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Abstract—A set of high-level intuitive features (HLIFs) is
proposed to quantitatively describe melanoma in standard cam-
era images. Melanoma is the deadliest form of skin cancer.
With rising incidence rates and subjectivity in current clinical
detection methods, there is a need for melanoma decision support
systems. Feature extraction is a critical step in melanoma decision
support systems. Existing feature sets for analysing standard
camera images are comprised of low-level features, which exist
in high dimensional feature spaces and limit the system’s ability
to convey intuitive diagnostic rationale. The proposed HLIFs
were designed to model the ABCD criteria commonly used
by dermatologists such that each HLIF represents a human-
observable characteristic. As such, intuitive diagnostic rationale
can be conveyed to the user. Experimental results show that
concatenating the proposed HLIFs with a full low-level feature
set increased classification accuracy, and that HLIFs were able
to separate the data better than low-level features with statistical
significance. An example of a graphical interface for providing
intuitive rationale is given.

Index Terms—Decision support, feature extraction, melanoma,
pigmented skin lesion.

I. INTRODUCTION

CUTANEOUS melanoma (i.e., melanoma of the skin) is
the deadliest form of skin cancer [1]. The World Health

Organization (WHO) estimated that approximately 65,000
global deaths related to melanoma occurred in the year 2000
[2]. This death toll is increasing; melanoma incidence rates
have been increasing on average by 2.6% each year over the
last 10 years in the US [3]. If caught early when the cancer is
localized, a simple excision of the cancerous tissue results in
a 98% five-year survival rate [4]. However, if identified late
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when the cancer has spread remotely, the prognosis is a bleak
15% five-year survival rate [4].

Cutaneous melanoma is the cancerous growth of melano-
cytes, cells found at the bottom of the epidermal layer of the
skin, which are responsible for producing the UV-absorbing
pigment melanin. In North America, initial melanoma detec-
tion is usually done visually by a general practitioner, followed
by a follow-up appointment with a dermatologist for further
visual inspection. This process is time- and cost-inefficient,
especially with increasing incidence rates [3]. Additionally,
two factors make it difficult to visually identify melanoma: (1)
melanoma can be very similar in appearance to benign nevi
(i.e., non-cancerous “moles”) at the surface during its early to
mid-stages; (2) melanoma can take on widely varying shapes
and forms.

Dermatologists commonly use metrics such as the ABCD
(Asymmery, Border irregularity, Color patterns, and Diameter)
criteria [5], [6] or the seven-point checklist [7]. However,
usage of these metrics is very subjective, leading to large
inter-observer variability [8]. Systematic objective decision
support systems can help meet the demand of the rising rate
of melanoma and help reduce subjectivity.

A critical step in computer-aided melanoma detection in-
volves extracting quantitative features from images of lesions.
Many existing feature extraction methods have focused on
modeling the ABCD criteria using dermoscopic data (i.e.,
images obtained with a dermatoscope). Dermatoscopes are
optical devices that manipulate light characteristics to elucidate
sub-surface information. Reviews of existing features can be
found in [9], [10]. Unfortunately, the clinical use of dermato-
scopes is limited in North America, with a recent survey re-
porting less than 50% utilization in the USA [11]. We therefore
turned to analysing images obtained with standard consumer-
grade cameras. Some feature sets have been proposed for
images obtained with standard cameras (e.g., [12], [13], [14]),
however these feature sets combined many low-level features
(LLFs) to try to approximate ABCD. The importance of high-
level over low-level features has been recently discussed [15].
LLFs are (usually simple) features that were not designed to
model a high-level characteristic (e.g., asymmetry). This limits
the system’s ability to present diagnostic rationale, which
is important for user-system trust [16]. System credibility
has received attention in human-computer interaction research
[17]; however, these ideas have not been explicitly introduced
to melanoma decision support system research.

The main contribution of this work is a set of high-level
intuitive features (HLIFs) for analysing skin lesions. HLIFs are
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designed explicitly to model human-observable characteristics.
As such, an HLIF’s design is usually more complex than that
of a LLF. A decision support system that extracts HLIFs can
provide intuitive diagnostic rationale to the user according
to what they would expect to observe, with the aim of
increasing user-system trust. Experimental results show that
concatenating a small set of HLIFs and a set of LLFs increased
classification accuracy over the LLF alone. This work builds
on previous work [18], [19], [20] by extending the previously
proposed asymmetry and border irregularity HLIFs, and by
proposing six new HLIFs for color variation.

The remainder of the paper is organized as follows. Sec-
tion II provides a framework for designing HLIFs. Section III
presents a set of 10 HLIFs which models the ABCD melanoma
criteria. Section IV presents statistical analyses of the proposed
HLIFs as well as experimental classification results of the
HLIF with a recent full LLF set using the public databases
Dermatology Information System [21] and DermQuest [22].
Results and limitations of the system are discussed in Sec-
tion V and conclusions are drawn in Section VI.

II. HIGH-LEVEL INTUITIVE FEATURES (HLIFS)

This section presents high-level intuitive features (HLIFs) as
a feature extraction framework for intuitive classification prob-
lems. Advantages of designing HLIFs are discussed, followed
by general instructions for designing an HLIF. This framework
is used in Section III for extracting features relevant to skin
cancer detection.

A. Rationale

The success of a decision support system is highly reliant on
the efficacy of feature extraction. “Good” features are specific
characteristics about an image that project the data into a
space where the inherent classes are well separated. However,
effective feature extraction is not a trivial task.

B. Low-Level Features (LLFs)

Low-level features (LLFs) are features that are not designed
to model a high-level characteristic (e.g., color asymmetry).
Many feature sets combine several LLFs to capture some high-
level characteristic of an object. For example, to describe a le-
sion’s color, Ganster et al. combined simple calculations such
as minimum, maximum, average, and variance of intensity and
hue color channels [23]. These features do not individually
model lesion color, and are not aimed at describing specific
observable characteristics. This combination results in a high-
dimensional feature space, leading to theoretical and compu-
tational complexities.

