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Abstract

Feature extraction of segmented skin lesions is a pivotal step for implementing accurate
decision support systems. Existing feature sets combine many ad-hoc calculations and are
unable to easily provide intuitive diagnostic reasoning. This thesis presents the design
and evaluation of a set of features for objectively detecting melanoma in an intuitive and
accurate manner. We call these “high-level intuitive features” (HLIFs).

The current clinical standard for detecting melanoma, the deadliest form of skin cancer,
is visual inspection of the skin’s surface. A widely adopted rule for detecting melanoma
is the “ABCD” rule, whereby the doctor identifies the presence of Asymmetry, Border
irregularity, Colour patterns, and Diameter. The adoption of specialized medical devices
for this cause is extremely slow due to the added temporal and financial burden. Therefore,
recent research efforts have focused on detection support systems that analyse images
acquired with standard consumer-grade camera images of skin lesions. The central benefit
of these systems is the provision of technology with low barriers to adoption. Recently
proposed skin lesion feature sets have been large sets of low-level features attempting to
model the widely adopted ABCD criteria of melanoma. These result in high-dimensional
feature spaces, which are computationally expensive and sparse due to the lack of available
clinical data. It is difficult to convey diagnostic rationale using these feature sets due to
their inherent ad-hoc mathematical nature.

This thesis presents and applies a generic framework for designing HLIFs for decision
support systems relying on intuitive observations. By definition, a HLIF is designed explic-
itly to model a human-observable characteristic such that the feature score can be intuited
by the user. Thus, along with the classification label, visual rationale can be provided to
further support the prediction. This thesis applies the HLIF framework to design 10 HLIFs
for skin cancer detection, following the ABCD rule. That is, HLIFs modeling asymmetry,
border irregularity, and colour patterns are presented.

This thesis evaluates the effectiveness of HLIFs in a standard classification setting.
Using publicly-available images obtained in unconstrained environments, the set of HLIFs
is compared with and against a recently published low-level feature set. Since the focus
is on evaluating the features, illumination correction and manually-defined segmentations
are used, along with a linear classification scheme. The promising results indicate that
HLIFs capture more relevant information than low-level features, and that concatenating
the HLIFs to the low-level feature set results in improved accuracy metrics. Visual intuitive
information is provided to indicate the ability of providing intuitive diagnostic reasoning
to the user.
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Chapter 1

Introduction

This thesis presents a set of intuitive features for describing the malignant nature of seg-
mented skin lesion images obtained using consumer-grade cameras. A general framework
for designing high-level intuitive features (HLIFs) from which the diagnostic rationale can
be relayed to the doctor in an intuitive manner is also presented. The proposed set of skin
lesion features follows this framework.

1.1 What Is Melanoma?

Melanoma is the deadliest form of skin cancer [1]. In a report published in 2000, the World
Health Organization (WHO) estimated that approximately 65,000 global deaths related
to melanoma occurred that year [2]. If caught early, a simple extraction of the cancerous
tissue can completely cure the patient of melanoma. However, if identified late, the cancer
can spread and the prognosis is bleak.

In North America, melanoma cases are typically identified by a dermatologist or by a
pathologist (given a biopsy by the dermatologist). Referral to a dermatologist is usually
issued by a general practitioner from a visual identification of an abnormal lesion. Fur-
thermore, dermatologists usually employ naked-eye examination for determining malignant
lesions, sometimes with the aid of a dermatoscope [3]. A dermatoscope is an optical device
used by some dermatologists to magnify and enhance skin structure while mitigating skin
surface reflection. In either case, melanoma detection is performed according to a visual
examination.
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Unfortunately, several factors make it difficult to visually identify melanoma. During
its early to mid stages, melanoma can be very similar in appearance to benign dysplastic
nevi (i.e., “moles”) to the naked eye. Melanoma can also be observed in many shapes and
forms, making it even more difficult to correctly identify a new lesion as a melanoma. As
we will see in Chapter 2, identifying melanoma as early as possible is crucial to patient
prognosis. Furthermore, although it causes 75% of all skin-cancer related deaths [2], only
5% of skin cancer cases are reported as melanoma [4]. Paired with its varying appearances,
many of which look similar to a benign dysplastic nevus (i.e., “mole”), this low incidence
rate makes it challenging to precisely identify all melanoma cases while maintaining a
realistic true negative (i.e., benign) diagnostic rate.

1.2 What Is Being Done?

There has been a number of decision support systems proposed in the literature. The
typical “black box” model of these systems is to receive an image of a skin lesion and
output whether the lesion is suspected to be malignant or benign. An important part of
this analysis (and consequently the main topic of this thesis) is feature extraction, whereby
predetermined calculations are performed using the image to represent the visual informa-
tion as a set of real numbers. This set is often called the feature vector. The performance
of the classification is highly dependent on the success of feature extraction.

1.2.1 Problem 1: Dermoscopic Images

Most of the research literature proposes methods of identifying melanoma given a dermo-
scopic image that has been obtained using a digital dermatoscope. These devices produce
very “clean” images that are clear of skin surface reflection and elucidate skin surface struc-
ture. However, there are two inherent issues with these systems. First, a recent survey has
found that only 48% of respondents from fellows of the American Academy of Dermatol-
ogy reported that they use dermatoscopes to assess skin lesions [3]. It was not specified
how many were digital dermatoscope users (i.e., use a dermatoscope that can capture an
image), however it can be postulated that fewer still use such devices. These findings limit
the scope of methods that use such images. Second, methods using dermoscopy images are
restricted to professional dermatology settings, as patients and general practitioners are
unlikely to possess such a specialized device.
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1.2.2 Problem 2: Low-Level Features

The majority of existing work has focused on large sets of low-level features. These are
calculations that have not been designed to model a particular observable characteristic,
but rather are used en masse in an attempt to capture some high-level characteristic. This
trend may be due to the focus on preprocessing and segmentation techniques rather than
feature extraction techniques. These highly-dimensional feature spaces become especially
problematic when working with the small data sets that are available to the scientific
community. Overfitting and the lack of statistical validity are major concerns in sparse
feature spaces.

1.2.3 Problem 3: Gaining the Doctor’s Trust

To the best of the author’s knowledge, the output of existing skin cancer decision support
systems is either a binary or probabilistic classification of malignancy. However, a single
label may not be enough to gain the trust of the doctor using the system, especially given
the critical nature of the problem. No matter how sophisticated or accurate a system may
be, it may be rejected in the absence of user trust [5]. System credibility has received
significant attention in human-computer interaction research [6]; however these ideals have
not been explicitly introduced to melanoma decision support system research.

1.3 Solution – Thesis Contributions

This thesis presents a set of high-level intuitive features (HLIFs) which can capture specific
high-level information and provide intuitive diagnostic rationale to the user with the goal of
increasing system credibility and strengthening the user-system trust. The design rationale
of each feature is given so that the feature can be easily interpreted and relayed to the
doctor in a dermatology setting. Ideally, a decision support system incorporating these
HLIFs can be issued to patients, general practitioners, and dermatologists who do not use
a digital dermatoscope in their clinical setup. The barrier to adoption is minimal, since
standard camera images are analysed. For the system to be valid under the unconstrained
image acquisition environments, the features have been designed to be resistant to changes
in resolution, camera quality, and lighting conditions.
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1.4 Thesis Outline

The remainder of this thesis is organized as follows. Chapter 2 provides relevant back-
ground information needed to understand the relevancy of this thesis’ contribution. Chap-
ter 3 presents the framework for designing HLIFs, and Chapter 4 presents the design and
calculation of 10 HLIFs for describing skin lesion images using this framework. Chapter 5
provides experimental results and discussions by combining and comparing the proposed
features with a state-of-the-art low-level feature set using standard consumer-grade camera
images. Conclusions are drawn and recommended future work is given in Chapter 6.
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Chapter 2

Background

The following sections contain background information relevant to understanding the re-
mainder of this thesis. A brief overview of melanoma’s global impact is given, followed by a
brief overview of skin anatomy relevant to understanding the different stages of melanoma.
Current clinical and computer methods for detecting melanoma are given, with an em-
phasis on work related to this thesis. Image processing research tools used throughout
this thesis are explained, with links to the sections in which they are used. The section
concludes with a final note on the current trend in diagnostic smartphone apps.

2.1 Melanoma and the Skin

A brief overview of melanoma and how it relates to skin anatomy is presented in the
following subsections.

2.1.1 Prevalence

Although melanoma causes 75% of all skin-cancer related deaths [1], only 5% of all diag-
nosed skin cancer cases are melanoma [4], and has many different surface-level appearances,
many of which appear similar to benign lesions. These factors make it difficult to accu-
rately identify malignant melanoma cases while maintaining a reasonable true negative
rate.

Patient prognosis is highly dependent on the stage in which the melanoma is identified.
Upon suspicion of a malignant lesion, the standard treatment involves physically excising
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Figure 2.1: Simple anatomy of the skin1

the cancerous tissue. Reported five-year survival rates are 98% if melanoma is caught in
situ (i.e., it has not spread), 62% if it has spread to regional organs, and a dismal 15% if
it has spread to distant organs [4].

Although melanoma may metastasize areas other than the skin (e.g., eye, intestines),
in the literature the term “melanoma” is usually indicative of cutaneous melanoma — that
is, melanoma of the skin.

2.1.2 Skin Anatomy Overview

This section presents a brief overview of the anatomy of skin. The overview is constrained to
identifying important high-level concepts pertaining to the onset and growth of melanoma.
Detailed scientific skin anatomy and physiology is out of the scope of this thesis, though
one can turn to a histology textbook for such information (e.g., [7]). Much of the material
presented in this section is summarized from [7].

Skin Layers

Human skin is composed of two layers (see Figure 2.1): epidermis and dermis. Below the
dermis lies the hypodermis, an integumentary layer which is important for understanding

1http://www.cancer.gov/cancertopics/pdq/treatment/melanoma/Patient/page1
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Figure 2.2: Visual depiction of melanoma growth2

melanoma.

The epidermis is the outermost layer of the skin. In many ways, it provides a protective
barrier to and from the body. Melanocytes are situated at the bottom of the epidermis,
and in the presence of ultraviolet (UV) radiation produce the pigment melanin (see below).

The dermis is much thicker and tougher than the epidermis in most areas of the body.
Among its many contents are blood vessels, which circulate and replenish cells in the
dermis and epidermis, and lymphatic vessels. It is through these vessels that melanoma
can spread during the vertical growth phase (see Section 2.1.3).

The hypodermis (a.k.a. subcutaneous tissue, subcutis) acts as the interface between our
skin and the rest of our body. It attaches the skin to bone and muscle, and provides a
medium for larger blood and lymphatic vessels.

Melanin and Melanocytes

Melanocytes and melanin are important components to understanding melanoma. Mela-
nocytes are cells located at the bottom of the epidermis (see Figure 2.1). In the presence of
UV light, melanocytes produce melanin through a process called melanogenesis. Melanin
is the pigment that determines a person’s skin colour, including the effects of a “tan”.
Melanin has a large absorption band in the UV range of the electromagnetic (EM) spec-
trum [8], thus restricting the entry of damaging UV radiation into the hypodermis. UV

2http://www.nzmu.co.nz/What Is Melanoma 25.aspx

7



exposure has been linked to DNA photodamage, which can lead to cancerous replication
of melanocytes, leading to melanoma (see Figure 2.2).

2.1.3 Growth Phases

The course of melanoma generally follows two growth phases [9]:

1. Radial growth phase (RGP)

2. Vertical growth phase (VGP)

The RGP usually precedes VGP. During the RGP, tumour cells spread outward in a ra-
dial fashion throughout the epidermis. At this point, melanocytes and melanin are still
restricted to the epidermis (i.e., the cancer has not metastasized), so it is deemed “in situ”.
For optimal prognosis, melanoma should be caught early during its radial growth phase,
before the cancer enters a metastatic VGP.

During the VGP, melanocytes invade deeper into the dermis, and may spread to sur-
rounding tissues via metastatic events. This spread to remote tissues is very dangerous,
as the cancer can grow in many different parts of the body. As with most cancers, once
it has spread to many areas, is it very difficult to localize and stop the transport of the
cancerous cells. Lesions undergoing vertical growth usually appear on the surface as a
bump, or nodule. This is especially common in nodular melanoma. As the VGP is the
most dangerous one, such lesions should be addressed immediately.

