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Abstract—High-level intuitive features (HLIF) that measure
asymmetry of skin lesion images obtained using standard cam-
eras are presented. These features can be used to help derma-
tologists objectively diagnose lesions as cancerous (melanoma)
or benign with intuitive rationale. Existing work defines large
sets of low-level statistical features for analysing skin lesions.
The proposed HLIFs are designed such that smaller sets of
HLIFs can capture more deterministic information than large
sets of low-level features. Analytical reasoning is given for each
feature to show how it aptly describes asymmetry. Promising
experimental results show that classification using the proposed
HLIF set, although only one-half the size of the existing state-
of-the-art low-level asymmetry feature subset, labels the data
with better success. The best classification is obtained by
combining the low-level feature set with the HLIF set.
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I. INTRODUCTION

Melanoma is the leading cause of death from all skin
diseases [1]. The World Health Organization (WHO) esti-
mates that one third of all cancer cases are skin cancers;
there are currently 132,000 new melanoma cases each year
worldwide; and one in five Americans is expected to develop
malignant melanoma in their lifetime [4]. Furthermore, the
WHO indicates that the ozone depletion is affecting this
number, and that every 10 percent decrease in ozone levels
will result in an additional 4,500 melanoma cases globally.
Early detection of melanoma is pivotal to the patient’s
prognosis. The five-year survival rate of patients whose
melanoma is caught early is 98%, whereas the survival rate
is 62% for cases of melanoma that have spread beyond the
regional tissue, and a dismal 16% survival rate for cases of
melanoma that have spread to parts of the body remote from
the primary tumour [5].

To date, the majority of dermatologists diagnose a lesion
by performing a type of manual pattern recognition based on
their prior knowledge of malignant and benign cases. This
leads to a very subjective and qualitative diagnosis. It also
takes years of experience for a doctor to become adept at
classifying lesions with an acceptable degree of accuracy [7].
One of the most common diagnostic rubrics is the “ABCD”
rubric [2], [3], whereby the dermatologist looks for patterns

of asymmetry (A) about the lesion, border irregularity (B),
colour variation (C), and a large diameter (D). It has been
reported that expert dermatologists achieve on average only
82.6% sensitivity (i.e., correctly identified malignant cases)
and 70% specificity (i.e., correctly identified benign cases)
in their diagnosis of melanoma using dermatoscopes [6].

Prior work on automated melanoma detection has been
mostly limited to the analysis of dermoscopic images [9]–
[16]. These images are obtained using a digital dermato-
scope, which is a specialized tool that provides a mag-
nified images of detailed pigment structures without any
skin surface reflection. Application of these techniques are
limited, since hospitals do not readily have dermatoscopes
that can store digital images. In fact, it has been reported
that only 48% of practicing dermatologists in the USA use a
dermatoscope in their diagnosis [8]. Furthermore, it restricts
the application to hospital settings only.

There have been some recent developments using standard
camera images for melanoma detection [17], [18]. However,
these papers have focused primarily on the preprocessing
step of melanoma detection (i.e., illumination standardiza-
tion), and have simply incorporated a large feature set that
loosely describes ABCD without analytical justification for
their decision. In practice, a high dimensional feature space
may decrease the classifier’s ability to generalise to new
data, since there is no learning algorithm that can account
for all of the variability of the data, and thus the classifier
will tend to overfit the (sparse) training data [20]. It should
also be noted that melanoma data sets are not very common,
and a large feature space can easily lead to overfitting due
to this curse of dimensionality.

The main contribution of this paper is the analytical identi-
fication and extraction of a set of high-level intuitive features
(HLIF) that quantitatively describe a lesion’s asymmetry.
We define “high-level intuitive” features as features that
have been designed to describe an understandable qualitative
phenomenon (e.g., amount of asymmetry of a shape), and
whose score can be intuitively interpreted. This is in contrast
to low-level features, which are generic calculations that
were not designed with a specific high-level description
in mind (e.g., solidity and equivalent diameter). Building



intuitive features allows the system to be queried for the
reasoning behind a diagnosis, which is important if doctors
are to trust and analyse the system’s choices. Unlike in
previous work where features were stated without rationale
[17], [18], rigid analytical reasoning of the features is given.

We measure success according to sensitivity, specificity,
accuracy, and leave-one-out cross-validation error using a
support vector machine (SVM) classifier [19]. The proposed
features are concatenated to a slightly modified version of
Cavalcanti et al.’s feature set [18] to produce a new 54-
dimensional feature space. The performance of this new set
is compared against the performance of their original set on
the same data. Note that feature extraction and classification
is done using manually-defined segmentations. Automated
lesion segmentation is a separate problem not addressed
here.