A benefit of using LLFs is that the features do not require
significant design time. However, the increased dimensional-
ity of the feature space leads to many problems, such as:
the “curse of dimensionality” [24], increased computational
complexity, and possible overfitting due to the sparsity of the
feature space. In fields that lack large amounts of data, this
sparsity issue can be very problematic as it is hard to show
that the classifier is generalisable to new data. Furthermore,

classification results using LLFs cannot easily convey intuitive
rationale, as the features themselves are not intuitive to a user,
lending to reduced clinical acceptance [15].

C. Definition
We defined an HLIF as follows:

High-Level Intuitive Feature (HLIF)
A mathematical model that has been carefully designed
to describe some human-observable characteristic, and
whose outcome can be intuited in a natural (e.g., visual)
way.

In contrast to LLFs, HLIFs usually require more upfront
design time. An HLIF captures a specific characteristic that
is relevant to the given application (e.g., complexity of the
color distribution, smoothness of an object), making intuitive
feedback possible. As a result, fewer HLIFs may be needed
to accurately describe the data. This idea is explored further
in Section IV.

D. How to Design an HLIF
The first step in designing an HLIF is to study the tar-

get user. The goal is to understand how they analyse the
data. Recall that HLIFs are modeled according to a human-
observable characteristic. These characteristics are unique to
each application. This can be accomplished by conducting
observational studies or a literature review.

The second step is to identify available tools for modeling
high-level characteristics. For example, perceptually uniform
color spaces (e.g., CIE L∗a∗b∗) can be used to quantify color
distribution patterns.

The third step is the modeling stage. The feature should
describe a high-level characteristic such that intuitive feedback
can be provided to the user (e.g., graphically).

Although this paper focuses on the application of HLIFs
for melanoma detection, the HLIF framework can be applied
to other problems that involve classification of data using
semantic decomposition.

III. SKIN LESION HLIFS

This section presents the design and calculation of 10
HLIFs for the detection of melanoma in images obtained
using standard consumer-grade cameras. These features were
designed to model the intuitive ABCD metric widely used
by dermatologists. Since the feature models follow the HLIF
framework, the system can provide intuitive diagnostic ratio-
nale. The proposed asymmetry features are extensions of the
work presented in [18], and the border irregularity features are
extensions of the work presented in [19], [20]. The diameter
(“D”) criterion was not addressed since the acquisition process
was unconstrained, making scale inference challenging.

A. Asymmetry HLIFs
Dermatologists try to identify asymmetry of the shape

and/or color of a skin lesion. While benign nevi tend to
have homogeneous color distributions, melanomas tend to be
asymmetrically pigmented [5], [6]. Furthermore, while benign
nevi tend to be elliptically shaped, melanomas tend to have
complex shapes.
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1) HLIF for Color Asymmetry: The goal of an HLIF for
describing color asymmetry is to differentiate lesions based on
the spatial uniformity and symmetry of the color distribution.
This feature is similar to field color asymmetry [25], except
that Earth mover’s distance is used instead of entropy and
many axes of separation are considered.

Given a segmented skin lesion, the major axis was chosen
as the initial axis of separation (AoS). The major axis passes
through the center of mass (i.e., centroid) of the lesion shape
and describes the maximum amount of structural variation
(i.e., the transverse diameter of the fitted ellipse). The color
distributions in the perceptually uniform CIE L∗a∗b∗ space
on each side of this AoS were compared. In particular, k
“signatures” [26] on both sides of the AoS were determined
using k-means clustering, using the final k clusters as color
signatures. Mathematically,

Sθi = k-means(Cθi , k) (1)

where θ denotes the orientation of the AoS, Sθi ∈ {Sθ1 , Sθ2} is
the color signature (weighted clusters) in CIE L∗a∗b∗ space to
either side of the AoS, Ci ∈ {Cθ1 , Cθ2} is the color distribution
to either side of the AoS in CIE L∗a∗b∗ space, and k-
means(Cθi , k) is k-means clustering of data Cθi into k clusters.

Intuitively, Sθi is a set of points in three-dimensional space
where each point has a mass equivalent to the number of points
within the cluster. The Earth mover’s distance (EMD) [26] was
computed using these two signatures. This “distance” metric
quantifies the amount of perceptual work needed to transform
the color distribution from one side of the lesion to the color
of the other, thus effectively representing the amount of color
asymmetry. This formulation was repeated over n equally
spaced orientations so that a uniform sampling of AoS was
considered. The feature calculation was determined to be the
maximum asymmetry score yielded over the n trials. We used
a fast implementation of EMD in our calculations [27]. To
ensure consistent calculations and enhance user-system trust,
we used the deterministic PCA-Part k-means initialization
[28], [29].

The final feature calculation is as follows:

fA1 = max
θ

{
EMD(Sθ1 , S

θ
2)
}

(2)

where θ is the orientation of the AoS, Sθ1 and Sθ2 are the color
signatures in CIE L∗a∗b∗ space as in (1). Since dermatologists
seek to identify six unique colors using dermatoscopes [5],
[6], we used k = 10 color clusters to account for the varying
lighting conditions present in standard camera images, and
n = 12 separation axes.

Figure 1 depicts an example of this HLIF. The maximal
AoS is plotted as a white line through the centroid of the
lesion, and the obtained CIE L∗a∗b∗ color signatures of both
sides of the AoS are plotted, where the size of the sphere
denotes the number of pixels belonging to that cluster centroid
(i.e., weight). Figure 1b and Figure 1c intuitively capture the
primary observable colors above and below the AoS. For
example, Figure 1b shows primary dominance of light-tan
colors as well as smaller concentrations of dark-brown colors.
The two color signatures are markedly different, which is
captured using the EMD.