2.1.4 Types of Melanoma

There are four primary types of cutaneous melanoma [9]: superficial spreading melanoma,
nodular melanoma, lentigo maligna melanoma, and acral lentiginous melanoma. Each type
of melanoma encompasses its own set of characteristics that are apparent from the lesion’s
growth pattern. Refer to Table 2.1 for a synopsis of the various types of melanoma.

2.2 Diagnosing Melanoma Clinically

There are several phases leading up to definitive melanoma diagnosis. A brief overview re-
garding how melanoma is traditionally diagnosed in North America is given in the following
subsections.
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Table 2.1: Types of melanoma

Type of Melanoma Relative Frequency Description

Superficial Spreading Melanoma 70% very irregular pigmenta-
tion; usually evolves from
dysplastic nevus; charac-
terized by radial growth

Nodular Melanoma 10–15% rapid vertical growth; may
appear where a lesion did
not previously exist; most
symmetric and uniform
melanoma

Lentigo Maligna Melanoma 10–15% often large; may have areas
of hypopigmentation; typi-
cally found in sun-exposed
areas

Acral Lentiginous Melanoma 5% found in palms, soles, sub-
ungual areas; rapid pro-
gression from radial to ver-
tical growth

9



2.2.1 Clinical Workflow

The typical way in which melanoma is identified and treated in North American is a multi-
step process. Adults are encouraged to visit a general practitioner (GP) annually for a full
physical analysis. During this time, the GP should visually check the entire body for any
skin lesions that did not previously exist. This check can also be done by the patient on
their own time, although an untrained person may neglect small subtle signs of growing
melanoma, and may not be able to analyse their entire body effectively. If a suspicious
lesion is identified, the GP will refer the patient to see a dermatologist, who specializes in
matters of the skin. The dermatologist will usually visually analyse the skin lesion either
with the naked eye, or with a dermatoscope (see Section 2.2.3). If the lesion is suspect of
being melanoma, the dermatologist will excise around the lesion, and may send a biopsy
to a pathologist, who can diagnose if it is indeed melanoma, as well as the specific type,
using histopathological methods. In severe cases where the melanoma may have spread to
remote tissues, more intense treatment may be administered, including chemotherapy and
lymphadenectomy (removal of lymph nodes).

2.2.2 The ABCDs of Melanoma

Although several visual metrics exist for identifying melanoma, one of the most widely used
ones is the ABCD metric [10, 11]. In this analysis, dermatologists attempt to identify:

• Asymmetry (of colour and structure)

• Border irregularity

• Colour

• Diameter

The original weighting scheme [10, 11] is as follows. Note that utilisation methods are
very subjective and can vary from doctor to doctor.

Asymmetry Asymmetry is determined with respect to both colour and structure pat-
terns. Two orthogonal axes are determined by the dermatologist which produce the small-
est amount of visual asymmetry. A score of 1 is assigned to each axis if it produced
asymmetry, and 0 otherwise. The final score is calculated as the sum of the two axis
scores. Thus, the final asymmetry score yields A ∈ {0, 1, 2}.
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Border irregularity Irregularity with respect to shape and pigmentation is identified
along the border. The lesion is visually split into eight radial segments, each of the same
size, according to eight axes at 45◦ intervals. A score of 1 is assigned to each segment if it
portrays border irregularity, and 0 otherwise. The final score is calculated as the sum of
the axis scores. Thus, the final border irregularity score yields B ∈ {0, 1, 2, . . . , 8}.

Colour Particular colours have been historically observed in melanomas. This colour
distribution is easily identified using a dermatoscope (see Section 2.2.3). The number
of unique colours in the lesion is identified and counted. Possible colours include white,
red, light/dark brown, blue-gray, and black pigments. Thus, the final colour score yields
C ∈ {1, 2, . . . , 6}.

Diameter If the lesion is more than six millimetres in diameter, it is highly likely to be
melanoma. This large radius is a by-product of the radial growth phase (see Section 2.1.3).

2.2.3 Equipment

The identification of cutaneous melanoma is a very visual process. Many dermatolo-
gists simply look at the area of interest on the skin and identify certain characteristics
based on naked-eye observation. In fact, people are encouraged to routinely perform self-
administered skin exams to spot any abnormal or new growths. However, some clinics use
medical equipment to complement or augment the visual process. The most widely used
equipment is briefly discussed here. A good review on existing technologies can be found
in [12].

Dermoscopy [13] (also known as epiluminescence microscopy (ELM) or dermatoscopy)
involves the use of a dermatoscope. A dermatoscope is a handheld optical tool used by some
dermatologists. Although specific functions vary between models, most dermatoscopes are
capable of magnification and, perhaps more importantly, discarding skin surface reflectance
to elucidate sub-surface structures. This is usually done by applying dermoscopic oil to
the skin, or by cross-polarization of the reflected light. Unfortunately, the clinical use
of dermatoscopes is limited in North America, with one survey reporting less than 50%
utilisation in the USA [3].

Multi-spectral imaging has seen some recent activity in skin cancer detection [14]. These
imaging techniques detect the reflectance characteristics at different bands of the EM
spectrum. This information can be used knowing the skin’s EM absorption, transmittance,
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and reflectance spectra. By analysing the reflectance at multiple frequencies, non-visible
information be inferred. For example, melanin, hemoglobin and collagen densities can be
estimated [15, 16, 17]. Multi-spectral imaging devices can provide pertinent information
that may not be directly visible. This advantage has led to the development of several
commercial medical devices, such as Verisante Aura [18] and MelaFind [19].

Optical coherence tomography (OCT) [20] is based on interferometry, producing cross-
sectional images (i.e., image “slices” of a certain thickness). OCT is widely used to examine
retina (found in the eye) integrity, and feasibility studies are currently being performed
for skin lesion diagnosis [21, 22]. Skin OCT devices can penetrate deep into the epidermis
and the top of the dermis (see Section 2.1.2), elucidating vertical growth. However its
resolution does not allow for analysis on the cellular level [14]. OCT is particularly useful
for determining the depth of melanoma penetration, which is indicative of vertical growth
(see Section 2.1.3).

2.3 Detecting Melanoma Automatically

Decision support systems for detecting melanoma generally follow the workflow outlined
in Figure 2.3. Each stage is explained in the following subsections, along with a brief
literature overview of existing methods relevant to this thesis. The contribution of this
thesis relates to feature extraction, which is explained in Section 2.3.3.

2.3.1 Preprocessing

In skin cancer decision support systems, preprocessing involves illumination correction.
Since the images are obtained in a natural setting, the illumination across the image is
privy to factors such as natural lighting, office lighting, and camera flash. The goal of
illumination correction is to adjust the original image data (i.e., pixel values) to standardize
the lighting exposure across the entire image. This increases the reliability of the following
steps, which depend on pixel values. Figure 2.4 presents a visual example of the effect of
preprocessing using [23].

Illumination correction is important for the accuracy of features that rely on pixel
values. Thus, preprocessing was a necessary step when validating the work embodied in
this thesis. We used the illumination correction from [23] prior to feature extraction.
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Figure 2.3: Classical skin cancer decision support system workflow. This thesis addresses
the “feature extraction” step.
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(a) Original image (b) Image after preprocessing
using [23]

Figure 2.4: Example of illumination correction during the preprocessing step. Notice how
the preprocessed image is affected by non-uniform lighting. Preprocessing attempts to
correct for this non-uniform lighting distribution using the existing pixel values.

Figure 2.5: Example segmentation of a pigmented skin lesion. The segmentation separates
the skin lesion from the surrounding healthy tissue.

2.3.2 Segmentation

Segmentation [24] is the process of characterising the image’s pixels into semantic groups.
In the case of skin lesion analysis, segmentation involves determining the border that sep-
arates the skin lesion from the surrounding healthy tissue. The result is a binary mask
outlining the skin lesion. Figure 2.5 presents a visual example of ground-truth segmenta-
tion.

For skin lesion analysis, a segmentation algorithm will at best match a manually-defined
segmentation. Our data set (discussed further in Section 5.1) comprises images that have
been manually segmented and are used for feature extraction. Therefore, segmentation is
not discussed further in this thesis.
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2.3.3 Feature Extraction

Feature extraction [24] involves performing specific pre-defined calculations on the prepro-
cessed and segmented image. The goal is to generate a feature vector (i.e., a vector of
real numbers) from the image that aptly describes important characteristics of the image.
Thus each image is represented by a point in some n-dimensional space (called the feature
space). The goal of feature extraction is to construct a feature space such that the inherent
image classes (e.g., malignant and benign) are easily separable in this space. Mathemati-
cally, given an image I, feature extraction is the mapping f : I 7→ F ∈ Rn, where F is the
computed feature vector.

Many skin cancer feature extraction methods propose features that model the ABCD
criteria used by doctors in clinical settings [25, 26] (see Section 2.2.2). Existing feature
extraction methods are discussed in detail in Section 2.5.

Most methods have been designed for and validated against images obtained using a
dermatoscope. As discussed in Section 2.2.3, dermatoscopes produce images with mini-
mal skin surface reflection and elucidate sub-surface texture information, offering preferred
images for image processing. However, since the features are designed for this specific ap-
plication, they are not readily usable in a decision support system for analysing standard
camera images. Cavalcanti and Scharcanski evaluated several state-of-the-art dermoscopic
image processing techniques with their standard camera image dataset and found subopti-
mal results [27]. There are some papers that propose features for standard camera images
[27, 28, 29], however the focus of these papers is either on the preprocessing and segmen-
tation or classification phases. As a result, the feature sets are fairly basic, consisting of
many low-level features that are combined to try to approximate ABCD. Work by Amelard
et al. comprised within this thesis focused on feature extraction in this setting [30, 31, 32].

2.3.4 Classification

In machine learning and pattern recognition [33], the “classification” stage aims to assign a
label (i.e., a class) to an image based on evaluating its feature vector. Skin cancer detection
primarily involves supervised learning, in which a classifier is trained knowing the ground-
truth labels of the training data. There are two phases to classification: training and
testing. In the training phase, given training data in the form of feature vectors with
ground-truth labels, the classification scheme attempts to learn a mapping for discerning
classes from each other. In the testing phase, this mapping is used on new inputs to
generate an estimate class label for the image. Mathematically, classification is the mapping
C : F 7→ L where F is the image feature vector and L is the class label.
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Most skin cancer detection systems have used existing “out-of-the-box” methods from
machine learning. Common schemes in literature include support vector machines (SVM)
[34, 35], artificial neural networks (ANN), decision trees, and k-nearest neighbour (K-NN)
[33] (see [26] for a good literature overview). SVM is discussed further in Section 2.6.6, as
it is used in the experimental setup discussed in Chapter 5.

2.4 Types of Images

The majority of skin cancer detection research has focussed on dermoscopic images (i.e.,
images obtained using a dermatoscope – see Section 2.2.3). However, recent surveys have
indicated that dermatoscopes are not widely used in the USA for melanoma detection
[3, 36]. The surveys do not indicate what percentage of dermatoscope users use digital
dermatoscopes (i.e., dermatoscopes capable of capturing a digital image), however it can
be postulated that given the dermatoscope market, far fewer digital dermatoscopes are
being used than purely optical dermatoscopes. This poses a convincing argument for the
restricted clinical use of dermoscopic image analysis.

We therefore turned to developing methods of evaluating images obtained using stan-
dard consumer-grade cameras. Some benefits of these types of devices are ease-of-use and
low cost, leading to low barriers to adoption. However, these types of images pose great
technical problems, as they are uncalibrated devices used in unconstrained environments.
Some of the problems include variations in RGB colour representations, resolution, flash
exposure, rotations, scale, and angle at which the image is captured. The features proposed
in this thesis have been designed to mitigate the effects of these variations.

2.5 Related Work

Most feature extraction methods proposed in skin cancer detection literature have focused
on designing features that model the ABCD criteria (see Section 2.2.2). Good reviews of
existing features can be found in [26, 25].

