circular GMRF (ICGMRF) model to
extract rotation-invariant features. The ICGMRF model is
defined on a circular neighborhood system. The ICGMRF
model therefore discards directional information in the pos-
sibly non-isotropic textures [8]. To capture directional in-
formation, the ICGMRF model will be extended into an
anisotropic circular GMRF (ACGMRF) model in this pa-
per.

There is a problem for the ACGMRF model caused by
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the interpolation of the neighbors which are not on the rect-
angular grid. As the values of the interpolated neighbors are
highly correlated to the values of the nearby pixels which
are on the rectangular grid, a singular or nearly singular ma-
trix may occur when using the least squares estimate (LSE)
method [10] for parameter estimation. The estimation is un-
reliable when encountering the singular or nearly singular
matrix. This paper proposes an approximate least squares
estimate (ALSE) method to overcome the singularity prob-
lem. The ALSE method can achieve a very approximate
estimation to that provided by the LSE method.

The parameters of the ACGMRF model can then be con-
verted into a set of rotation-invariant features by the one-
dimensional discrete Fourier transform (1-D DFT) [11].
The use of the rotation-invariant features based on the
ACGMRF model can lead to significant improvement of
classifying both Brodatz textures and SAR sea ice imagery,
compared with the rotation-variant features based on the
GMRF model and the rotation-invariant features based on
the ICGMRF model.

2 Anisotropic Circular Gaussian
MRF Model

2.1 Isotropic Circular Gaussian MRF
(ICGMRF) Model

Three important concepts for MRF models are restated
here. Readers are referred to [3] [4] for details of MRF
models.

Definition1 Let S = {s = (i,j) |1 <i < H,1 <j <
W, i,j3, H,W € I} be the set of image lattice sites, where
H and W are the image height and width in pixels. A neigh-
borhood system N = { Ny, s € S} is a collection of subsets
of S for which s ¢ Ny andr € Ny; < s € N,.. N are the
neighbors of s.

In the two-dimensional image lattice S, the pixel values
x = {xs|s € S} are a realization of random variables X =
{X;|s € S}

Definition 2 A random field X is a Markov random field
(MRF) with respect to the neighborhood system N =
{Ns,s € S}iff

1. P(X =z) > 0forall x € ), where §) is the set of all
possible x on S;

2. P(X; = 25| Xy = zp,r # 5) = P(Xs = 25| X, =
Ty, € Nj).

A typical MRF model is the Gaussian MRF (GMRF)
model [12] which is widely used for modelling image tex-
tures. The GMRF model is also a stationary noncausal 2-
dimensional autoregressive process which is described by

the following difference equation:

s = Z ﬁrl‘s+r + vs, (1)
s+rENs
where r is the relative position with respect to the central
pixel s, and {v,} is a stationary Gaussian noise sequence
with zero mean and the autocorrelation given by

a’ ifr = (0,0)
E(vsvsyr) =< —0?B, ifr#(0,0)ands+r €N, (2)
0 otherwise

By is the parameter describing directional information be-
tween pixels 254, and 5. All 3, in the neighborhood sys-
tem N, forms the parameter vector § = {3,|s + r € N,}.

The property of the neighborhood system N, is deter-
mined by its order and structure. The order of N, deter-
mines the spatial range of the neighborhood. Note that the
definition of the order of IV in [4] is not consistent with the
commonly used diagram shown in Fig. 1(a). A modification
can be made as follows.

Definition 3 (modified) A n-th order neighborhood sys-
tem is N? = {s+ 7 |s+7r € N;,|r|?> < F[n]}, where |r|
denotes the Euclidian distance between sites s and s + r,
F[n] is a member of a set of all possible integers in ascend-
ing order defined as F = {F[n]| F[n] = i + j%,i,j €
Li+j>0,F[k]>F[if k>1}.

The structure of the neighborhood system N ¢ determines
the spatial distribution of neighbors in the neighborhood.
For the parameter vector 3, its dimensionality and inher-
ent directionality are therefore dependent on the order n to-
gether with the structure of the neighborhood system /V .