(a) Segmented lesion

(b) L∗a∗b∗ color signature
above the line

(c) L∗a∗b∗ color signature be-
low the line

Fig. 1: Example of fA1 on a superficial spreading melanoma
with asymmetric colors. Notice how (b) and (c) capture the
intuitive color characteristics of the lesion on each side of the
line, irrespective of texture and lighting variation. It is apparent
that “work” is required to transform one color signature into
the other. In this case, fA1 = 23.86.

2) HLIF for Structural Asymmetry: A lesion’s shape be-
comes less likely to be symmetric as it deviates from the
ideal elliptical structure. Structural asymmetry can therefore be
approximated by the coarse complexity of the lesion’s spatial
structure. The lesion’s shape was reconstructed using Fourier
descriptors [30] in two coarse manners to quantify structure
complexity, according to the following algorithm. This builds
on previous features using Fourier descriptors (e.g., [31], [32])
by adding a reconstruction step to the descriptor process.

The lesion border was sampled using a pre-determined sam-
pling rate. This is necessary since the number of frequencies
represented by the discrete Fourier transform is directly related
to the number of discrete spatial samples. Using a constant
sampling rate ensures consistent reconstruction. The Fourier
descriptors of the shape were computed. In particular, the
fast Fourier transform (FFT) was applied on the complex
number f = x + iy where (x, y) are the border pixels’
Cartesian coordinates [30]. In order to omit certain high-
frequency information, frequency components were discarded
(i.e., their amplitudes were set to 0). The inverse fast Fourier
transform (IFFT) was used to generate two low-frequency
reconstructions. The first reconstruction used the lowest two
frequencies, which represented the coarsest approximation of
the lesion border assuming an elliptical shape. The second
reconstruction used n > 2 frequencies to capture the presence
of coarse structural variability. The normalized area between
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(a) Segmented lesion

(b) Total area (c) Differential area

Fig. 2: Example of fA2 on a superficial spreading melanoma
with asymmetric structure. The asymmetry is introduced due
to the lack of pigmentation density in the middle of the lesion.
This structural variation is captured in the area differential
between the two-frequency and five-frequency border recon-
structions. In this case, fA2 = 0.327.

these two reconstructions was used to quantify the amount of
complexity. Complex structures exhibit large area differentials,
and simple structures (e.g., elliptically shaped benign lesions)
exhibit very little difference.

The final feature calculation is as follows:

fA2 =
area(R2 ⊕Rn)
area(R2 ∪Rn)

(3)

where area() is a function that calculates the area of a
geometric shape, R2 and Rn are the two-frequency and n-
frequency reconstructions (n > 2), and ⊕,∪ are the XOR
and UNION operators, respectively. The XOR area can be
interpreted as the differential lesion area as compared to an
elliptical lesion. In our tests we used a 1000-point sampling
rate and used five low-frequency components.

Figure 2 depicts an example of this HLIF using n = 5.
The structure is very asymmetric, with one side containing
much less abnormal pigmentation than the other. The coarse
structure variation is captured in Figure 2 by the five-frequency
reconstruction (green) and not the two-frequency reconstruc-
tion (pink). Thus, there exists a significant area differential
between the two, indicating likely asymmetry. This can be
intuitively observed in the differential area plot.

B. Border Irregularity HLIFs

Dermatologists try to identify irregular borders of the skin
lesion. Melanoma cases tend to have highly irregular pig-
mented borders such as “spiky” borders [5], [6].

1) HLIF for Fine Irregularities: Melanoma cases often con-
tain abrupt localized pigmentation patterns, such as “spikes”.
In order to quantify these “fine” irregularities, the theory of

(a) Morphological closing (b) Morphological opening

Fig. 3: Example of fB1 on a lesion shape whose border contains
fine irregularities (peaks and valleys). Morphological closing
successfully fills in the abrupt valleys, and morphological
opening fills out the abrupt peaks. In this case, fB1 = 0.208.

morphological operations [33] can be used. This feature draws
from morphological shape representation theory such as [34].

Morphological operations, unlike Fourier descriptors, are
able to manipulate shapes on a local scale. The amount of
localized abrupt pigmentation can be measured using mor-
phological opening and closing. The resultant normalized
difference in area from these operations was compared to the
original lesion. This can be measured using the normalized
self-dual top-hat operator, described below.

The final feature calculation is as follows:

fB1 =
Tb + Tw
Alesion

(4)

where Tb and Tw are the black top-hat and white top-
hat morphological operators, and Alesion is the area of the
original segmentation. Here, the numerator is the self-dual
top-hat operator. Specifically, Tb = Aclosed − Alesion, and
Tw = Alesion − Aopened, where Aopened and Aclosed are the
areas resulting from performing morphological opening and
closing on the original lesion. The normalized self-dual top-
hat operation represents the amount of exterior and interior
irregularities. In our tests, we used a disk structuring element
of radius 20.

Figure 3 depicts an example of this HLIF. In Figure 3a,
irregular valleys in the border are filled in, accounting for a
significant proportion of the overall area. Similarly in Fig-
ure 3b, the irregular peaks are filled out. The amount of area
filled in/out is a good indicator of border irregularities.

2) HLIF for Coarse Irregularities: Coarse border irregular-
ities may also be present in melanoma cases. These irregulari-
ties are general structural shapes that deviate from an elliptical
shape (e.g., notches in the border).

From a signal processing perspective, these irregularities
can be conceptualized as large spatial variations in low-
frequency information. Fourier descriptors were used again to
capture this information. In particular, much like the structural
asymmetry HLIF presented in Section III-A2, the lesion was
sampled at a pre-determined sampling rate and reconstructed
using only a small number of low frequencies. To quantify
the coarse structural deviations, the perimeters of the low-
frequency reconstruction and the original border lesion were
compared.
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Fig. 4: Example of fB2 on a superficial spreading melanoma
with coarse border irregularities. Notice the general deviations
away from the smooth oval shape produced by the four-
frequency reconstruction. In this case, fB2 = 0.325.