Lee and Claridge proposed border irregularity indices [37]. Aribisala and Claridge pro-
posed quantifying border irregularity from conditional entropy [38]. Celebi et al. proposed
a set of features describing shape, colour, and texture with some rationale, recognizing the
problem that feature sets were being presented without rationale [39]. This is an issue
addressed in this thesis.
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Most proposed colour features are, unfortunately, calculated in the RGB domain, which
is not perceptually uniform (see Section 2.6.1). That is, the distance between two points in
the three-dimensional RGB space is not indicative of their perceptual disparity. Further-
more, often authors will try to model (in RGB) colours commonly perceived in melanomas
using a dermatoscope [28, 27]. However, cameras are not calibrated to a standard white
point, and so these RGB values are not representative of calibrated colours. That is, a
certain real-world colour may take on different values of RGB depending on the camera’s
sensor setup. Some methods use a perceptually-uniform colour space (e.g., CIE L∗a∗b∗),
however most of the features themselves are very simplistic, such as measuring the mini-
mum, maximum, average, and standard deviation of the colour channel values (see [26, 25]
for overviews of existing features). There is a lack of robust colour features.

The methods discussed above have been designed to extract features from images ob-
tained using a dermatoscope, which are generally not suitable for the highly-varying un-
constrained conditions of standard camera images. To that end, there has been a limited
amount of research dedicated towards proposing features for images obtained using stan-
dard camera images. The papers that have proposed feature sets for these types of images
have focused mainly on the hard preprocessing and segmentation problems, resulting in
low-level features. For example, Cavalcanti and Scharcanski [27] proposed the same set of
low-level features as proposed by Alcon et al. [28] albeit some minor modifications. The
first sets of high-level features were proposed by Amelard et al. for describing asymmetry
and border irregularity [30, 31, 32]. These works are part of the main contribution of this
thesis.

2.6 Image Processing Tools

This section provides an overview of image processing techniques used throughout this
thesis. Each tool is linked to the section in which it is employed, for ease of comprehension.

2.6.1 Colour Spaces and Perceptual Uniformity

Colour spaces, such as the popular RGB (red-green-blue) space, are usually three- or four-
dimensional spaces that maps a physical colour to a coordinate in the space, where each
axis represents a certain characteristic for that colour space. Most images are expressed in
the RGB colour space, where a colour is represented by “adding” certain amounts of red,
green, and blue light to obtain a pixel’s colour. Colour displays are generally made up of
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individual pixels, each of which are in turn comprised of three RGB light sources. It is
therefore a natural fit to use the RGB colour space for image colour representation, as it
is a direct mapping to the output’s display.

The CIE XYZ colour space [40] is a foundational one in the field of colour perception.
The CIE XYZ space was modeled to fit the results obtained from colour perception ex-
periments [41, 42]. The average human eye is able to observe colour using three different
types of cone cells, which have overlapping sensitivity curves that peak in the blue, green,
and red wavelength bands of light. The goal of the CIE XYZ colour space was to define a
space that can represent every human-observable colour. Many colour models have been
built upon the CIE XYZ space to take advantage of the perceptual realism.

A colour space is deemed “perceptually uniform” if the distance between any two points
in the space (i.e., distinct colours) approximates the amount of human-perceived difference.
Examples of such spaces include the CIE L∗a∗b∗ and Lch spaces, each derived from the CIE
XYZ colour space. A perceptually uniform colour space is especially useful when comparing
colours akin to human’s perceptual difference, such as finding images that look similar to
a base image. Section 4.1.1 uses CIE L∗a∗b∗ space to analyse the amount of perceptual
colour asymmetry of a lesion. Section 4.3.2 uses the same colour space to analyse the
amount of perceptual colour complexity in a skin lesion.

It is important to note that the RGB space is not perceptually uniform, and thus is
not suitable for directly comparing colours (usually using the Euclidean distance). When
dealing with such an application, CIE L∗a∗b∗ is often the best choice, which is a direct
mapping from the RGB domain.

2.6.2 Fourier Descriptors

Fourier descriptors [24] are an application of Fourier theory onto shape analysis. The
Fourier transform is widely used to transform a signal into the frequency domain, where the
signal is represented as a weighted combination of sinusoidal frequencies. It is an invertible
process, meaning that the frequencies can be uniquely mapped back to the original signal.
Given a set of N complex numbers {xi : xi ∈ C}i, the discrete Fourier transform (DFT)
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(a) Original (b) nf = 2 (c) nf = 4 (d) nf = 8 (e) nf = 16 (f) nf = 32

Figure 2.6: Example of shape reconstruction using Fourier descriptors. The original border
was sampled with 1000 points, and reconstructed using different numbers of frequencies
(nf ). Each reconstruction uses the lowest nf frequencies.

and its inverse are given below:

Fk =
N−1∑
n=0

fn exp(−2πikn/N) (2.1)

fn =
1

N

N−1∑
k=0

Fk exp(2πikn/N) (2.2)

where F is the set of contributions from the uniformly-spaced frequencies. Thus F0 is
the DC component (i.e., offset), F1 is the amplitude of the first low-frequency sinusoidal
contributing to the original signal, and so on.

Fourier descriptors are used in two-dimensional shape analysis as follows. The trick
is to represent each two-dimensional (x, y) coordinate pair as a one-dimensional complex
number: x+iy. The standard DFT can be applied to this formulation to retrieve the shape’s
frequency decomposition. By omitting certain frequencies (i.e., setting their amplitude to
0), the shape can be reconstructed using a specified bandwidth of information. This can
lead to more robust shape analysis methods. This is used in Section 4.1.2 and Section 4.2.2,
which present ways of analysing structure asymmetry and border irregularity given the
lesion’s shape. Figure 2.6 shows a graphical example of shape reconstruction using Fourier
descriptors.

Fourier descriptors are a global transformation. That is, changing a single frequency
component affects the entire reconstructed shape. This may be unwanted functionality
when analysing local structure changes in shape analysis. Morphological operations, dis-
cussed next, is a set of techniques that allows for such local analysis.
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2.6.3 Morphological Operations

Morphological operations are techniques for analysing geometric shapes using set theory
[43]. Each operation relies on the definition of a structuring element, which is usually some
simple geometric shape, such as a disk or a line. In image processing, structuring elements
are binary images modeling such a shape. They are used to modify the shape in some
deterministic way.

Of particular importance to this thesis are morphological opening and morphological
closing. Given a binary image A and a structuring element B, morphological opening and
closing are defined as follows:

Mo(A,B) =
⋃
Bx⊆A

Bx (2.3)

Mc(A,B) = Mo(A
∗, B)∗ (2.4)

where X∗ is the complement of X. An intuitive description of morphological opening and
closing using a disk structuring element may be easier to comprehend. Given a shape A,
if we “roll” the disk over the shape, the disk will roll over some areas without falling into
them. The amount of area that it “rolls over” is dependent on the size of the shape and
structuring element. If we fill in that area, we obtain the product of morphological closing.
Similarly, if we roll the disk on the interior of the shape, and fill in any gaps in which the
disk does not fall, we get the product of morphological opening. A visual example of this
procedure is given in Figure 2.7.

Morphological operations, like Fourier descriptors, are very useful for analysing shapes
in a robust and consistent manner. They are used in Section 4.2.1 to analyse border
irregularity by filling in/cutting out spiky variations in the border.

2.6.4 Earth Mover’s Distance

The Earth mover’s distance (EMD) was an existing “transportation” linear optimization
technique that was introduced into computer vision field by Rubner et al. [44]. The EMD
is a method for comparing two distributions, or signatures of distributions. A signature of
a distribution is defined as a set of clusters in which the number of elements (e.g., pixels)
belonging to each cluster is tracked. In fact, a histogram is a special case of a signature.
A signature can be computed by, for example, k-means clustering.

Given two signatures from two images, the EMD calculates the minimum amount
of “work” required to transform one signature into the other. This is especially useful

20



(a) Original (b) Structuring element (c) Result

Figure 2.7: Visual depiction of morphological operations (closing). The disk cannot be
self-contained in the crevice, so it is “closed” out from the shape.

when image pixel values are expressed in perceptually uniform spaces, as discussed in Sec-
tion 2.6.1. Signatures need not contain the same number of clusters, since the distance
between clusters in the space are all that’s required for computing the EMD. Metaphori-
cally, clusters from one signature can be thought of as piles of dirt in the given space, and
clusters from the other signature can be thought of as holes that need to be filled. Each
cluster (dirt/hole) is as “large” according to the number of points belonging to that clus-
ter. The work involved is therefore the transportation of a certain amount of dirt across a
certain distance.

Mathematically, the EMD seeks to optimize the following formulation:

EMD(P,Q) = min
F

∑
i,j FijDij∑
i,j Fij

(2.5)

subject to the following constraints:

Fij ≥ 0 (2.6)∑
i

Fij = yj (2.7)∑
j

Fij ≤ xi (2.8)

where P and Q are signatures; Fij and Dij are the flow (i.e., amount moved) and ground
distance from source cluster i to target cluster j; yj is the size of target cluster j; and xi
is the size of source cluster i. The following constraints are therefore imposed:
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• Equation 2.6: allow only one-way shipping.

• Equation 2.7: forces target clusters to be “filled”.

• Equation 2.8: restricts the amount transferred from source cluster i to its size.

Rubner et al. concluded that colour comparison works better by representing a colour
image using signatures rather than histograms [44]. Signatures are compact representa-
tions, such as the k centroids after performing k-means clustering on the colour vectors.
This leads to simplified weighted representations that are less computationally expensive
than per-pixel analysis and more robust than histogram-based comparisons [44]. We used
a fast implementation of EMD in our calculations [45].

The EMD was used in Section 4.1.1 and Section 4.3.2 along with the perceptually
uniform CIE L∗a∗b∗ space. In Section 4.1.1, the EMD was computed to determine the
amount of colour difference on two sides of the lesion, providing an asymmetry score.
In Section 4.3.2, the EMD was computed to determine the amount of colour complexity
introduced when reconstructing the lesion’s colour distribution with varying numbers of
colours, providing colour complexity scores.

2.6.5 PCA-Part for k-means initialization

PCA-Part is a deterministic method for computing initial cluster centroids for the k-means
clustering algorithm [46]. The authors argue that using PCA projection is an effective way
to initialize k-means since k-means attempts to minimize the within-cluster sum of squares,
and PCA’s first principal component is the direction in which the largest amount of data
variance is observed, which is similar to the k-means optimization scheme.

This initialization method is used in the clustering stages for colour analysis in Sec-
tion 4.1.1 and Section 4.3.2. Since both the initialization and k-means itself are determin-
istic, this provides a deterministic clustering process. This is important to eliminate any
source of randomness, which would lead to inconsistent feature values. As the decision
support system is designed to be used in a clinical setting, reliable and consistent output
is of utmost priority.

The algorithm is briefly described here. The data are split k times in a hierarchical
manner by projecting them onto the first principal component of the PCA decomposition.
From this projection, the data are segmented via thresholding according to Otsu’s method
[47], which minimizes the combined within-class variance. Thus, for each iteration, one
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function PCAPart(X,k)
C∗j ← X . selected cluster
while k > 0 do

SplitCluster(C∗j )
C∗j ← arg maxCj

∑
xi∈Cj

‖xi − µj‖2
k ← k − 1

end while
return C

end function

function SplitCluster(Cj)
Project zi ∈ Cj to the largest principal component axis Cj.
Split Cj into two sub-clusters {C1

j , C
2
j } according to Otsu’s method.

end function

Figure 2.8: PCA-Part using Otsu’s Method

cluster (initially the entire data) is split into two clusters. After k iterations, the centroids
of each cluster are used as k-means initial centroids. The step-by-step algorithm is given
in Figure 2.8.

2.6.6 Support Vector Machines (SVM)

Support vector machines (SVM) [35] is a classification scheme that is widely adopted in
many machine learning settings due to its robustness and intuitive theory. The basic SVM
setup is a linear classification problem. That is, it tries to find a (d − 1)-dimensional
hyperplane in a populated d-dimensional feature space such that a new data point can be
classified based on a linear combination of select existing data. These data points, called
support vectors, are those points that most fully represent the resulting hyperplane [35].
Being a simple and robust well-known classifier, we used linear SVM in our experiments,
as discussed in Chapter 5.