This paper is organized as follows. The proposed fea-
tures are presented in Section II. The experimental results
including a comparison with the state-of-the-art method is
presented in Section III. Conclusions are drawn and future
work is discussed in Section IV.

II. FEATURE EXTRACTION

As mentioned previously, dermatologists employ the
ABCD rubric in a very qualitative and subjective manner
that leads to large inter-observer bias as well as some
intra-observer bias [7]. To provide a more quantitative and
objective basis for melanoma detection, HLIFs that represent
the asymmetry characteristic of the ABCD rubric are ex-
tracted from lesion images. The classification of lesions with
respect to these features provides strict numerically-driven
reasoning behind diagnosis decisions, which we hope will
increase doctors’ sensitivity and specificity metrics. It can
also shorten the large accuracy gap between new and sea-
soned doctors by providing the new doctors with information
describing features of interest. The feature scores can also
be transformed into a qualitative (yet still objective) measure
simply by mapping the score relative to the mean and
standard deviation of the score distribution to a qualitative
class (e.g., “Very Asymmetric”, “Very Symmetric”, etc.).

A. Clinical Asymmetry Description

In general, lesions are described as asymmetric with
respect to colour and shape about an axis. Clinically, the
asymmetry of a lesion is measured along two orthogonal
axes chosen by the dermatologist [3]. The asymmetry score
is then determined by giving a binary score of 1 for
“asymmetric” and 0 otherwise for each axis. The scores for
both axes are then summed, giving A ∈ {0, 1, 2}. This set
of scores is not only very restricted, but the actual scores
themselves are determined subjectively. We take a more
precise approach by evaluating strict numerical models of
structural and colour variation of the lesion in its entirety.

B. HLIF for Colour Asymmetry

Asymmetry with respect to colour can be characterized by
separating the lesion along a set of axes that pass through the
centroid of the lesion, and then comparing the normalized
hue histograms of both partitions.

First, we calculated the major axis of the lesion that
has the same second-order central moments as the lesion
shape. This axis passes through the centroid and separates
the image into two partitions along the axis that describes the
maximum variance of the lesion. The image was converted
to the Hue-Saturation-Value (HSV) domain, and the normal-
ized hue histogram was computed for each partition. Thus,
the histogram represents the probability density function of
the hue space. The histograms were shifted such that the
beginning and end of the x-axis represent green hues, which
are rarely seen in skin lesions thus minimising any chance of
discontinuity. These histograms were subsequently smoothed
using a Gaussian filter so that we could compare histograms
of approximate hues rather than discrete hue values for
robustness. We found that using σ = 0.5 (i.e., half a bin)
resulted in a good estimate of the local hue information
while still maintaining the general structure of the original
distribution. We used 256 bins. This calculation was repeated
for many axes of separation by rotating the major axis by π

n
radians (n− 1) times, where n is the number of separation
axes. We used n = 16.

The HLIF was then defined as the maximum sum of
absolute differences of the smoothed histograms with respect
to the rotation angle:

fA1 = max
θ
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where Hθ
1 and Hθ

2 are the normalized, smoothed histograms
described above for the separation axis defined by rotating
the major axis by θ, and nbins is the number of hue
bins. The result was divided by 2 to normalize it such that
fA1 ∈ [0, 1], since ∀k,

∑nbins
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k(i) = 1. This score can
be intuitively interpreted as the maximum amount of colour
asymmetry on a scale from 0 (completely symmetric) to 1
(completely asymmetric).

Fig. 1 depicts an example of this feature calculation.
The θ value that produced the maximum asymmetry value
was found. The resulting separation axis and correspond-
ing normalized histograms are shown. The apparent colour
asymmetry of the lesion is reflected in these histograms such
that Fig. 1b shows the abundance of red hues present on the
left side of the axis, whereas Fig. 1c shows the distribution
of both red and blue hues on the right side of the axis.

C. HLIF for Structural Asymmetry

1) HLIF for Irregular Shapes: Structurally asymmetric
lesions have irregular oblong shapes. Fourier descriptors



(a) Image of the segmented skin lesion. The
dashed white line represents the axis of separa-
tion that produces maximal colour asymmetry.

(b) Normalized histogram of the left side of the lesion. Note
the high concentration of red hues.

(c) Normalized histogram of the right side of the lesion. Note
the concentration of both blue and red hues.

Figure 1. Comparing the normalized histograms of two partitions of a lesion diagnosed as malignant melanoma (nodular melanoma). The red bars
represent the concentration of each hue value, whereas the blue curves represent the Gaussian smoothed version of the histogram (σ = 0.5). This allows
us to compare approximate colours rather than discrete hue values. In this example, fA1 = 0.5300, indicating a large portion of colour asymmetry.

are used to describe a shape in terms of constituent fre-
quency bands. Determining a shape’s Fourier descriptors is
accomplished by representing the x-axis as the real axis,
and the y-axis as the imaginary axis. Thus the points of the
shape border are transformed into a 1D complex number. In
particular F : (x, y) 7→ x + ıy. Given this representation,
a Fourier transform can decompose it into its constituent
sinusoidal waves. Hence, a reconstruction of the lesion shape
using only low frequency Fourier descriptors will produce
a rough estimate of the original shape. This rough estimate
can be compared with its full representation to detect oblong
parts of the lesion.