The final feature calculation is as follows:

fB2 =
|Porig − Plow|

Porig
(5)

where Porig and Plow are the perimeter lengths of the original
and low-frequency reconstruction. We used 1000-point sam-
pling rate using linear interpolation and used four-frequency
reconstructions.

Figure 4 depicts an example of this HLIF. Notice how the
border contains several points at which it swoops down below
and back up above the low-frequency border reconstruction.
These are characteristic patterns of coarse border irregularities,
where the border does not follow a smooth oval shape.

C. Color HLIFs

Recurring color patterns have emerged in melanoma cases
[5]. Unfortunately, most of the ABCD color characteristics
[5], [6] are only observable with the aid of a dermatoscope.
Furthermore, many image processing tools for medical image
analysis were developed for monochrome images [35]. Many
existing color features are statistical features in either RGB
or alternative color spaces [9]. There is therefore a significant
demand for novel research on quantifying color information
pertaining to melanoma detection, particularly using standard
camera images.

The clinical definition of malignant melanomas states that
they exhibit varying color patterns, which can be interpreted as
complex non-uniform color distributions compared to benign
nevi. The spatially varying pigment densities are a result of the
metastatic growth of melanocytes. While exact color patterns
vary widely, the fundamental “complex” nature of the color
distribution can be observed in many melanoma cases.

The goal of these HLIFs is therefore to capture the com-
plexity of the color distribution. An intuitive way to determine
this information is to compare reconstructions of the lesion’s
color distribution using fixed numbers of representative colors.
The fundamental theory for this framework draws is similar
in nature to a recent paper that proposed k-means for color-
spatial representation [36]. In addition, it adds a reconstruction
stage using this theory for color complexity analysis.

Consider a typical benign nevus with a fairly uniform
color distribution. This lesion’s color can be estimated fairly
accurately by using one representative color for a given lesion
(i.e., a representative red color). In contrast, melanoma cases
(see, for example, Figure 1) exhibit varying colors, making it
difficult to find a single color that accurately represents the
lesion’s color distribution.

First a color complexity analysis framework is presented,
which was used to design the proceeding HLIFs. The color
complexity analysis framework is comprised of the following
four steps:

Step 1: Transform the image to a perceptually uniform
color space.

Step 2: Construct color-spatial representations that model
the color information for a patch (i.e., local grid)
of pixels.

Step 3: Cluster the patch representations into k color clus-
ters.

Step 4: Quantify the variance found using the original
lesion and the k representative colors.

Step 1: Perceptual Uniformity The original RGB image
was transformed into the CIE L∗a∗b∗ space [37], in which
the color distribution is approximately perceptually uniform
under the D50 illuminant. Although we cannot assume stan-
dard illuminant profile across all images, these effects are
reduced if we compare relative perceptual color changes. The
perceptual difference should be similar regardless of slight
tonal differences between cameras. This way, color values
may be compared according to approximate relative perceptual
difference.

Step 2: Patch Representation The goal of this step was to
represent each patch of pixels in such a way that patches
with similar pigmentation get grouped together in Step 3. To
do this, two types of information were extracted from each
patch: color information and spatial information. This way,
spatial constraints enforce locally cohesive color structures,
modeling the spatial localization of skin blotches. This can be
represented by concatenating each column of pixel values in a
patch across each CIE L∗a∗b∗ channel into a one-dimensional
vector, and encoding the center pixel coordinate for spatial
context. Mathematically, for a given square pixel patch Pw(x)
of width w centered around the pixel at location x = (xx,xy)
in image I in CIE L∗a∗b∗ space, the spatial (rs) and color
(rc) representations for patch Pw were defined as:

rs(Pw(x)) =
[
xx xy

]
, (6)

rc(Pw(x)) =
[
g(L∗)(Pw(x)) g(a∗)(Pw(x)) g(b∗)(Pw(x))

]
(7)

gλ(Pw(x)) =
[
Pw(x11, λ) Pw(x21, λ) . . .

Pw(xw1, λ) Pw(x12, λ) . . . Pw(xww, λ)
]

(8)

where Pw(xij , λ) is the pixel value from channel λ at
the ith row and jth column in the patch. Note that
card(gλ(Pw(x))) = w2, making card(rc(Pw(x))) = 3w2

and card(rs(xi)) = 2, where card(·) is the cardinality
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Fig. 5: Graphical representation of the patch color represen-
tation in (7). Lij , aij , bij represent the pixel values for the
particular channel. For each channel, the pixel values are
concatenated consecutively by column.

function. A graphical depiction of rc is given in Figure 5.
The final representation was the concatenation of the spatial
and color information:

rt(Pw(x)) =
[
rc(Pw(x)) rs(Pw(x))

]
(9)

Step 3: Representative Colors Upon populating the pro-
jection space with vectors rt(Pw(xi)) for each point xi in
the image, k-means clustering was used to determine the
k most representative colors of the lesion. Recall that k-
means performs clustering by minimizing the within-cluster
sum-of-squares distance of the clusters. This translates to
clustering according to perceptual similarity. For consistency
and reproducibility, PCA-Part using Otsu’s method was used
[28], [29] to generate a deterministic cluster initialization.
Since the effect of the spatial characteristics in (6) is affected
by the patch size (i.e., the length of the feature vector), an
additional weighting term was added into the k-means within-
class sum-of-squares criterion as follows:

D = argmin
S

k∑
j=1

∑
rt(·)∈Sj

(
||rc(Pw(xi))− dcj ||2+

||λ · rs(Pw(xi))− dsj ||2
)

(10)

where D = {di}i is a set of k centroid color-spatial elements,
Sj is a color cluster, dc and ds are the color and spatial
components of the color-spatial element, and λ is a relative
spatial weighting term. The set {dci}i can be regarded as a set
of representative color patches.