Assume for simplicity that two classes are linear separable. There exists an infinite
number of hyperplanes that can separate these data. SVM aims to find the hyperplane that
maximally separates the data. This hyperplane is termed the maximum-margin hyperplane,
as it tries to maximize the margin (i.e., the distance between the support vectors and the
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Figure 2.9: SVM maximum-margin hyperplane with linearly separable data. The support
vectors are circled in blue.

hyperplane). Figure 2.9 shows a visual example of maximal-margin hyperplane in two-
dimensional space.

Mathematically, given a set of labeled data points {(xi, yi) : xi ∈ Rd, yi ∈ {−1, 1}}i,
the separating hyperplane can be formulated such that:

w · xs − b = {1,−1} (2.9)

where w is the normal vector to the hyperplane, xs is a support vector, and b is an offset.
It can be shown mathematically that the distance between the two classes’ support vectors
is equal to 2

||w|| , so to maximize the margin, we minimize ||w||. Recall that support vectors
are the closest vectors from the two classes from which we want to maximize the margin.
We therefore need to restrict any other data from being contained within the margin.
Mathematically,

yi(w · xi − b) ≥ 1 (2.10)

The trick here is that since yi ∈ {−1, 1}, multiplying by yi produces a positive num-
ber. Finding the maximum-margin hyperplane then becomes the following minimization
problem:

min
w,b

1

2
||w||2 s.t. yi(w · xi − b) ≥ 1 (2.11)

One more area we need to explain is the soft margin. It is seldom the case that
real data is linearly (or even non-linearly) separable. That is, the amount of noise and
variation in a system will inevitably lead to non-separability of the data. The “soft-margin”
[35] extends on the original hard-margin SVM by modifying the original optimization
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formulation to incorporate what are termed slack variables. These slack variables allow for
a certain amount of error for any given data point, effectively allowing the construction of a
separating hyperplane containing a certain amount of misclassified data. Mathematically,
Equation 2.10 becomes:

yi(w · xi − b) ≥ 1− si (2.12)

where si is a slack variable for data point xi. This leads to the following minimization
problem:

min
w,s,b

{
1

2
||w||2 + C

n∑
i=1

si

}
(2.13)

subject to Equation 2.12, where C is a tunable parameter for controlling the impact of the
slack variables on the optimization.

SVM can be made into a non-linear classifier by applying a projection kernel into the
SVM formulation [34]. This kernel projects each point into a higher-dimensional space
than the original feature space with the goal of being able to separate it in this synthetic
space. This is a crucial field of study within SVM classification, but kernels are not used
in this thesis as feature extraction should, at best, project the data such that they can be
linearly separable. We therefore validate our work using linear SVM (i.e., emphasizing the
performance of feature extraction rather than an advanced classifier). As it is out of the
scope of this thesis, so it is not explored further.

2.7 Summary

The chapter has presented background material relevant to understanding the remainder
of this thesis. The anatomy, physiology, and prevalence of melanoma have been briefly
reviewed. Standard clinical methods for detecting and diagnosing melanoma have been
reviewed. Relevant existing image processing research for automatic melanoma detection
has been summarized, as well as existing image processing tools that will be used later in
this thesis. In the next chapter, we present a framework for extracting intuitive features
from melanoma images for automatic classification purposes.

2.8 A Note on Diagnostic Smartphone Apps

There has been a recent surge in melanoma detection smartphone applications (“apps”).
However, the state of the literature for analysing standard camera images is still young.
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Indeed, a recent study [48] evaluated the accuracy of four skin diagnostic apps. The authors
of this study inputted digital clinical images of skin lesions with known histologic diagnoses
into the various apps, and found highly variable accuracy metrics between the apps, with
three of the four apps incorrectly classifying 30% or more of melanomas as benign. In
the study, the best smartphone application was not an automatic detection process at all.
Rather, it sends the image to an anonymous board-certified dermatologist, who provides
an online diagnosis upon review of the obtained image. This study’s results show that
much work still must be done to increase reliability in automatic detection systems, and
that we should not rely on apps that do not need regulatory approval.
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Chapter 3

High-Level Intuitive Features

This chapter presents high-level intuitive features (HLIFs) as a framework for feature
extraction for intuitive classification problems. The advantages of designing HLIFs are
discussed, followed by general instructions for designing a HLIF. This framework is used
in Chapter 4 for extracting features relevant to skin cancer detection.

3.1 Introduction

The success of a decision support system is highly reliant on the feature extraction stage.
The goal of feature extraction in image processing is to calculate specific characteristics
about an image such that the data is well-separated into its classes in the feature space.
In the case of melanoma detection, the goal is to extract features from skin images such
that malignant and benign cases are “easily” separated.

3.2 Problem: Low-Level Features

Low-level features are calculations used to describe a characteristic for which they were not
designed. Many feature sets combine several low-level features to capture some high-level
characteristic of an object. That is, one might use several ad-hoc calculations to describe
a high-level characteristic. For example, to describe a lesion’s asymmetry, Cavalcanti
and Scharcanski combine solidity, extent, circularity, equivalent diameter, and axis length
ratios [27]. These features are standard shape analysis calculations that do not individually
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model lesion asymmetry. Combining them results in a high-dimensional feature space for
describing asymmetry.

The benefits of using low-level features are that the features do not require significant
design time, as they have already been conceived for other applications. However, the
increased dimensionality of the feature space leads to many problems, such as curse of
dimensionality [49], increased computational complexity, and possible overfitting due to
the sparsity of the feature space. In fields that lack large amounts of data, this sparsity
issue can be very problematic, as it is hard to show that the classifier is generalisable to
new data. Furthermore, classification results using low-level features cannot easily convey
intuitive rationale, as the features themselves are not intuitive to a human observer.

3.3 High-Level Intuitive Features (HLIFs)

We can now define a HLIF. A definition and reasons for following the HLIF framework for
feature extraction are presented. Finally, instructions for designing a HLIF are given.

3.3.1 Definition

We define a high-level intuitive feature (HLIF) as follows:

High-Level Intuitive Feature (HLIF)
A mathematical model that has been carefully designed to describe some human-
observable characteristic, and whose score can be intuited in a natural way.

This is different than most features that are reused from previous applications. A HLIF
captures a specific characteristic that is important to the given application (e.g., complexity
of the colour distribution, smoothness of an object, etc.). This differs from most features
in that HLIFs usually require more upfront design time, but they have the possibility of
capturing relevant information about images that can be conveyed back to the user in an
intuitive manner.

3.3.2 Why Use Them?

Many decision support systems aim to provide a classification for a new instance of an
anticipated item. HLIFs are designed to model a human-observable characteristic, which
provides two distinct advantages over common low-level feature sets:
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1. HLIFs capture observable information.

2. HLIFs can be interpreted to provide the user with intuitive rationale.

Since HLIFs capture information that is relevant to the problem, usually fewer features
are needed to accurately describe the data. This is explored in Chapter 5.

3.3.3 How to Design a HLIF

The first step to designing a HLIF is to study the target user with the goal of understanding
how they analyse the data. Recall that HLIFs are modeled according to a human-observable
characteristic. These characteristics are unique to each application. Depending on the
circumstances, this can be done by directly studying the daily activities of a target user,
or by conducting a literature review on methods used in practice.

Once a working understanding of the standard analysis techniques is complete, a re-
view of fundamental mathematical methods should be conducted to determine which tools
are available for modeling certain high-level characteristics. For example, if one of the
characteristics involves describing the colour distribution of an object, one might turn to
perceptually uniform colour spaces based on the CIE XYZ colour space, such as the CIE
L∗a∗b∗ colour space.

Finally, once a thorough working understanding of existing mathematical methods is
obtained, much deliberate thought must be put into the modeling stage. That is, the
mathematical model of the feature must use existing tools in a way that characterizes a
high-level characteristic, and in which the final result of the feature calculation can be
conveyed back to the user in an intuitive manner (e.g., graphically).

Although this thesis focuses on the application of HLIFs for skin lesion detection, the
HLIF framework can be applied to any problem that involves classification of data into
intuitive classes.

3.4 Summary

This chapter has presented a framework for designing HLIFs for modeling human-observable
characteristics in an image classification setting. In the next chapter, this framework is
used to generate 10 HLIFs for skin lesion analysis.
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Chapter 4

HLIFs for Characterizing Melanoma

This chapter presents the design and calculation of 10 HLIFs for the detection of melanoma
in images obtained using standard consumer-grade cameras. These features were designed
to model the ABCD metric widely used by dermatologists. A synopsis of the ABCD metric
was given in Section 2.2.2. As the feature models follow the HLIF framework, the images
can be queried by the user for intuitive diagnostic rationale. Note that the diameter (“D”)
was not modeled due to the unconstrained environment inherent in the data, making it
very hard to infer physical scale in images. The experimental results using these features
are discussed in Chapter 5.

4.1 Asymmetry

Dermatologists try to identify asymmetry of the shape and/or colour of a skin lesion.
Benign nevi (i.e., “moles”) are usually observed to have more even colour distributions
and are more elliptical than malignant melanomas. Melanoma cases tend to have complex
shapes with asymmetric colour distributions. These asymmetry HLIFs are extensions of
work originally presented in [30, 32].

4.1.1 HLIF for Colour Asymmetry

A successful quantitative feature for describing colour asymmetry will be able to differen-
tiate lesions based on the spatial uniformity and symmetry of the colour distribution.
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Given a segmented skin lesion, an initial axis of separation (AoS) was set to the major
axis, which passes through the centre of mass (i.e., centroid) of the lesion shape and
describes the maximum amount of structural variation (i.e., the transverse diameter of the
fitted ellipse). The colour distributions in the perceptually-uniform CIE L∗a∗b∗ space on
each side of this AoS were compared. In particular, k signatures on both sides of the AoS
were determined using k-means clustering, using the final k clusters as colour signatures.
Mathematically,

Sθi = k-means(Cθ
i , k) (4.1)

where θ denotes the orientation of the AoS, Sθi ∈ {Sθ1 , Sθ2} is the colour signature (weighted
clusters) in CIE L∗a∗b∗ space to either side of the AoS, Ci ∈ {Cθ

1 , C
θ
2} is the colour dis-

tribution to either side of the AoS in CIE L∗a∗b∗ space, and k-means(Cθ
i , k) is k-means

clustering of data Cθ
i into k clusters.

Intuitively, Sθi is a set of points in three-dimensional space with masses equivalent
to the number of points within the cluster. The Earth Mover’s Distance (EMD) was
computed using these two signatures (see Section 2.6.4). This “distance” metric quantifies
the amount of perceptual work needed to transform the colour distribution from one side
of the lesion to the colour of the other, thus effectively representing the amount of colour
asymmetry. This formulation was repeated over n equally-spaced orientations so that a
uniform sampling of AoS was considered. The feature calculation was determined to be
the maximum asymmetry score yielded over the n trials.

Note that given a fixed initialization, k-means clustering produces deterministic clus-
ters. In order to ensure consistent feature calculations, deterministic k-means initialization
using PCA-Part with Otsu’s method was performed [46, 47] (see Section 2.6.5). Consis-
tency is important for doctor-system trust.

The final feature calculation is as follows:

fA1 = max
θ

{
EMD(Sθ1 , S

θ
2)
}

(4.2)

where θ denotes the orientation of the AoS, Sθ1 and Sθ2 are the colour signatures in CIE
L∗a∗b∗ space as in Equation 4.1. In our tests, we used k = 10 colour clusters and n = 12
separation axes.

Figure 4.1 depicts an example of this HLIF. The maximal AoS is plotted as a white
line through the centroid of the lesion, and the obtained CIE L∗a∗b∗ colour signatures of
both sides of the AoS are plotted, where the size of the sphere denotes the number of pixels
belonging to that cluster centroid (i.e., weight). Figure 4.1b and Figure 4.1c intuitively
capture the primary observable colours above and below the AoS. For example, Figure 4.1b
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shows primary dominance of light-tan colours as well as smaller concentrations of dark-
brown colours. It can be observed that there is a significant amount of work required to
transform the spheres in Figure 4.1b to Figure 4.1c, which is captured using the EMD.