First the lesion border is sampled by a pre-determined
rate so that the frequency resolution is fixed across all
lesions irrespective of their perimeter length. Upon com-
puting the Fast Fourier Transform (FFT) of the lesion’s
sampled perimeter, a coarse representation was reconstructed

using only the two lowest frequency components. These
frequencies represent the zero-frequency mean as well as
the most basic components needed to construct the general
shape of the lesion. It was empirically found that recon-
struction with more than two frequencies produced a shape
that incorporated too much variability. It is apparent that
a lesion with a highly irregular shape will have a more
varying perimeter than the low-frequency representation of
that same lesion. However, comparing the two-frequency
reconstruction with the original border will produce skewed
results, as a lesion with a highly irregular border would
result in a high feature score (this would be a feature more
suitable for detecting border irregularity). Thus, the shape of
the resulting two-frequency representation was compared to
the shape of another low-frequency representation to yield
the HLIF:

fA2 =
area(Slow ⊕ S2)

area(Slow ∪ S2)
(2)



where Slow and S2 are the low-frequency and two-frequency
reconstruction, and Slow ∪ S2 is the union of these two
reconstructions. This score can be intuitively interpreted
as the amount of general structural variation of a lesion’s
border. We found that sampling the border with 1000 points
and reconstructing the shape of the lesion using five fre-
quency components yielded a good approximate shape that
incorporated the structural variations.

Fig. 2 depicts an example of this feature calculation.
The lesion has a very irregular shape with many peaks
and valleys. Notice the difference between the shape of the
two-frequency reconstruction (pink), which gives only the
general shape of the lesion border, and the five-frequency
reconstruction (cyan), which reflects the variability due to
the irregularly curvy parts. This difference was coloured in
with black for visualization purposes.

Figure 2. Depiction of an asymmetric lesion diagnosed as malignant
melanoma (lentigo maligna melanoma). The difference of the two re-
constructions was coloured black for visualization purposes. Note how
the two-frequency reconstruction (pink) of the original boundary captures
only the very general shape of the lesion, whereas the five-frequency
reconstruction (cyan) captures more of the irregular variability. In this
example, fA2 = 0.1199, indicating the presence of structural variation.

2) HLIF for Asymmetric Areas: Cavalcanti et al. [18]
propose the following 4 HLIFs:

• f8: (B1 −B2)/A with respect to L1,
• f9: (B1 −B2)/A with respect to L2,
• f10: B1/B2 with respect to L1,
• f11: B1/B2 with respect to L2

where L1 and L2 are the orthogonal major and minor axes,
and B1 and B2 are the areas to each side of the axis.
Fig. 3 shows an example of separating a shape along its
major and minor axes with the resulting areas coloured for
visualization purposes. Note that these definitions do not put
any constraints on the relative sizes of B1 and B2. Thus,
depending on the order of the areas, f8 and f9 can result
in either a positive or negative value, and f10 and f11 can
result in either a large or small value. So, for the sake of

Figure 3. Depiction of an asymmetric lesion diagnosed as malignant
melanoma (superficial spreading melanoma). The red and green areas
indicate the two partitions about the major and minor axes. Note the
difference in areas about the minor axis due primarily to the tail-like
structure in the red area, indicating an asymmetric lesion. In this example,
fA3 = 0.2067, fA4 = 0.2656, fA5 = 0.5211, fA6 = 0.7234, indicating
some asymmetry about the major axis and lots of structural asymmetry
about the minor axis.

clarity we propose to extend these HLIFs in the following
way:

fA3 = (A1 −A2)/A with respect to L1, (3)

fA4 = (A1 −A2)/A with respect to L2, (4)

fA5 = (A1 −A2)/A2 with respect to L1, (5)

fA6 = (A1 −A2)/A2 with respect to L2 (6)

such that the following constraints are satisfied:

A1 = max {B1, B2} ,
A2 = min {B1, B2}

where B1 and B2 are the areas on each side of the axis.
Thus, {fA3 , fA4 } represent the positive difference between
the two areas as a percentage of the total area, and {fA5 , fA6 }
represent the same difference as a percentage of the smaller
area. By this definition, asymmetric lesions will have larger
values for {fA3 , fA4 , fA5 , fA6 } than symmetric lesions. In-
tuitively, fA3 and fA4 represent the amount of structural
difference about the major and minor axis respectively
relative to the entire area. Similarly, fA5 and fA6 represent
the structural difference of the larger side of the major/minor
axis relative to the smaller area. Fig. 3 depicts an example of
a lesion that has been separated by its major and minor axes.
Note that the difference in areas (shown in red and green
for visualization purposes) captures the asymmetry about the
axis.