A rectangular grid is generally used as the structure of
the neighborhood system /N4 in a GMRF model [3] [4] [10].
Such a neighborhood system is referred to as a rectangular
neighborhood (RN) system in this paper. Fig. 1(a) shows an
RN system in different orders. The shape of the RN system
changes when it is rotated by any angle except the multiples
of % radians. A rotation of an RN system may therefore
generate a different spatial distribution of neighbors with
respect to that by the RN system.

Kashyap and Khotanzad [9] proposed for the GMRF
model a circular neighborhood (CN) system which can
achieve a rotation-invariant spatial distribution of neighbors.
All neighbors in a CN system are located on concentric cir-
cles. A CN system used by Kashyap and Khotanzad [9] is
shown in Fig. 1(b). The values of the neighbors that are not
located on the image grid are interpolated by the bilinear
interpolation method.

Kashyap and Khotanzad [9] further restricted the param-
eter 3, to be the same value if s + r is located in the same
concentric circle. Eqn. (1) is changed to:

Ts = ZBA Z Ty | + Vs, (3)
k=1

|7|=k,s+r€EN;
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Figure 1: (a) The fifth-order rectangular neighborhood system.
(b) The first-order circular neighborhood system. r = 1 is the
radius of the circle. (c) The third-order and 16-orientation circular
neighborhood system. The number 3.z denotes the z-th neighbor
on the third concentric circle.

This GMRF model is referred to as an isotropic circular
GMRF (ICGMRF) model in this paper.

Although the features based on the parameter § =
{Bk,k = 1,...,n} are rotation-invariant, their limitation of
modelling textures is obvious as textures do not necessarily
have isotropic neighbors but anisotropic neighbors that can
be reflected as directional information [8].

2.2 Anisotropic Circular Gaussian MRF
(ACGMRF) Model

Definition 4 A n-th order circular neighborhood (CN)
system is ON” = {s+r||r| = k,0 < k < n,k € I}.
All neighbors in the same concentric circle are evenly dis-
tributed, and the number of neighbors in different circles is
the same.

According to this definition, the CN system used by
Kashyap and Khotanzad [9] is the first order CN system
CN i An angle interval between two nearest neighbors in
the same concentric circle is defined as 6 = 27”, where T is
the number of neighbors in one concentric circle in the CN
system. The third-order CN system with 16 orientations is
shown in Fig. 1(c). It can be seen that a C’Ni has a sim-
ilar spatial distribution of neighbors as the ninth-order RN
system.

The GMRF model defined in the n-th order CN system
C N, has the following difference equation:

s = Z ﬁrms-H’ + Vs, (4)

s+reCNy

As the parameter 3, may be different for different circular
neighbors, this model is referred to as an anisotropic circu-
lar GMRF (ACGMRF) model.

3 Parameter Estimation

3.1 Approximate Least Squares Estimate

Due to its computation efficiency, the least squares es-
timate (LSE) method has been commonly accepted to es-
timate the parameters of GMRF models [10]. Define a
quadratic difference () between the central pixel x s and its
neighbors in the ACGMRF model:

2

Q = Z Ts — Z /BTZ'8+7‘ . ©)

s+reCNY

The least squares estimate of /3, is [10]:

1
8= [ZZSZE] Zsts

where Z; = col{zs4r | s+7 € CNL}

However, the above solution may encounter a singularity
problem when 7 x n is larger than the number of neigh-
bors in the rectangular grid. This is because the interpolated
values of the neighbors that are not located on the grid are
highly correlated to the values of the neighbors that are lo-
cated on the grid. The estimate is unreliable when encoun-
tering a singular or near singular matrix. Using uncorrelated
data can overcome the singularity problem. For this pur-
pose, the parameters of the ACGMRF model can be divided
into a number of groups and then estimated separately.