4.1.2 HLIF for Structure Asymmetry

As a lesion’s shape deviates from the ideal elliptical structure, it becomes less likely that
the shape is symmetric. That is, structural asymmetry can be approximated by the coarse
complexity of the lesion’s spatial structure. Using Fourier descriptors (see Section 2.6.2), we
reconstructed the lesion shape in two low-frequency ways to quantify structure complexity,
according to the following algorithm.

The lesion border was sampled using a pre-determined sampling rate. This is an impor-
tant step, since the number of frequencies represented by the Discrete Fourier Transform
is equal to the number of discrete spatial samples (see Equation 2.1). Using a constant
sampling rate ensures consistent reconstruction. The Fourier descriptors of the shape were
computed. Frequency components were discarded (i.e., their amplitudes were set to 0)
in order to omit certain frequency information. The inverse FFT (IFFT) was used to
generate two low-frequency reconstructions. The first reconstruction used the lowest two
frequencies, which represents the most general approximation of the lesion border assum-
ing a circular shape. The second reconstruction used several more frequencies to capture
the presence of coarse structural variability, thus accounting for the structure’s complexity,
if any exists. The exact number of frequencies is dependent on the sampling rate. The
normalized area between these two reconstructions was used to quantify the amount of
complexity. Complex structures will exhibit large area differentials, and simple structures
(e.g., oval-shaped benign lesions) will exhibit very little difference.

The final feature calculation is as follows:

fA2 =
area(Rlow ⊕R2)

area(Rlow ∪R2)
(4.3)

where area() is a function that calculates the area of a shape, Rlow and R2 are the low- and
two-frequency reconstructions, and ⊕,∪ are the XOR and UNION operators. In our tests
we used a 1000-point sampling rate and empirically chose five low frequency components.

Figure 4.2 depicts an example of this HLIF. It can be observed that the structure is very
asymmetric, with one side containing a much smaller abnormal pigmentation density than
the other. The coarse structure variation is captured in Figure 4.2 by the five-frequency
reconstruction (green) and not the two-frequency reconstruction (pink). Thus, there exists
a significant area differential between the two, indicating likely asymmetry.
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(a) Segmented lesion

(b) L∗a∗b∗ colour signature above the line (c) L∗a∗b∗ colour signature below the line

Figure 4.1: Example of fA1 on a superficial spreading melanoma with asymmetric colours.
Notice how (b) and (c) capture the intuitive colour characteristics of the lesion on each
side of the line, irrespective of texture and lighting variation. It is apparent that “work”
is required to transform one colour signature into the other. In this case, fA1 = 23.86.
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(a) Segmented lesion

(b) Union (c) XOR

Figure 4.2: Example of fA2 on a superficial spreading melanoma with asymmetric structure.
The asymmetry is introduced due to the lack of pigmentation density in the middle of the
lesion. This structural variation is captured in the area differential between the two-
frequency and five-frequency border reconstructions. In this case, fA2 = 0.327.
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4.2 Border Irregularity

Dermatologists try to identify irregular borders of the skin lesion. Benign nevi usually have
very smooth elliptical shapes. Melanoma cases tend to deviate from this in terms of border
pigmentation variations as well as “spiky” borders. These border irregularity HLIFs are
extensions of work originally presented in [31, 32].

4.2.1 HLIF for Fine Irregularities

Melanoma cases often contain fine localized border irregularities in the form of abrupt
localized pigmentation patterns, such as “spikes”. In order to quantify this information,
we can use the existing theory of morphological operations (see Section 2.6.3).

Recall from Chapter 2 that morphological operations, unlike Fourier descriptors, are
able to manipulate shapes on a local scale. The amount of localized abrupt pigmentation
can be measured using morphological opening and closing. We compared the normalized
difference in area resulting from these operations as compared to the original lesion. This
captures abrupt (“fine”) irregularities in the border.

The final feature calculation is as follows:

fB1 =
Aclosed − Alesion

Alesion
+
Alesion − Aopened

Alesion
(4.4)

where Aclosed and Aopened are the areas resulting from performing morphological closing
and opening on the original lesion, and Alesion is the area of the original segmentation.
The two summed terms represent the amount of exterior and interior irregularities. In our
tests, we used a disk structuring element of radius 20.

Figure 4.3 depicts an example of this HLIF. In Figure 4.3a, irregular valleys in the
border are filled in, accounting for a significant proportion of the overall area. Similarly in
Figure 4.3b, the irregular peaks are filled out. The amount of area filled in/out is a good
indicator of border irregularities.

4.2.2 HLIF for Coarse Irregularities

Coarse border irregularities may also be present in melanoma cases. These irregularities
are general structural shapes that deviate in a large way from an oval shape, such as large
“swoops” in the border.
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(a) Morphological closing (b) Morphological opening

Figure 4.3: Example of fB1 on a lesion shape whose border contains fine irregularities
(peaks and valleys). Morphological closing successfully fills in the abrupt valleys, and
morphological opening fills out the abrupt peaks. In this case, fB1 = 0.208.

From a signal processing perspective, these irregularities can be conceptualized as large
deviations in low frequency information. It therefore seems natural to once more use
Fourier descriptors to capture this information. In particular, much like the structural
asymmetry HLIF presented in Section 4.1.2, the lesion was sampled at a pre-determined
sampling rate and reconstructed using only a small amount of low frequencies. To quantify
the coarse structural deviations, the perimeters of the low-frequency reconstruction and
the original border lesion were compared.

The final feature calculation is as follows:

fB2 =
|Porig − Plow|

Porig
(4.5)

where Porig and Plow are the perimeter lengths of the original and low-frequency recon-
struction. We used 1000-point sampling rate and empirically chose four-frequency recon-
structions.

Figure 4.4 depicts an example of this HLIF. Notice how the border has several parts at
which it swoops down below and back up above the low-frequency border reconstruction.
These are characteristic patterns of coarse border irregularities, where the border does not
follow a smooth oval shape.

4.3 Colour Variations

Dermatologists try to identify specific colour patterns that have been historically found
in melanoma cases. Unfortunately, most of the ABCD colour characteristics [10, 11] are
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Figure 4.4: Example of fB2 on a superficial spreading melanoma with coarse border irreg-
ularities. Notice the general deviations away from the smooth oval shape produced by the
four-frequency reconstruction. In this case, fB2 = 0.325.

only observable with the aid of a dermatoscope. Furthermore, colour medical imaging
has not received the same amount of attention compared to monochrome medical image
processing [50]. There is therefore a significant demand for novel research on quantifying
colour information pertaining to melanoma detection, particularly using standard camera
images.

4.3.1 A Colour Complexity Analysis Framework

As is apparent from the clinical definition, malignant melanomas tend to exhibit more
complex non-uniform colour distributions than benign nevi. This can be attributed to the
underlying metastatic growth of melanocytes, which in turn produces varying amounts
of pigment. Exact colour patterns vary widely between cases, however the fundamental
“complex” nature of the colour distribution can be observed in many melanoma cases.

The goal of these HLIFs is therefore to capture the complexity of the colour distribution.
An intuitive way to determine this information is to compare and contrast reconstructions
of the lesion’s colour distribution using fixed numbers of representative colours. The pre-
sented theory for this framework draws from sparse dictionary learning research methods.

Consider the following cases as illustrative examples. A typical benign nevus has a
fairly uniform colour distribution. It therefore stands to reason that the lesion’s colour
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can be estimated fairly accurately by using the single most representative colour for a
given lesion (i.e., a representative red colour). However, consider a case of melanoma that
exhibits varying colours (see, for example, Figure 4.6a). It is impossible to find a single
colour that accurately represents the lesion’s colour distribution.

The colour complexity analysis framework comprises the following four stages:

1. Transformation of the image to a perceptually uniform colour space.

2. Construction of feature representations that model the colour information for a patch
(i.e., local grid) of pixels.

3. Clustering the feature vectors into k colour clusters.

4. Quantifying the variance found using the original lesion and the k representative
colours.

Step 1: Perceptual Uniformity

We transformed the original RGB image into the CIE L∗a∗b∗ space [40], in which the colour
distribution is perceptually uniform (see Section 2.6.1). This should mitigate the effect of
uncalibrated cameras, as the perceptual difference should be similar regardless of slight
tonal differences between cameras. This way, we can compare colour values in a way that
it mimics the amount of perceptual difference.

Step 2: Patch Representation

The goal of this step was to represent each patch of pixels in such a way that patches
with similar pigmentation get grouped together in Step 3. To do this, two types of
information were extracted from each patch: colour information and spatial information.
This way, spatial constraints enforce locally cohesive colour structures, modeling the spatial
localization of skin blotches. Intuitively, this can be represented by concatenating each
column of pixel values in a patch across each CIE L∗a∗b∗ channel into a one-dimensional
vector, and encoding the centre pixel coordinate for spatial context. Mathematically, for
a given pixel patch Pw(x) of width w centered around the pixel at location x = (xx,xy) in
image I in CIE L∗a∗b∗ space, the spatial (f s) and colour (f c) feature vectors for patch Pw
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Figure 4.5: Graphical representation of the patch colour representation in Equation 4.7.
For each channel, the pixel values are concatenated consecutively from 1 until 9.

were defined as:

f s(Pw(x)) =
[
xx xy

]
, (4.6)

f c(Pw(x)) =
[
gL∗(Pw(x)) ga∗(Pw(x)) gb∗(Pw(x))

]
,where (4.7)

gc(Pw(x)) =
[
Pw(x11, c) Pw(x21, c) . . . Pw(xw1, c) Pw(x12, c) . . . Pw(xww, c)

]
(4.8)

where Pw(xij, c) is the pixel value from the channel c at the ith row and jth column
in the patch. Note that card(gc(Pw(x))) = w2, making card(f c(Pw(x))) = 3w2 and
card(f s(xi)) = 2, where card(·) is the cardinality function. A graphical depiction of f c is
given in Figure 4.5. The final colour feature vector was the concatenation of the spatial
and colour information:

f ∗(Pw(x)) =
[
f c(Pw(x)) f s(Pw(x))

]
(4.9)

Step 3: Finding Representative Colours

Upon populating the feature space with vectors f ∗(Pw(xi)) for each point xi in the image,
k-means clustering was used to determine the k most representative colours of the lesion.
Recall that k-means performs clustering by minimizing the within-cluster sum-of-squares
distance of the clusters. This translates to clustering according to perceptual similarity.
For consistency and reproducibility, PCA-Part using Otsu’s method was used to generate
a deterministic cluster initialization (see Section 2.6.5). Since the effect of the spatial
characteristics in Equation 4.6 is affected by the patch size (i.e., the length of the feature
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vector), an additional weighting term was added into the k-means within-class sum-of-
squares criterion as follows:

D = arg min
S

k∑
j=1

∑
f∗(·)∈Sj

(
||f c(Pw(xi))− dcj||2 + ||λ · f s(Pw(xi))− dsj||2

)
(4.10)

where D = {di}i is a set of k centroid colour-spatial elements, dc and ds are the colour
and spatial components of the colour-spatial element, and λ is a relative spatial weighting
term. The set {dci}i can be regarded as a set of representative colour patches.

Step 4: Colour Reconstruction

The output of Step 3 is a set of k colours (i.e., the centroids of the clusters) along with each
cluster’s comprising pixels. Using this information, the image (lesion) can be reconstructed
by replacing each pixel’s original value with that of the representative centroid. These
reconstructions can be used to quantify the amount of colour variation.

Effect of Parameters

This framework is influenced by three parameters: {λ, k, w}. The effects of each on the
framework output are discussed below.

Effect of λ Figure 4.6 shows the effect varying the spatial weighting term λ on the colour
reconstruction formulation. For illustration, we used seven clusters and 9× 9 patches.

When there is no spatial weighting term (i.e., λ = 0), the clustering is solely based on
the pixel colours (i.e., their CIE L∗a∗b∗ values). As seen in Figure 4.6b, this introduced very
small localized colour attributes. As we are trying to model the overall colour distribution,
this is not suitable for our needs.