Step 4: Color Reconstruction The output of Step 3 is a
set D of k colors (i.e., the centroids of the clusters) along
with the pixels in each cluster. Using this information, the
image (lesion) can be reconstructed by replacing each pixel’s
original value with that of the representative centroid. These
reconstructions can be used to quantify the amount of color
variation.

HLIFs for Color Complexity Recall that the goal is to use the
reconstruction scheme to generate features whose models can
be intuited. As aforementioned, “simple” benign lesions may
be reconstructed accurately using as little as one representative
color, whereas melanoma color distributions are usually more
complex. Three sets of HLIFs were generated to satisfy these
conditions. In our tests, we used 9×9 patches (w = 9), spatial
weight λ = 1.75, and k = {1, 2, 5} clusters. These values were
chosen such that we could compare against the “base case”
(one cluster), as well as more complex reconstructions while
noticing that lesion images mostly comprise a few colors but
have pixels saturated with lighting artefacts. Dermatologists
look for six distinct colors using a dermatoscope [5], [6],
however not all of these colors are observable using standard
cameras. We therefore chose five colors as our upper bound
for reconstruction.

Using this color complexity analysis framework, six HLIFs
were constructed that characterize the complexity of a lesion’s
color distribution. Each feature calculation can be done follow-
ing the execution of the color complexity framework.

1) HLIFs for Quantifying Reconstruction Error: The first
set of HLIFs treats the original lesion as the “ground truth”.
It compares the relative reconstruction errors in CIE L∗a∗b∗

space using one-, two-, and five-color reconstructions. If there
is little difference between these reconstructions, it can be
concluded that the color distribution is simple; conversely,
larger differences indicate more complex color spaces.

The final formulation of these two HLIFs is as follows:

fC1 =
RMSD(ILab, R(ILab, D2))

RMSD(ILab, R(ILab, D1))
(11)

fC2 =
RMSD(ILab, R(ILab, D5))

RMSD(ILab, R(ILab, D1))
(12)

where RMSD(I1, I2) is the root mean squared difference
between images I1 and I2, ILab is the lesion in CIE L∗a∗b∗

space, and R(I,Dk) is the color reconstruction of image I
using k color patches (using computed set D from Step 3).
These HLIFs represent the relative reconstruction error be-
tween one-vs-two and one-vs-five color patches, thus capturing
the complexity of the color distribution.

Figure 6 depicts an example of these HLIFs. Reconstruction
error using one color (i.e., RMSD(ILab, R(ILab, D1))) is
large since one cluster is insufficient to reconstruct the com-
plex color distribution of the original lesion. The reconstruc-
tion error decreases slightly with the two-color reconstruction,
although much of the red and pink pigmentation is still not
present. The error is substantially decreased with the five-color
reconstruction, which successfully reconstructs the tan, pink,
red, and dark pigmentations. The rate of reconstruction error
over the number of clusters is quantified using fC1 and fC2 .

2) HLIFs for Quantifying Color Complexity Evolution:
The second set of HLIFs quantifies the amount of color com-
plexity by comparing the evolution of the color distribution
across reconstructions with varying numbers of color clusters.
Underlying color patterns emerge when reconstructing with
more colors, whereas a simple lesion might be accurately
represented by only a single color. To capture this information,
the mean “difference” between reconstruction using one, two,
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and five colors was computed. This was computed using the
mean `2 difference between two reconstructions in the CIE
L∗a∗b∗ space, resulting in a value that portrays the perceptual
difference between the reconstructions.

The final formulation of these two HLIFs is as follows:

fC3 =
1

N
||R(ILab, D5)−R(ILab, D1)||F (13)

fC4 =
1

N
||R(ILab, D5)−R(ILab, D2)||F (14)

where N is the number of pixels in the lesion, || · ||F is the
Frobenius norm, and R(I,Dk) is the reconstruction of image
I with k color clusters as in (11) and (12).

Figure 6 depicts an example of these HLIFs. Treating the
one-color reconstruction as the “base case”, there is drastic
color evolution using two- and five-color reconstructions. For
example, the two dominant pigments are tan and black, both of
which are reconstructed using two clusters. The less dominant
red and pink pigments are reconstructed using five clusters.
This evolution is successfully modeled by the HLIFs.

3) HLIFs for Quantifying Mean Color Differences: The
third and final set of HLIFs compares the lesion’s color
signatures across different numbers of clusters. EMD is again
a very appropriate tool for quantifying this information. A
“signature” is defined as a cluster representation of the point
distribution, where the number of points belonging to each
cluster is stored [26]. When comparing two signatures, EMD
does not require these signatures to be the same size. This is
an important property for our use of color comparison.

EMD calculates how much “work” is needed to transform
one signature into another by considering the distance and
mass when moving a point from one cluster to another. In our
case, the distance is the Euclidean distance in CIE L∗a∗b∗

space, and the mass is the number of pixels belonging to a
particular cluster after the deterministic k-means procedure.

The final formulation of these two HLIFs is as follows:

fC5 = EMD(S1, S2) (15)
fC6 = EMD(S2, S5) (16)

where Sk is the signature using k color clusters.
Figure 6 depicts an example of these HLIFs. The one-cluster

signature (Figure 6c) is a single cluster that approximates the
average lesion color. The two-cluster signature (Figure 6e)
incorporated some of the dark pigmentation, effectively cre-
ating a smaller black cluster at a perceptual distance away
from the original cluster. The five-cluster signature (Figure 6g)
incorporated the red pigmentation, as well as some of the more
subtle pink pigments. It can be observed that a non-trivial
amount of “work” is required to transform the one-cluster
signature to the two-cluster signature by “transporting” the
tan pigment to the dark pigment, and that even more work
is required to transform the two-cluster signature to the five-
cluster signature by creating the red and subtle pink pigments.
This is indicative of a lesion with large color complexity.