Denote the set of all parameters of the n-th order
ACGMRF model by = {8, | s +r € CN},Vs}. B can
be divided into m groups: #', 52, --, ™. Each group 3*
describes a corresponding group of neighbors in CN 7, de-
noted by (C’N?)k. The parameter groups 31, 32,---, 3™
should satisty the following conditions:

1. 8% = {BF | BF = B, s4+1r € (CN™)*Y, where1 <k <m
and k € 1.
2. " ;ﬁ@and,@kﬂﬁk, =0,forl1 <k,k <mandk #Fk.

3.8 UBU--Us™ =8

) Q)

The groups of pixel values zcne = {Ts4r|s + 7 €
CN?} corresponding to 81, 3%,---, 8™ are denoted by
1 2 k — [k EoZ
ToNm s TENm s 5 Tdyn, Where Téyn = {zg, |2y, =

Toprys+1 € (CNFY.

Based on taking partial derivative of the quadratic differ-
ence @ (for succinctness, the details are not shown), two ap-
proximate leat squares estimation method can be obtained.

The first approximate least squares estimate (ALSE)
method can be designed as:

-1
B = [Z Zi"(Zf)T] [Z Z;“xs] : @)
where Z¥ = col{zs;, | s+r € (C’N’;)L} and1 <k <m.

The second approximate least squares estimate (ALSE)
method can be designed as:
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1. For estimating the first group of parameters ',
= [Z 2(23)" [Z Zixs] ®

2. For estimating the k-th group of parameters 8%, where 1 <
k < m,

BF = [Z Zf(Zf)T] [Z Z¥ (), +a:s)] )]

C (b — 3 B o).

Experimental results indicate that the second ALSE
method has a more approximate least squares estimate than
the first ALSE method. The second ALSE method is there-
fore used for the experiments in this paper. The follow-
ing rules are adopted in this paper to divide the parameters
of the ACGMRF model into different groups for the ALSE
method.

-1

where z!, =

1. The parameters for the neighbors on different concentric cir-
cles should be divided into different groups.

2. A basic number of parameters for the n-th concentric circle
is set to the number of pixels on the border of the nearest
rectangular grid. When the number of parameters on the
n-th concentric circle exceeds the basic number of the n-th
concentric circle, these parameters should be separated into
different groups.

3. The angle intervals 0 between the nearest neighbors in a
group should be the same.

4. The parameters on a lower-order concentric circle should be
estimated before those on a higher-order concentric circle.

3.2 Rotation-Invariant Features

The parameters of the ACGMRF model form a one-
dimensional (1-D) vector by an order of each parameter re-
garding its location in the CN system (see Fig. 1(c)). A
rotation of the circular neighborhood is therefore equiva-
lent to shifting the 1-D parameter vector [11]. The 1-D dis-
crete Fourier transform (1-D DFT) can be applied to the 1-
D parameter vector and obtain a magnitude vector of the
DFT coefficients. The magnitude vector corresponding to a
shifted vector remains unchanged with respect to the magni-
tude vector corresponding to the original vector. The mag-
nitude vector corresponding to the 1-D parameter vector is
therefore a set of rotation-invariant features. Note that the
number of non-zero and non-redundant components in the
magnitude vector is much smaller than the total dimensions
of the magnitude vector. For a symmetric ACGMRF model
(which is implemented in experiments of this paper), the
number of non-zero and non-redundant components of the
magnitude vector is not greater than 25T + 1, as the values
of the 1-D parameter vector are real and symmetric.

4 Experimental Results

4.1 Synthesis of Rotated Image Textures

There are two objectives for this texture synthesis exper-
iment. One is to verify that the ALSE method is able to
estimate the parameters of the ACGMRF model. Another
is to verify that a rotation of the circular neighborhood sys-
tem, which corresponds to a shift of the parameter vector,
will accordingly generate a rotated image texture.

The raffia texture (D084) in the Brodatz database [13]
is selected as the original texture. The ALSE method is
used to estimate a set of parameters of the third-order and
16-orientation ACGMRF model. Five angles (0, g, 7, %’r
and 7 radians) are used to rotate the circular neighborhood
system in the counterclockwise direction, and five sets of
shifted parameter vectors for each rotated texture are gen-
erated accordingly. The Metropolis sampling method [4] is
employed for texture synthesis. The results are shown in
Fig. 2.