On the other extreme with a large spatial weighting term (i.e., λ = 16), the clustering
is heavily weighted on the distances between pixel locations. As seen in Figure 4.6g, the
resulting reconstruction was largely segregated into approximate equal-sized blocks whose
colour was determined from the underlying pixels. This is also not suitable for our needs,
since it does not accurately portray the variations in colour across the lesion.
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(a) Segmented lesion

(b) λ = 0 (c) λ = 1 (d) λ = 2

(e) λ = 4 (f) λ = 8 (g) λ = 16

Figure 4.6: Illustrative example of the effect of varying the spatial weighting term λ on a
lesion with a complex colour distribution. As λ increased, we observed fewer (unwanted)
small localized regions, and more self-contained regions representing colours within its
spatial vicinity. Very high λ resulted in unrepresentative equally-sized regions. In this
example we used seven clusters and 9× 9 patch sizes.
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Effect of k Figure 4.7 shows the effect varying the number of representative colour
clusters (i.e., k in k-means clustering) on the colour reconstruction formulation. For illus-
tration, we used λ = 0 and 9× 9 patches.

When there is only a single cluster, the reconstruction is a single representative colour.
In Figure 4.7b we can visually verify that the red-brown colour is a good general fit to
approximating the original lesion colour. In the case of a lesion with uniform colour
distribution, this colour will reconstruct the original colour distribution well.

On the other extreme with many colour clusters (e.g., 50 clusters), the reconstruction
overfit the complex colours introduced by skin reflections (e.g., flash, lighting conditions,
etc.). This is seen in Figure 4.7f, especially in the larger dark region. The reconstruction
shows many light regions within the dark region, which are errors from overfitting to the
observed skin reflectance colours.

Effect of w Figure 4.8 shows the effect varying the patch width on the colour recon-
struction formulation. For illustration, we used λ = 0 and seven clusters.

When the patch incorporates a single pixel (i.e., 1 × 1), no information about the
surrounding pixels is considered, thus the original image is reconstructed pretty accurately.
This behaviour is apparent in Figure 4.8b, which closely resembles the original colour
distribution albeit being reconstructed with only seven clusters. This is not the behaviour
that we want, as we are trying to reconstruct the underlying colour distribution independent
of skin surface reflections.

On the other extreme with a large patch size (e.g., 17 × 17), patches incorporate in-
formation from within a large neighbourhood. Thus its variance may be too large to be
useful. This is apparent in Figure 4.8f where colour regions seem to blend into others
unrepresentative of the original colour space.

4.3.2 HLIFs for Colour Complexity

Remember, the goal is to use the reconstruction scheme from Section 4.3.1 to generate
features whose models can be intuited. As aforementioned, “simple” benign lesions may
be reconstructed accurately using as little as one representative colour, whereas melanoma
colour distributions are more complex. We generated three sets of HLIFs to satisfy these
conditions. In our tests, we empirically chose 9 × 9 patches, spatial weight λ = 1.75,
and {1, 2, 5} clusters. Although automatic parameter selection would be ideal, due to the
time constraints of this thesis, these parameter values were chosen using anecdotal visual
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(a) Segmented lesion

(b) k = 1 (c) k = 3 (d) k = 5

(e) k = 10 (f) k = 50

Figure 4.7: Illustrative example of the effect of varying the number of colour clusters used
for reconstruction on a lesion with a complex colour distribution. Using a single cluster
resulted in an overall representative colour. As the number of clusters increased, more
colours from the original lesion were captured. Too many clusters resulted in overfitting
skin reflectance. In this example we used λ = 0 and 9× 9 patches.
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(a) Segmented lesion

(b) 1× 1 (c) 3× 3 (d) 5× 5

(e) 11× 11 (f) 17× 17

Figure 4.8: Illustrative example of the effect of varying the window size on a lesion with
a complex colour distribution. Using a 1 × 1 window does not incorporate information
from neighbouring pixels, and thus overfit the skin reflectance. As the window size was
increased, less skin reflectance was captured, and more spatially-relevant colour regions
were observed. In this example we used λ = 0 and seven clusters.
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inspection. They were chosen such that we could compare against the “base case” (one
cluster), as well as more complex reconstructions while noticing that lesion images mostly
comprise a few colours but have pixels saturated with lighting artefacts. There are at
most six colours observed using a dermatoscope (see Section 2.2.3), however not all of
these colours are observable using standard cameras. We therefore chose five colours as
our upper bound for reconstruction.

Using this colour complexity analysis framework, we constructed six HLIFs that char-
acterize the complexity of a lesion’s colour distribution. Each feature calculation can be
done following the execution of the framework outlined in Section 4.3.1.

HLIFs for Quantifying Reconstruction Error

The first set of HLIFs treats the original lesion as the “ground truth”. It compares the
relative reconstruction errors in CIE L∗a∗b∗ space using one, two, and five colour recon-
structions. If there is little difference between these reconstructions, it can be concluded
that the colour distribution is simple; conversely, larger differences indicate more complex
colour spaces.

The final formulation of these two HLIFs is as follows:

fC1 =
RMSD(ILab, R(ILab, 2))

RMSD(ILab, R(ILab, 1))
(4.11)

fC2 =
RMSD(ILab, R(ILab, 5))

RMSD(ILab, R(ILab, 1))
(4.12)

where RMSD(I1, I2) is the root mean squared difference between images I2 and I2, ILab is
the lesion in CIE L∗a∗b∗ space, and R(I, r) is the colour reconstruction of image I using
r colour patches. These HLIFs represent the relative amounts of reconstruction error
between one-vs-two and one-vs-five colour patches, thus capturing the complexity of the
colour distribution.

Figure 4.9 depicts an example of these HLIFs. Reconstruction error using one colour
(i.e,. RMSD(ILab, R(ILab, 1))) will be large since one cluster is insufficient to reconstruct
the complex colour distribution of the original lesion. The reconstruction error decreases
somewhat with the two-colour reconstruction, although much of the red and pink pig-
mentation is still not present. The error is substantially decreased with the five-colour
reconstruction, which successfully reconstructs the tan, pink, red, and dark pigmentations.
The rate of reconstruction error over the number of clusters is quantified using fC1 and fC2 .
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HLIFs for Quantifying Colour Complexity Evolution

The second set of HLIFs quantifies the amount of colour complexity by comparing the
evolution of the colour distribution across reconstructions with varying numbers of colour
clusters. Figure 4.7 shows the effect of increasing the number of colour clusters for a
lesion with a very complex colour distribution. In this example, underlying colour patterns
emerge when reconstructing with more colours, whereas a simple lesion might be accurately
represented by only a single colour. To capture this information, we computed the mean
“difference” between reconstruction using one, two, and five colours. This was computed
using the mean `2 difference between two reconstructions in the CIE L∗a∗b∗ space, resulting
in a value that portrays the perceptual difference between the reconstructions.

The final formulation of these two HLIFs is as follows:

fC3 =
1

N
||R(ILab, 5)−R(ILab, 1)|| (4.13)

fC4 =
1

N
||R(ILab, 5)−R(ILab, 2)|| (4.14)

where N is the number of pixels in the lesion, || · || is the `2 norm (i.e., Euclidean distance),
and R(I, r) is the reconstruction of image I with r colour clusters as in Equation 4.11 and
Equation 4.12.

Figure 4.9 depicts an example of these HLIFs. Treating the one-colour reconstruction as
the “base case”, there is drastic colour evolution using two- and five-colour reconstructions.
For example, the two dominant pigments are tan and black, both of which are reconstructed
using two clusters. The less dominant red and pink pigments are reconstructed using five
clusters. This evolution is successfully modeled by the HLIFs.

The third and final set of HLIFs compares the lesion’s colour signatures across different
numbers of clusters. The Earth Mover’s Distance (EMD) is a very appropriate tool for
quantifying this information (see Section 2.6.4). Recall from Section 2.6.4 that a signature
is a cluster representation of the point distribution, where the number of points belong-
ing to each cluster is stored. When comparing two signatures, EMD does not require
these signatures to be the same size. This is an important property for our use of colour
comparison.

The EMD calculates how much “work” is needed to transform one signature into an-
other by considering the distance and mass when moving a point from one cluster to
another. In our case, the distance is the Euclidean distance in CIE L∗a∗b∗ space, and
the mass is the number of points belonging to a particular cluster after the deterministic
k-means procedure.
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The final formulation of these two HLIFs is as follows:

fC5 = EMD(S1, S2) (4.15)

fC6 = EMD(S2, S5) (4.16)

where Sk is the signature using k colour clusters.

Figure 4.9 depicts an example of these HLIFs. The one-cluster signature (Figure 4.9c)
is a single cluster that approximates the average lesion colour. The two-cluster signature
(Figure 4.9e) picked up some of the dark pigmentation, effectively creating a smaller black
cluster at a perceptual distance away from the original cluster. The five-cluster signature
(Figure 4.9g) picked up the red pigmentation, as well as some of the more subtle pink
pigments. It can be observed that a non-trivial amount of “work” is required to transform
the one-cluster signature to the two-cluster signature by “transporting” the tan pigment
to the dark pigment, and that even more work is required to transform the two-cluster
signature to the five-cluster signature by creating the red and subtle pink pigments. This
is indicative of a lesion with large colour complexity.

4.4 Summary

This chapter has presented 10 HLIFs for describing the asymmetry, border irregularity,
and colour complexity of a skin lesion. These HLIFs have been designed with two primary
criteria in mind. First, each feature has been explicitly designed to model what a derma-
tologist would observe when trying to identify a characteristic (e.g., colour asymmetry).
Second, visual output from each feature has been given that is intuitive and describes the
high-level characteristic. In the next chapter, we analyse this feature set along with a
recent low-level feature set to determine the accuracy and effective nature of these features
under a standard classification model.

47



(a) Original lesion

(b) 1-cluster recon-
struction

(c) 1-cluster signature

(d) 2-cluster recon-
struction

(e) 2-cluster signature

(f) 5-cluster recon-
struction

(g) 5-cluster signature

Figure 4.9: Example of {fC1 , . . . , fC6 } on a superficial spreading melanoma with a complex
colour distribution. Figures (b) (d) (f) are colour reconstructions using the proposed
colour complexity analysis framework from Section 4.3.1, and Figures (c) (e) (g) are the
associated clusters in CIE L∗a∗b∗ space. The size of each sphere indicates the number of
pixels belonging to that cluster. The colour complexity is apparent when analysing the
change in reconstructions and colour signatures as the number of clusters increases. In this
case, fC1 = 0.682, fC2 = 0.480, fC3 = 0.189, fC4 = 0.095, fC5 = 125.3, fC6 = 73.9.
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Chapter 5

Experimental Results

This chapter presents the experimental evaluation of the HLIFs proposed in Chapter 4.
This feature set is analysed with and against a recent low-level feature set modeled ac-
cording to the ABCD rule [27]. This low-level feature set contains 52 features that are
characterised as “low level” according to the definition given in Section 3.2. The final pro-
posed feature set is the combined set of HLIFs and low-level features. Analysis is performed
in two manners. First, a simple classification scheme is presented that highlights the effi-
ciency of the feature space rather than the classification scheme. Second, the features are
statistically analysed independent of classification using our data set. Observations and
limitations of the experimental results are discussed.

5.1 Data

We collected 206 images of skin lesion, which were obtained using standard consumer-
grade cameras in varying and unconstrained environmental conditions. These images were
extracted from the publicly available online databases Dermatology Information System
[51] and DermQuest [52]. Of these images, 119 are melanomas, and 87 are not melanoma.
Each image contains a single lesion of interest.

5.2 Experimental Setup

For each image, the lesion was manually segmented to provide an “ideal” segmentation for
feature extraction. That is, we wished to analyse the feature extraction performance irre-
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spective of an automatic segmentation’s accuracy. We rendered the images rotation- and
scale-invariant by performing the following preprocessing step: prior to feature extraction,
the image was rotated so that the lesion’s major axis was parallel to the horizontal axis,
and the lesion fit within a 200 × 200 bounding box while maintaining the original aspect
ratio. The decision support workflow was implemented in MATLAB.

5.2.1 Preprocessing

We applied an illumination correction algorithm [23]. Briefly, the illumination correction
uses a Markov Chain Monte Carlo (MCMC) approach to estimate a non-parametric illu-
mination model of the healthy skin. This model is used as a prior to fit a quadratic surface
to the pixels. Finally, this quadratic surface is applied to the computed reflectance map of
the image to correct for the lighting variation contributing to the non-uniform skin surface
reflection.