IV. EXPERIMENTAL RESULTS

This section presents the experimental evaluation of the
HLIFs proposed in Section III. This feature set was analysed

with a state-of-the-art low-level feature (LLF) set modeled
according to the ABCD rule [12], which is a complete ABCD
feature set that was shown to attain higher accuracy than exist-
ing full ABCD feature sets [12]. This 52-feature LLF set has
been characterised as “low level” according to the definition
given in Section II-B. The final proposed feature set was the
combined set of HLIFs and LLFs. Analysis was performed
in two manners. First, the features were statistically analysed
independently of classification using our data set to assess the
inherent class separability of the features. Second, a standard
classification scheme was performed. Finally, observations and
limitations of the experimental results are discussed.

A. Data

We collected 206 images of skin lesion, which were ob-
tained using standard consumer-grade cameras in varying and
unconstrained environmental conditions. These images were
extracted from the online public databases Dermatology In-
formation System [21] and DermQuest [22]. Of these images,
119 are melanomas, and 87 are not melanoma. Each image
contains a single lesion of interest. This is the same dataset
used in [18], [19], [20].

B. Experimental Setup

For each image, the lesion was manually segmented to
provide an “ideal” segmentation for feature extraction. That is,
we wished to analyse the feature extraction performance irre-
spective of an automatic segmentation’s accuracy. We rendered
the images rotation- and scale-invariant by performing the
following preprocessing step: prior to feature extraction, the
image was rotated so that the lesion’s major axis was parallel
to the horizontal axis, and the lesion fit within a 200 × 200
bounding box while maintaining the original aspect ratio. The
decision support workflow was implemented in MATLAB.

1) Preprocessing: We applied the MSIM skin illumination
correction algorithm [38]. Briefly, MSIM uses a Markov Chain
Monte Carlo (MCMC) approach to estimate a non-parametric
illumination model of the healthy skin. This model is used
as a prior to fit a quadratic surface to the pixels. Finally, this
quadratic surface is applied to the computed reflectance map
of the image to correct for the lighting variation contributing
to the non-uniform skin surface reflection.

2) Feature Extraction: Following the illumination correc-
tion, the HLIFs presented in Section III were extracted as well
as an existing feature set [12], which is the most recent full
ABCD feature set designed for standard camera images of pig-
mented skin lesions, to the best of the authors’ knowledge. For
simplicity of discussion and analysis, the following notation
is used throughout this section:

• SL – set of 52 LLFs describing ABCD [12].
• SH – set of 10 HLIFs presented in Section III.
• ST – set of 62 features obtained by concatenating SL and
SH (i.e., ST = SL

⋃
SH ).

Prior to passing the feature vectors into a classification
scheme, feature scaling was performed. Specifically, ∀f ∈ ST ,
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(a) Original lesion

(b) 1-cluster recon-
struction

(c) 1-cluster signature

(d) 2-cluster recon-
struction

(e) 2-cluster signature

(f) 5-cluster recon-
struction

(g) 5-cluster signature

Fig. 6: Example of {fC1 , . . . , fC6 } on a superficial spreading melanoma with a complex color distribution. Figures (b) (d) (f)
are color reconstructions using the proposed color complexity analysis framework from Section III-C, and Figures (c) (e) (g)
are the associated clusters in CIE L∗a∗b∗ space. The size of each sphere indicates the number of pixels belonging to that
cluster (“mass”). The color complexity is apparent when analysing the change in reconstructions and color signatures as the
number of clusters increases. In this case, fC1 = 0.682, fC2 = 0.480, fC3 = 0.189, fC4 = 0.095, fC5 = 125.3, fC6 = 73.9.

let fi be feature calculation f for image i. Then, each feature
was normalized as [39]:

f∗i =
fi − µf
σf

(17)

where f∗i is the normalized feature value, and µf and σf are
the mean and standard deviation over all computed feature
scores fi for feature f . This formulation transforms the data
such that each feature exhibits zero-mean and unit standard
deviation (and variance) across the data set. It has been shown
that scaling feature vectors eases numerical difficulties in
SVM’s optimization, and may result in better classification
performance [40]. Perhaps of more relevance to this work is
that this simplifies the task of determining the feature score’s
significance, as each feature score distribution is modeled by
the statistics of a normal distribution with mean µ = 0 and
standard deviation σ = 1. For example, a feature score of
fi = 2 signifies that it is two standard deviations away from
the mean feature score exhibited by the data set, representing
that it is larger than roughly 98% of the rest of the data. Al-
though this is a simplifying assumption of the data distribution,
it serves as an approximate indicator of feature scale.

3) Classification: We used a linear soft margin SVM clas-
sifier [41] due to its widely regarded robustness and simplicity.
The linear kernel was chosen to emphasize the degree of linear
separability of the data in the feature space rather than the
performance of a complex classifier (which is important in
decision support systems, but is out of the scope of the feature
extraction stage). Good accuracy can therefore be attributed
to the feature extraction algorithm’s ability to project the
data into a separable feature space. We used the LIBSVM
implementation for our experiments [42].

There are two parameters that influence the linear soft mar-
gin SVM optimization, denoted by c (error cost) and wi (class
i weight) in LIBSVM. To find an accurate SVM hyperplane for

the data, we optimized these parameters in accordance with the
LIBSVM authors’ recommendations [40] by choosing the best
Fβ [43] averaged across 50 independent cross-validation trials
over a geometric grid search. For each trial, we used a random
80%/20% data split for training/testing. Mathematically:

Fβ =
precision · recall

β2 · precision + recall
(18)

where

precision =
TP

TP + FP
(19)

recall =
TP

TP + FN
(20)

where TP, FP, FN are the number of true positive (correct
malignant prediction), false positive (incorrect malignant pre-
diction), and false negative (incorrect benign prediction) cases.
Recall is weighted β-times as important as precision [43]. If
the average Fβ using (ci, wi) was greater than the previous
maximum Fβ , (ci, wi) were stored.