Figure 2: Texture synthesis based on the ACGMRF model by
rotating its CN system. (a) Original texture (D084); (b)-(f) are
synthesized textures with the parameters rotated 0, %, T %", and
5 radians respectively.

Fig. 2(b) shows both horizontal and vertical directional
information similar with that in the original texture (Fig.
2(a)). Figs. 2(c), (d), (e) and (f) are the synthesized textures
using the parameters whose circular neighborhood system
is rotated %, %, 3% and g radians respectively. These tex-
tures display the corresponding rotated directional informa-
tion with respect to the original texture.

4.2 Classification Methodology

A supervised classification scheme is employed for the
classification experiments in this paper. First, all image tex-
ture samples are separated into two sets: one set for training,
another set for testing. Second, a set of rotation-invariant
features based on the ACGMRF model is extracted from
each image texture sample, denoted by f; = {fjx|1 < k <
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X2 + 1} for the j-th sample. Third, the mean of the train-
ing sets of rotation-invariant features of each texture class
is used to represent the feature of the texture class, denoted
by i = {par = mzﬁeﬁfﬂc [1<k S n 41}
for the i-th texture class whose feature set is f*; Fourth, the
distance proposed in [9] is used in this paper as the metric
to measure the difference between two textures:

i = arg; min {D(fj,ps),i = 1,2,---,n}, (10)
where D(fj, ;) = ,C:Tlﬂ‘f"ka;k“““‘, and o =

std{ fji, forall j} is the standard deviation of the k-th
rotation-invariant feature component over the entire train-
ing data and functions as a normalization constant.

An error matrix is produced when classifying the test
data. Kappa (k) coefficients and associated confidence in-
tervals (o) are commonly used to evaluate each error matrix
[14]. When two error matrices are compared, the following
test statistic can be used to determine a significance value
(using a significance level of 5%):

K1 — R2
b

2 2
Vot o3

where the k coefficient is defined as x =
NY T Xu—p o Xiy Xy
W XX,
classes, X;; is the ith value on the error matrix diagonal;
X+ and X4, are the marginal sums of rows and columns
respectively, and [NV is the total number of samples.

Z ~ an

, where M 1is the number of

4.3 C(Classification of Brodatz Textures

The imagery of Brodatz textures [13] is commonly used
as a set of test data for the generic texture interpretation re-
search. Each Brodatz sample is assumed to contain only
one class, however, this cannot be guaranteed for remote
sensing data. Twelve Brodatz textures are selected for clas-
sification. Each Brodatz texture has 256 x 256 pixels. These
Brodatz textures include regular textures, i.e. D006 (wire),
DO11 (woolen cloth), D019 (woven cloth), D021 (French
canvas), D052 (oriental shaw cloth), D079 (oriented grass-
fiber cloth), D095 (brick wall) and non-regular textures, i.e.
D029 (sand), D036 (lizard skin), D037 (water), D084 (raf-
fia), D087 (fossilized sea fan).

Twelve rotated images are generated from each texture
by rotating the texture with twelve angles (0, 75, %, T %,
2, 5. 5. 2%, 3, 5% and LT radians). Only the central
128 x 128 regions in the twelve rotated images are used to
comprise the data set for classification. Each 128 x 128
rotated image is further segmented into sixteen 32 x 32
non-overlapped subimages as the basic texture samples to
be classified. Then a set of rotation-invariant features is
extracted from each subimage modelled by the third-order
and 24-orientation ACGMRF model. By the classification

Table 1: Classification accuracy rates (%) over twelve Brodatz tex-
tures by the features of the ACGMRF model, the GMRF model and the
ICGMRF model. Each class of texture has 192 samples.