5.2.2 Feature Extraction

Following the illumination correction, the features presented in Chapter 4 were extracted
as well as the feature set proposed in [27], which is the most recent full ABCD feature
set designed for standard camera images of pigmented skin lesions, to the best of the
authors’ knowledge. For simplicity of discussion and analysis, the following notation is
used throughout this section:

• SL – set of 52 low-level features describing ABCD proposed by [27].

• SH – set of 10 HLIFs presented in Section 4.

• ST – set of 62 features obtained by appending SL and SH (i.e., ST = SL
⋃
SH).

Prior to passing the feature vectors into the classification stage (see below), feature
scaling was performed according to the following normalization formula:

f ∗i =
fi − µf
σf

(5.1)

where f ∗i is the normalized feature value, fi is the feature score for the ith datum, and µf
and σf are the mean and standard deviation over all computed feature scores fi. This for-
mulation transforms the data such that each feature exhibits zero-mean and unit standard
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deviation (and variance) across the data set. It has been shown that scaling feature vectors
eases numerical difficulties in SVM’s optimization, and may result in better classification
performance [53]. Furthermore, more relevant to this thesis’ work, this simplifies the task
of determining the feature score’s significance, as each feature score distribution abides by
a normal (Gaussian) distribution with mean µ = 0 and standard deviation σ = 1. For
example, a feature score of fi = 2 signifies that it is two standard deviations away from the
mean feature score exhibited by the data set, representing that it is larger than roughly
98% of the rest of the data.

5.2.3 Classification

In machine learning, “classification” relates to a body of methods that takes as input a
feature vector and outputs a predicted class (e.g., malignant or benign). In supervised
learning, the ground-truth class of each datum is known. The classifier is usually trained
(i.e., fit) using a subset of this data and tested on the other part of the data. This ensures
that the classifier is able to generalise to new instances rather than strictly conforming to
the training data (called overfitting).

Choice of Classifier

There are many different flavours of classifiers. For our purposes we used a soft margin
SVM classifier due to its widely regarded robustness and simplicity (see Section 2.6.6 for
details on SVM). Furthermore, we used a linear SVM to emphasize the degree of linear
separability of the data in the feature space rather than the performance of a complex
classifier (which is important in decision support systems, but is out of the scope of the
feature extraction stage). Good accuracy can therefore be attributed to the feature extrac-
tion algorithm’s ability to project the data into a separable feature space. We used the
LIBSVM implementation for our experiments [54].

SVM Parameter Optimization

There are two parameters that influence the linear soft margin SVM optimization, denoted
by c and wi in LIBSVM. The parameter c (also commonly referred to as the box constraint)
represents the cost of a misclassification during training. Thus, high c values put great
emphasis on misclassified training samples. The parameter wi assigns a weighting to c
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Figure 5.1: Effect of varying cost parameter c using LIBSVM. Notice how as c gets larger,
more emphasis is placed on the green outlier, although it is visually apparent that some
sort of error was introduced when calculating that data point. Lower values of c are robust
against this phenomenon.

for class i. This weight is important when the two classes have unequal amounts of data.
Mathematically, Equation 2.13 is modified to become:

min
w,s,b

{
1

2
||w||2 +

n∑
i=1

Cisi

}
subject to yi(w · xi − b) ≥ 1 (5.2)

where w is a vector orthogonal to the separating hyperplane, Ci = wic is a class-specific
relative weighting, si are the slack variables associated with classification error, and yi ∈
{−1, 1} is a binary class label. In noisy data, usually a smaller value for c is desired since
it allows the classifier to be robust against misclassification from the noise. An illustrative
example of the effect of parameter c is provided in Figure 5.1.

To find an accurate SVM hyperplane for the data, we optimized these parameters in
accordance with the LIBSVM authors’ recommendations [53]. In particular, we performed
a geometric grid search over the values 2−6 ≤ c ≤ 29 and 2−2 ≤ w ≤ 22, at each step
multiplying either c or w by 2. For each pair of parameter values (ci, wi), we calculated
the average Fβ [55] across 50 independent cross-validation trials, using a random 80%/20%
data split for training/testing. Fβ is the weighted harmonic mean between recall and
precision. Mathematically:

Fβ =
precision · recall

β2 · precision + recall
(5.3)
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where

precision =
TP

TP + FP
(5.4)

recall =
TP

TP + FN
(5.5)

where TP, FP, FN are the number of true positive (correct malignant detection), false
positive (false malignant detection), and false negative (false benign detection) cases. In
this formula, recall is weighted β-times as important as precision. See Figure 5.2 for a
graphical depiction of Fβ for different values of precision and recall. If the average Fβ
using (ci, wi) was greater than the previous maximum Fβ, (ci, wi) were stored.

After evaluating the entire geometric grid, a more fine-grained search was done on
the parameter values (ĉ, ŵ) that exhibited the largest average Fβ. This stage was very
similar as the previous, except the grid space was chosen according to 1

2
ĉ ≤ c ≤ 2ĉ and

1
2
ŵ ≤ w ≤ 2ŵ, where ci+1 = 20.15ci and wi+1 = 20.5wi. The parameters (c∗, w∗) that yielded

the maximum average Fβ were used as the final classification parameters.

Evaluating Success

Due to the small nature of our data set relative to the highly dimensional feature spaces,
we used the leave-one-out cross-validation (LOO CV) strategy for evaluating the success of
the classification. LOO CV is useful when dealing with this problem – that is, evaluating
the classifier’s ability to generalise under limited amounts of data. In particular, for each
datum’s feature vector fk ∈ S = {f1, . . . , fn}, the SVM classifier was trained on S \ fk and
tested on fk, yielding a binary result: pass or fail. For a data set with n elements, this
strategy resulted in n independent training and testing phases, of which the total error
was determined by the total number of incorrect predictions divided by n.

Classification accuracy metrics are summarized in Table 5.1. These are discussed in
detail in the following sections.

5.3 Results

Results using the 206-image data set are presented below. The thesis contribution is anal-
ysed in two ways: using the results of the HLIF set SH on its own, and analysing the effect
of concatenating SH to the state-of-the-art low-level feature set SL. The following analy-
ses were performed. First, results using the described classification scheme are presented.
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Figure 5.2: Effect of precision and recall on Fβ for different values of β. Brighter colours
denote large Fβ scores. Notice how larger β yields a criterion that favours high recall more
than high precision. This is especially apparent in the plot, where Fβ elicits a stronger
response to a high recall rate for most precision values as β gets larger.
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Table 5.1: Definitions of accuracy metrics.

Metric Formula Definition

Sensitivity TP
TP+FN

Percentage of correctly identified melanoma cases.

Specificity TN
TN+FP

Percentage of correctly identified non-melanoma cases.

Precision TP
TP+FP

Percentage of identified melanoma cases being correct.

Recall TP
TP+FN

Percentage of correctly identified melanoma cases.

Accuracy TP+TN
TP+FN+TN+FP

Percentage of correctly identified cases.

Fβ
precision·recall

β2·precision+recall
Weighted harmonic average of precision and recall.

Second, a statistical analysis of the extracted features independent of any classification
scheme is presented. Limitations of the results are also discussed.

5.3.1 Classification Results

The results using the classification scheme presented in Section 5.2.3 with the feature sets
SL, SH , and ST = SL

⋃
SH (see Section 5.2.2) are summarized in Table 5.2. For comparison

purposes, SVM parameter selection was performed using three different values for Fβ (β =
{1, 1.25, 1.5}). Note that the SVM parameter selection strategy is not a deterministic one
since a random 80%/20% train/test split is chosen for each cross-validation trial. The
sensitivity and specificity scores were therefore obtained over 10 independent classification
runs. That is, the SVM parameter selection and classification scheme were executed in 10
separate instances, each yielding potentially different SVM parameters due to the stochastic
nature of parameter selection. The mean and standard deviation of the accuracy metrics
across the 10 trials were used to show the consistency of the results.

The best mean results in Table 5.2 are bolded for each metric (i.e., sensitivity, specificity,
accuracy) and for each Fβ. The following observations can be made from the results.

General Accuracy Patterns

SH consistently attains slightly higher sensitivity metrics than the other two feature sets
across each Fβ (92.52%, 96.22%, 96.64% for F1, F1.25, F1.5 respectively). However, its speci-

1µ mean, σ standard deviation
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Table 5.2: Comparing classification results of different feature sets over 10 cross-validation
trials. See Section 5.2.2 for feature set descriptions.

Optimization Feature set (#) Sensitivity (%) Specificity (%) Accuracy (%)
Function (Fβ) µ1 σ1 µ σ µ σ

F1

SL (52) 91.43 1.18 66.55 2.39 80.92 0.65
SH (10) 92.52 3.75 39.66 9.34 70.19 2.14
ST (62) 91.01 1.64 73.45 3.69 83.59 1.14

F1.25

SL (52) 92.94 1.54 64.48 1.38 80.92 0.64
SH (10) 96.22 1.78 32.64 2.61 69.37 0.28
ST (62) 92.52 1.22 66.09 2.78 81.36 1.15

F1.5

SL (52) 94.37 1.05 57.59 5.24 78.83 1.93
SH (10) 96.64 0.56 31.49 2.18 69.13 0.92
ST (62) 92.94 1.95 65.06 7.21 81.17 2.03

ficity is usually low compared to the other two feature sets. This is examined further below.
Conversely, ST consistently attains the highest specificity and accuracy metrics of all the
feature sets. This indicates that the concatenation of the HLIF set SH with the low-level
feature set SL is a valid one, yielding high classification results.

Figure 5.3 graphically portrays how the mean and standard deviation of sensitivity
and specificity change across feature sets (assuming β=1 for illustrative purposes). Clas-
sification using ST (green) exhibits approximately a 10% increase in specificity over SL
(red), while attaining high sensitivity with a small standard deviation. This alludes to
ST ’s capability of attaining high performance scores with high test-retest reliability. SH
attains high sensitivity, but has a relatively large standard deviation indicating moderate
test-retest reliability. Adding the low-level features helps the test-retest reliability, however
theoretically a larger data set should significantly help this shortcoming since the HLIF val-
ues would be more indicative of the population distribution. Since HLIFs are designed to
model human-observable characteristics, lots of data is required to “learn” such high-level
characteristics. This is discussed further in Section 5.3.4.

Analysing the Results of SH

Interesting metrics are observed for the SH feature set. It attains very high sensitivity
(consistently above 90%) but conversely low specificity (consistently below 40%). This
behaviour is due to the effects exhibited by using a linear classifier in a low dimensional
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(a) Sensitivity

(b) Specificity

Figure 5.3: Graphical representation of classification accuracy from the results presented in
Table 5.2 (using F1). Notice how appending SH to SL increases the mean sensitivity while
maintaining similar sensitivity standard deviation in ST , therefore increasing performance
while maintaining test-retest reliability.

feature space on a small data set. This can be explained by considering the following
case. Assume that the classifier predicts everything as malignant (i.e., ∀fi, ŷ(fi) = 1).
Accordingly, precision and recall values become as follows:

TN = FN = 0

⇒prec =
TP

TP + FP
=
nm
n

⇒rec =
TP

TP + 0
= 1

where nm is the number of malignant cases in the data and n is the total number of data.
This classification translates to a perfect recall score, and a precision score proportional
to the percentage of malignant cases in the data. Now, consider the following facts. In
our case, 57% of the data is malignant melanoma. Melanoma can take on many different
shapes and colours (see Chapter 2). Remember that these images are uncalibrated images
obtained in unconstrained environments. It is difficult for a small number of features to
successfully separate the classes in such a setting. Our data set is relatively small. All
of these factors contribute to the fact that it would be difficult for the linear classifier to
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Figure 5.4: Effect of β in Fβ on mean sensitivity and specificity from the results presented
in Table 5.2. Blue lines are sensitivity curves, and red lines are specificity curves. Notice
how sensitivity rises with increased β, whereas specificity drops.

attain a higher Fβ without sacrificing recall in a low-dimensional space. This problem can
theoretically be abated with a larger data set that is more representative of the population
distributions, as discussed further in Section 5.3.4.