C. Evaluating Classification Accuracy

Due to the lack of large data sets in melanoma detection
research, we used the leave-one-out cross-validation (LOO
CV) strategy for evaluating the success of the classification.
LOO CV is useful when dealing with this problem – that is,
evaluating the classifier’s ability to generalise using limited
data. In particular, for each image’s feature vector fk ∈ S, the
SVM classifier was trained on S \fk and tested on fk, yielding
a binary result: pass or fail. For a data set with n elements, this
strategy resulted in n independent training and testing phases,
of which the total error was determined by the total number
of incorrect predictions divided by n.
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(a) Histogram of p-values for SH

(b) Histogram of p-values for SL

Fig. 7: Comparison of p-values using Welch’s two-sample t-
test on each HLIF and LLF from [12]. The x-axis is log-scale,
indicative of p-value importance. A much higher percentage
of HLIFs exhibited small p-values than the LLFs, alluding to
the discriminating power of HLIFs.

D. Statistical Evaluation of the Feature Space

A statistical analysis of the extracted features was per-
formed to assess class separability. This provides classifier-
independent measures of the performance of each feature.
Although these tests hold their own unique set of assumptions,
conclusions can be drawn on each feature independently, thus
contributing to a more complete analysis of the proposed
features. The metrics used to evaluate the feature space are
described here, along with the computed results.

1) Two-sample t-test: Given sample data from two classes,
a two-sample t-test seeks to reject the null hypothesis H0

that two class sample distributions come from the same pop-
ulation distribution. It assumes that the classes are normally
distributed with unknown but unequal variances according to
N (µ, σ2

i ), where µ is the population mean and σ2
i is the class

variance. The feature score normalization (17) transforms the
feature scores to a zero-mean unit-variance distribution.

Table I shows the results of applying Welch’s two-sample
t-test for each HLIF. A low p-value indicates that a particular
feature differentiates between the two classes (malignant and
benign) very well, under the assumption of normality. Three of
the features exhibited p-values less than 0.001, indicating that
they are good feature descriptions. Further, only one feature
(fC3 ) exhibited a p-value greater than 0.10.

The normalized histograms of p-values for SL and SH
using Welch’s two-sample t-test are shown in Figure 7. A
larger percentage of features from SH exhibited low p-values
compared to those from SL. For example, 50% of the features
from SH exhibited p-values less than 0.001, whereas only
28% of the features from SL exhibited such low p-values.
These results allude to the discriminative power of HLIFs for
problems that involve improving intuitive identification.

(a) Histogram of p-values for SH

(b) Histogram of p-values for SL

Fig. 8: Comparison of p-values using the non-parametric
Mann-Whitney U test on each HLIF and LLF from [12]. The
x-axis is log-scale, indicative of p-value importance. A higher
percentage of HLIFs exhibited small p-values than the LLFs,
alluding to the discriminating power of HLIFs.

2) Mann-Whitney U Test: Another test of data separability
is the non-parametric Mann-Whitney U test [44]. Given sample
data from two classes, the Mann-Whitney U test seeks to reject
the null hypothesis H0 that two class sample distributions
come from the same population distribution. It assumes that
the different population have different medians.

Table I shows a similar story as the t-test results: HLIFs do
discriminate between the classes for which they are designed.
Figure 8 shows that a much larger percentage of HLIFs attain
lower p-values than LLFs. These results are consistent with
the results obtained using the two-sample t-test, providing
further evidence that HLIFs are very discriminatory especially
compared to LLFs.

E. Classification Results

The feature sets were evaluated using the classification
scheme described in Section IV-B3. Results using the feature
sets SL, SH , and ST = SL

⋃
SH are summarized in Table II.

For comparison purposes, SVM parameter selection was per-
formed using three different forms of Fβ (β = {1, 1.25, 1.5}).
The stochastic SVM parameter selection strategy was ran-
domized using an 80%/20% train/test split for each cross-
validation trial. The sensitivity and specificity scores were
therefore obtained over 10 independent parameter selection
and classification runs. The mean and standard deviation of
the accuracy metrics across the 10 trials were used to show
the consistency of the results.

For each Fβ , the best mean results in Table II are shown in
boldface for each metric (i.e., sensitivity, specificity, accuracy).
The following observations can be made from the results.

1) General Accuracy Patterns: SH consistently attained
slightly higher sensitivity metrics than the other two fea-
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TABLE I: Statistical significance of each HLIF using two tests (Welch’s two-sample t-test and Mann-Whitney U test)

HLIF fA
1 fA

2 fB
1 fB

2 fC
1 fC

2 fC
3 fC

4 fC
5 fC

6
Welch p-value <0.001 0.036 <0.001 <0.001 0.004 0.039 0.13 0.026 0.048 0.002
U test p-value <0.001 0.003 <0.001 <0.001 0.003 0.03 0.061 0.007 0.072 0.004

TABLE II: Comparing results of different feature sets over 10 independent classification trials. See Section IV-B2 for feature
set descriptions.