Texture Name | ACGMRF | GMRF | ICGMRF
D006 82.29 37.50 77.08
D011 81.25 42.71 56.25
D019 87.50 44.79 54.17
D021 81.25 31.25 61.46
D029 75.00 34.38 55.21
D036 84.38 13.54 4479
D037 88.54 2292 34.38
D052 78.13 48.96 37.50
D079 82.29 12.50 53.15
D084 73.96 09.38 54.17
D087 82.29 36.46 4479
D095 88.54 11.46 65.63

Average 82.12 28.82 5321

Table 2: Kappa coefficients (x) and associated confidence intervals (o)
for the classification of twelve Brodatz textures by the features of the
ACGMRF model, the GMRF model and the ICGMRF model.

ACGMRF | GMRF | ICGMRF
K 0.7992 | 0.1916 0.5244
o 0.0094 | 0.0106 0.0121

scheme in Eqn. (10), the testing subimages will be classified
into one of the twelve texture classes.

Comparative experiments are conducted by using the
fourth-order GMREF features (the determination of the or-
der of a GMRF model is based on the method in [10]) and
the third-order ICGMRF model features. The result shows
that the classification accuracy rate by the rotation-invariant
features of the ACGMRF model is improved about 30 per-
centage points with respect to that by the features of the
third-order ICGMRF model and more than 50 percentage
points with respect to that by the features of the fourth-order
GMRF model. The classification accuracy rates by these
methods are listed in Table 1. The significant improvement
of classification accuracy by the ACGMRF model with re-
spect to the ICGMRF/GMRF model is also demonstrated
by the statistic test of the data in Table 2.

4.4 Classification of SAR Sea Ice Imagery

This experiment uses two scenes of C-band HH Radarsat
ScanSAR data covering the Gulf of St. Lawrence. One
scene was captured on February 19th, 1997; another scene
was captured on February 12th, 1999. The incidence angles
are between 20 and 49 degrees when capturing both scenes
and the pixel spacing is 100m.

The images of different ice types are extracted from the
two scenes. Here, each image should contain only one ice
type or at least one ice type dominating the image region. A
total of 20 images are extracted to contain new ice and first-
year ice. Each image is further segmented into a number of
32 x 32 non-overlapped subimages as the basic ice samples
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Table 3: Classification rates (%) over SAR data by the features of the
ACGMRF model, the GMRF model and the ICGMRF model.

Ice Type Samples | ACGMRF | GMRF | ICGMRF
New ice 398 95.22 58.81 55.82
First-year ice 440 85.41 71.57 77.03

Table 4: Kappa coefficients (k) and associated confidence intervals (o)
for the classification of SAR data by the features of the ACGMRF model,
the GMRF model and the ICGMRF model.

ACGMRF | GMRF | ICGMRF
K 0.8020 | 0.3666 0.3314
o 0.0225 0.0353 0.0358

to be classified. A total of 398 new ice samples and 440
first-year ice samples comprise the test data.

The third-order and 24-orientation ACGMRF model, the
fourth-order GMRF model and the third-order ICGMRF
model are applied to these ice samples to extract three sets
of texture features. The classification results based on these
features are listed in Table 3. The classification accuracy
rate of the new ice by the ACGMRF model is improved
more than 30 percentage points with respect to those by the
GMRF model and the ICGMRF model. One reason is that
strong directional information exists in the new ice samples;
another reason is that the new ice images have randomly
rotated positions mostly due to the water current and the
pressure from nearby land or other ices. There are about
8 percentage points improved by the ACGMRF model for
the first-year ice with respect to the GMRF model. This
moderate improvement is rational since the first-year ice im-
ages do not show strong directional information but much
stronger random information. The significant improvement
of classification accuracy by the ACGMRF model with re-
spect to the ICGMRF/GMRF model is also demonstrated
by the statistic test of the data in Table 4.

5 Conclusion

An anisotropic circular GMRF (ACGMRF) model is
developed by extending the isotropic circular GMRF
(ICGMRF) model to model the textures with directional
information. To overcome the singularity problem for the
least squares estimate method, an approximate least squares
estimate method is proposed in the paper. By using the one-
dimensional DFT, the parameters of the ACGMRF model
can be converted into a set of rotation-invariant features. Ex-
perimental results indicate that a significant improvement of
classification accuracy is achieved by the ACGMRF model
with respect to the ICGMRF model or the GMRF model.
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