Effect of Fβ on Classification Results

The choice of Fβ as an objective function for SVM parameter selection affects the final
classification results. Remember that a higher β weighs recall higher than precision during
optimization, effectively varying the relative “importance” of recall. In fact, a value of
β translates to recall being β-times as “important” as precision by the definition of the
weighted harmonic mean. Since the mathematical formulation of recall is the same as
that of sensitivity, it makes sense that as β increases, sensitivity increases and specificity
decreases. This is indeed observed in Table 5.2 for all three feature sets. This pattern is
shown graphically in Figure 5.4. This parameter β can be tuned according to the user’s
preference regarding false positive and false negative rates.
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Table 5.3: Welch’s two-sample t-test on the set of HLIFs

HLIF fA1 fA2 fB1 fB2 fC1 fC2 fC3 fC4 fC5 fC6
p-value <0.001 0.036 <0.001 <0.001 0.004 0.039 0.13 0.026 0.048 0.002

5.3.2 Statistical Evaluation of the Feature Space

The feature space can be statistically analysed for class separability. This provides classifier-
independent measures of the performance of each feature at identifying melanoma. Al-
though these tests hold their own set of assumptions, conclusions can be drawn on each
feature independently, thus contributing to a more holistic analysis of the proposed fea-
tures. The metrics used to evaluate the feature space are described here, along with the
computed results.

Two-sample t-test

A two-sample t-test tests the statistical difference of two distributions. It assumes that
the classes are normally distributed with unknown but unequal variances according to
N (µ, σ2

i ), where µ is the population mean and σ2
i is the class variance. The feature score

normalization step (see Section 5.2.2) transforms the feature scores to a zero-mean unit-
variance distribution. Specifically, given sample data from two classes, Welch’s two-sample
t-test seeks to reject the null hypothesis H0 that two class sample distributions come from
the same population distribution.

Table 5.3 shows the results of running Welch’s two-sample t-test for each HLIF. A low
p-value indicates that a particular feature differentiates between the two classes (malignant
and benign) very well, under the assumption of normality. Three of the features exhibit
p-values less than 0.001, indicating that they are good feature descriptions. Further, only
one feature (fC3 ) exhibits a p-value greater than 0.10. However, this feature is kept, since
it adds information to fC4 , and 0.10 is not a terrible score when dealing with the noisy
unconstrained environment of skin lesions in standard camera images.

The normalized histograms of p-values for SL and SH using Welch’s two-sample t-test
are shown in Figure 5.5. A larger percentage of features from SH exhibit low p-values
compared to those from SL. for example, 50% of the features from SH exhibited p-values
less than 0.001, whereas only 28% of the features from SL exhibited such low p-values.
These results alludes to the discriminative power of HLIFs by nature for problems that
involve improving intuitive identification.
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(a) Histogram of p-values for HLIFs

(b) Histogram of p-values for low-level features

Figure 5.5: Comparison of p-values using Welch’s two-sample t-test on each of HLIFs
and low-level features from [27]. The x-axis is log-scale, indicative of p-value importance.
Notice how a much higher percentage of HLIFs exhibit small p-values than the low-level
features, alluding to the discriminating power of HLIFs.

Table 5.4: Mann-Whitney U test on the set of HLIFs

HLIF fA1 fA2 fB1 fB2 fC1 fC2 fC3 fC4 fC5 fC6
p-value <0.001 0.003 <0.001 <0.001 0.003 0.03 0.061 0.007 0.072 0.004

Mann-Whitney U Test

Another test of data separability is the non-parametric Mann-Whitney U test [56]. Given
sample data from two classes, the Mann-Whitney U test seeks to reject the null hypothesis
H0 that two class sample distributions come from the same population distribution. It
assumes that the classes are not normally distributed, and that the samples were obtained
independently.

Table 5.4 shows a similar story as the t-test results: HLIFs are good at discriminating
between the classes for which they are designed. To further emphasize this point, Figure 5.6
shows that a much larger percentage of HLIFs attain lower p-values than low-level features.
These results are consistent with the results obtained in Section 5.3.2, providing further
evidence that HLIFs are very discriminatory especially compared to low-level features.
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(a) Histogram of p-values for HLIFs

(b) Histogram of p-values for low-level features

Figure 5.6: Comparison of p-values using the non-parametric Mann-Whitney U test on
each of HLIFs and low-level features from [27]. The x-axis is log-scale, indicative of p-
value importance. Much like the results of the t-test, a larger percentage of HLIFs exhibit
small p-values than the low-level features, alluding to the discriminating power of HLIFs.

5.3.3 Providing Intuitive Rationale

It stands to reason that a doctor is more likely to trust a computer-generated malignancy
prediction if intuitive rationale is provided along with the predicted label. Although it is
out of the scope of this thesis, this rationale can also be used in a reinforcement learning
scheme, where the user can give intuitive feedback to evolve the classifier. Furthermore,
the output can be used as a learning aid to new or training dermatologists, to test their
knowledge of the widely-used ABCD rule.

Figure 5.7 shows the 10 HLIF scores for a set of images, along with the qualitative
interpretation of the feature calculations (e.g., “High colour asymmetry”). The features had
been normalized so that the significance of a feature calculation can be easily interpreted
by a feature score’s number of standard deviations from the sample mean. Figure 5.8
provides an example interface for intuitive visualization of the colour asymmetry.
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(a) High colour asymmetry and complexity

(b) High structure asymmetry

(c) High border irregularity

(d) No abnormalities

Figure 5.7: Example HLIFs scores. Abnormally high feature scores are circled in red.
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(a) Lesion analysis results (b) Intuitive visualization of colour asymmetry

Figure 5.8: Intuitive visualization for the case presented in Figure 5.7a. Upon analysing the
image, the interface indicates that there is apparent colour asymmetry and complex colour
patterns by highlighting the relevant ABCD terms. When the user clicks on “Colour”, an
overlay is shown to provide intuitive justification for the claim.
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5.3.4 Discussion and Limitations

One over-arching conclusion can be drawn from the experimental results: HLIFs capture
relevant information for melanoma detection. We showed that a small set of HLIFs can
increase classification performance when combined with a large set of low-level features,
and that single HLIFs, if designed properly, are more effective at data separation than
single low-level features. The performance of the HLIFs themselves are not as powerful
as we would have hoped, however they do present one significant advantage over large
low-level feature sets: a small HLIF set requires much less data to adequately populate
the multi-dimensional feature space. A larger data set may allow the HLIF set to perform
better, as the classifier could be trained on more representative class distributions. In its
current state, insufficient data leads to suboptimal results.

A large hindrance of the current state of skin cancer detection research is the limited
amount of data available to the scientific community. Dermatologists may take pictures
of skin lesions, but restrict them to within their clinic, due perhaps to either privacy
or commercialization concerns. In order to ensure robust models and statistical validity,
much larger data sets must be accumulated for training and testing these decision sup-
port systems. This is especially the case since the images are obtained in unconstrained
environments, leading to extremely large variations in acquired data.

Another unfortunate by-product of the current data collection methods is that most
images presented with a final diagnosis are of late-stage melanoma. Melanoma patients’
prognosis is highly correlated with the stage in which it is identified (and excised). Although
there is merit in mid- to late-stage melanoma diagnosis, a large emphasis should be placed
on early-stage diagnosis for ensuring better survival rates. Again, data collection needs to
precede the validation of models for the systems to be accurate.

5.4 Summary

This chapter has presented empirical evidence supporting the effective nature of HLIFs.
The features presented in Chapter 4 were analysed in a classification framework as well
as a statistical classification-independent framework. These analyses have shown that, in
combination with low-level features, the small set of HLIFs generates promising results.
Furthermore, it was shown that individual HLIFs tend to represent meaningful information
on a greater level than individual low-level features, leading to better data separation with
small feature sets.
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Chapter 6

Conclusions

6.1 Summary

This thesis has presented a framework for designing high-level intuitive features (HLIFs),
and has proposed a set of HLIFs for quantifying skin lesion characteristics with the goal of
detecting melanoma. HLIFs are feature calculations that have been meticulously modeled
to describe some human-observable characteristic, and of which rationale can be relayed
to the user in some intuitive (perhaps visual) manner. It was shown in Section 5.3 that
skin lesion classification accuracy was improved when concatenating a small set of HLIFs
to a state-of-the-art low-level feature set. Individual HLIFs were shown to have more
statistical significance with respect to separating the data than individual low-level features
in Section 5.3.2. Furthermore, the addition of HLIFs enabled the provision of intuitive
rationale for the predicted malignancy, as shown in Section 5.3.3.

Chapter 3 presented a framework for designing HLIFs for a classification problem in
which the automatic classification scheme mimics or enhances human interpretation. Skin
cancer detection is such a case. That is, since dermatologists visually analyse skin lesions
using the ABCD rule, HLIFs can be used to automatically classify images of skin lesions.

Chapter 4 presented 10 HLIFs for describing asymmetry, border irregularity, and colour
variations of skin lesion images obtained with standard consumer-grade cameras using the
HLIF framework. The design of these features were inspired by the ABCD rule by which
many dermatologists visually analyse skin lesions for malignancy. In total, we proposed
two HLIFs for describing colour and structure asymmetry, two HLIFs for describing fine
and coarse border irregularity, and six HLIFs for describing colour complexity.
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Chapter 5 provided an experimental setup and the subsequent evaluation of the HLIFs
from Chapter 4 as well as state-of-the-art low-level features using a data set amalgamated
from public image repositories. We evaluated the efficiency of the HLIF set separately as
well as its effect when concatenated with the low-level feature set. The feature sets were
analysed using a linear SVM classifier, as well as using statistical tests of the feature space
independently of a classifier. Our experimental results indicated that HLIFs increased
classification accuracy of low-level features, HLIFs were individually better at separating
image data properly than the low-level features, and HLIFs provided means for conveying
diagnostic rationale to the user.

6.2 Future Work

It is the hope that this work may lead to more clinically-viable decision support systems
with the aid of powerful HLIF sets. As such, we have identified several areas of future
work that would benefit the skin cancer detection research.

6.2.1 Melanin and Hemoglobin Characterization

There has been a recent rise in melanin and hemoglobin information extraction techniques
using standard camera images [57, 17, 58]. Melanin and hemoglobin concentrations can
help elucidate information not immediately present in the original image. Using an accurate
hemoglobin/melanin extraction model, HLIFs can be designed to capture patterns about
the hemoglobin and melanin densities. Analysing the melanin information holds promise,
as melanoma is characterized by a metastatic growth of melanin-producing melanocytes.

6.2.2 HLIFs for Other Melanoma Patterns

Although the ABCD rule is powerful and widely used, there are other rules which lend
themselves to detecting melanoma. Among them are the Menzies method [59], seven-point
checklist [60], and CASH [61]. Furthermore, there have recently been arguments that
the ABCD rule is not very well-suited to detecting nodular melanoma [62]. This type of
melanoma is usually characterized by a circular border (i.e., no border irregularity), and
limited radial growth. A new rule, termed EFG, has been proposed to specifically detect
nodular melanoma [62]. There is therefore a demand to design HLIFs according to these
rules, so that more intuitive information can be captured, processed, and relayed back to
the user.

66



6.2.3 Analysing Lesion Evolution

The spatiotemporal evolution of a lesion can play an important role in early melanoma
detection. As discussed in Section 2.1.3, melanoma lesions undergo radial and vertical
growth phases. The rate at which lesions grow through these phases can be an indicator
of malignancy.

6.2.4 Dimensionality Reduction

Standard camera images obtained in unconstrained environments provide many technical
challenges. Features must be designed carefully to be maximally invariant to changes in
lighting, camera-specific RGB sensors, etc. Due to the noisy and unconstrained environ-
ment, many features are required to properly capture the intended diagnostic information.
This may lead to highly dimensional spaces, as is seen in low-level feature sets [27]. Due to
the lack of large data sets, this may pose a problem for classifier learning in such a sparse
feature space. There is therefore a need to design and apply dimensionality reduction
techniques to reduce the feature space dimensionality while not overfitting to the training
data. This may yield models with better generalisability and less prone to overfitting.

6.2.5 Data

A much larger endeavour that may have the largest impact on skin lesion detection research
is the systematic construction of a comprehensive data set. The current state of the research
is plagued with the lack of good data. With this data shortage, it is difficult to train and
analyse the decision support systems in a manner that can successfully generalise to new
lesions.
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