Optimization Feature set (#) Sensitivity (%) Specificity (%) Accuracy (%)
Function (Fβ) µ1 σ1 µ σ µ σ

F1

SL (52) 91.43 1.18 66.55 2.39 80.92 0.65
SH (10) 92.52 3.75 39.66 9.34 70.19 2.14
ST (62) 91.01 1.64 73.45 3.69 83.59 1.14

F1.25

SL (52) 92.94 1.54 64.48 1.38 80.92 0.64
SH (10) 96.22 1.78 32.64 2.61 69.37 0.28
ST (62) 92.52 1.22 66.09 2.78 81.36 1.15

F1.5

SL (52) 94.37 1.05 57.59 5.24 78.83 1.93
SH (10) 96.64 0.56 31.49 2.18 69.13 0.92
ST (62) 92.94 1.95 65.06 7.21 81.17 2.03

µ mean, σ standard deviation

ture sets across each Fβ (92.52%, 96.22%, 96.64% for
F1, F1.25, F1.5 respectively). However, its specificity was usu-
ally low compared to the other two feature sets due to the
weight of recall (sensitivity) in the optimization framework.
By appending SL to SH , ST consistently attained the highest
specificity and accuracy metrics of all the feature sets.

Classification using ST exhibited higher specificity than SL
in all cases, while attaining high sensitivity with a comparable
standard deviation to SL. This alludes to ST ’s capability
of attaining high performance scores with high test-retest
reliability. SH attained high sensitivity with a relatively large
standard deviation, indicating moderate test-retest reliability.
Appending the LLFs increased the test-retest reliability, how-
ever a larger data set should significantly abate this shortcom-
ing since the HLIF values would be more indicative of the
population distribution. Since HLIFs are designed to model
human-observable characteristics, a large data set is required
to “learn” such high-level characteristics. This is discussed
further in Section V.

2) Effect of Fβ on Classification Results: The choice of Fβ
as an objective function for SVM parameter selection affects
the final classification results. Remember that a higher β
weighs recall higher than precision during optimization. Since
the mathematical formulation of recall is the same as that of
sensitivity, as β increases, sensitivity increases and specificity
decreases. This is indeed observed in Table II for all three
feature sets. This parameter β can be tuned according to the
user’s preference regarding false positive and false negative
rates.

F. Providing Intuitive Rationale

One would expect that a doctor is more likely to trust a
computer-generated malignancy prediction if intuitive ratio-
nale is provided along with the predicted label. Each HLIF was
designed according to the ABCD criteria, which is a visual
metric commonly used by dermatologists. To infer intuitive

Fig. 9: Example HLIF scores for a nodular melanoma. Abnor-
mally high feature scores are highlighted in red.

rationale is simple, as each HLIF represents information for
which the dermatologist themself would look. This informa-
tion can usually be relayed graphically to the user, since
melanoma detection is a very visual process.

Figure 9 shows the 10 HLIF scores for an example image of
nodular melanoma. The features had been normalized on the
training data so that the significance of a feature calculation
could be easily interpreted by the number of standard devia-
tions from the sample mean feature score. Figure 10 provides
an example interface for intuitive visualization of the color
asymmetry.

Although out of the scope of this paper, this rationale can
also be used in a reinforcement learning scheme [45], where
the user can give intuitive feedback to evolve the classifier.
Furthermore, the output can be used as a learning aid to new or
training dermatologists, to test their knowledge of the widely-
used ABCD rule.

V. DISCUSSION AND LIMITATIONS

One over-arching conclusion can be drawn from the ex-
perimental results: HLIFs capture relevant information for
melanoma detection. We showed that a small set of HLIFs
can increase classification performance when combined with
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Fig. 10: Example intuitive visualization for the case presented
in Figure 9. Upon analysing the image, the interface indicates
that there is apparent color asymmetry and complex color
patterns by highlighting the relevant ABCD terms. When the
user clicks on “Color”, an overlay is shown to provide intuitive
justification for the claim.

a large set of LLFs, and that single HLIFs, if designed
properly, are more effective at data separation than single
LLFs. The performance of the HLIFs themselves are not fully
discriminative, however it was shown in Table I that individual
HLIFs capture more discriminative information than LLFs. A
larger data set may allow the HLIF set to perform better, as
the classifier could be trained on more representative class
distributions. In its current state, insufficient data leads to
suboptimal results.

A large hindrance of the current state of skin cancer
detection research is the limited amount of data available to the
scientific community [46]. Dermatologists may take pictures
of skin lesions, but restrict them to within their clinic, due
perhaps to either privacy or commercialization concerns. In
order to ensure robust models and statistical validity, much
larger data sets must be accumulated for training and testing
these decision support systems. This is especially the case
since the images are obtained in unconstrained environments,
leading to extremely large variations in acquired data.

Another unfortunate by-product of the current data col-
lection methods is that most images presented with a final
diagnosis are of late-stage melanoma. Melanoma patients’
prognosis is highly correlated with the stage in which it is
identified (and excised). Although there is merit in mid- to
late-stage melanoma diagnosis, a large emphasis should be
placed on early-stage diagnosis for ensuring better survival
rates. Again, data collection needs to precede the validation
of models for the systems to be accurate.

VI. CONCLUSION AND FUTURE WORK

This paper has presented a framework for designing high-
level intuitive features (HLIFs), and has proposed a full set of
HLIFs for quantifying skin lesion characteristics for melanoma
detection. HLIFs are feature calculations that have been
meticulously modeled to describe some human-observable
characteristic, and from which rationale can be relayed to
the user in some intuitive (perhaps visual) manner. It was
shown in Section IV that skin lesion classification accuracy
was improved when concatenating a small set of HLIFs and
a state-of-the-art LLF set. Individual HLIFs were shown to
have more statistical significance with respect to separating the
data than individual LLFs in Section IV-D. Furthermore, the
addition of HLIFs enabled the provision of intuitive rationale
for the predicted malignancy, as shown in Section IV-F.

It is the hope that this work may lead to more clinically-
viable decision support systems with the aid of HLIF sets.
Future work may involve designing HLIFs to characterise
melanin and hemoglobin information in RGB images (e.g.,
[47]), as well as designing HLIFs to model other intuitive
criteria, such as EFG for nodular melanoma detection [48],
or the three-dimensional characteristics of the lesion [49].
A much larger endeavor that may have the largest impact
on data-deficient melanoma detection field is the systematic
construction of a comprehensive data set.
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