III. EXPERIMENTAL RESULTS

Our data set comprises 206 images; 69 from the Derma-
tology Information System [21] (43 malignant melanomas
and 26 nevi), and 137 from DermQuest [22] (76 malignant
melanomas and 61 nevi). The data set includes images of the
6 major types of melanoma, as well as various typical nevi
including many dysplastic nevi. Each image contains only
a single lesion. These images were manually segmented to
construct the binary lesion mask. For the proposed HLIFs,
the images were rotated such that the major axis aligned
with the horizontal for rotation invariance. The lesion was
then scaled such that its bounding box fit in a 200×200 pixel



Table I
COMPARING CLASSIFICATION RESULTS OF DIFFERENT FEATURE SETS. LOO CV IS “LEAVE-ONE-OUT CROSS-VALIDATION”.

Feature set Description (see Section III) # features Sensitivity Specificity Accuracy LOO CV
Error

FAC Asymmetry features from FC 11 73.11% 64.37% 69.42% 30.58%
FAHLIF Proposed asymmetry HLIFs 6 79.83% 68.97% 75.24% 24.76%
FC Cavalcanti et al. feature set [18] 52 84.87% 78.16% 82.04% 17.96%
FCM Modified FC (see Section II-C2) 48 86.55% 75.86% 82.04% 17.96%
FT Combined FCM and FAHLIF 54 91.60% 80.46% 86.89% 13.11%

box while preserving its aspect ratio. The images underwent
Cavalcanti et al.’s illumination invariance algorithm prior to
feature extraction. All images were obtained using standard
cameras. Fig. 4 shows some typical sample data from our
data set. Due to the small size of the data set, standard
leave-one-out cross-validation (LOO CV) error was used to
compute the test error. Sensitivity, specificity, and accuracy
were also computed as success metrics.

For clarity, we use the following notation to refer to the
various feature sets throughout this section:

• FA
HLIF : feature set containing the 6 proposed HLIFs

describing asymmetry (see Section II).
• FC : feature set containing Cavalcanti et al.’s 52 low-

level features describing asymmetry, border irregularity,
colour variation, and differential structures [18].

• FA
C : subset of FC containing only their asymmetry

features (FAC ⊂ FC).
• FCM : a modified version of the set FC without the

four features identified in Section II-C2 (FCM =
FC\{f8, . . . , f11} ⊂ FC).

• FT : the “total” superset containing the features from
the proposed FAHLIF and FC (FT = FCM ∪ FAHLIF ).

The extraction of FAHLIF and FC was implemented in
MATLAB. FC is comprised of 52 features categorized as
follows: 11 features for asymmetry, 12 features for border
irregularity, 25 features for colour variation, and 4 features
for differential structures [18]. The combined feature set FT
resulted in a 54-dimensional feature space.

We evaluated the feature sets in the following ways. First
we normalized the data by centering the data points at their
mean and scaling them to have a unit standard deviation.
We then used SVM without a kernel to classify the data
set, setting the soft margin parameter to minimize LOO CV
error. We chose to use the standard SVM model so that the
classification results strictly reflect the linear separability of
the data, rather than the performance of the classifier. In
general, the goal of extracting features is to represent the
data in a feature space such that it is easy to distinguish
one class from another. SVM is regarded as one of the most
robust classifiers, and does not tend to overfit (as opposed
to, for example, nearest neighbour). Due to the small size
of the data set, this is an important characteristic.

We then compared the experimental results of FAHLIF
against the asymmetry features from FC (denoted FAC ), FC ,
FCM , and FT on the same data. In particular, we calculated
the sensitivity, specificity, accuracy, and the LOO CV error
of the SVM classification using each of the feature sets.
The classification results of the various feature sets are
summarized in Table I.

A. Classification Using Asymmetry Features

Classification using FAHLIF was compared against classi-
fication using only the asymmetry features from Cavalcanti
et al.’s feature set, FAC . It is not surprising that FAC performs
inadequately as a melanoma detection feature set on its own
(73.11% sensitivity, 64.37% specificity, 69.42% accuracy,
30.58% LOO CV error), since the set contains only low-level
features that describe asymmetry. Low-level feature sets de-
pend on a large number of features to represent detailed data.
In comparison, FAHLIF , which itself only defines asymmetry
features as well, performs better with respect to classifying
the entire data set (79.83% sensitivity, 68.97% specificity,
75.24% accuracy, 24.76% LOO CV error). Furthermore,
FAHLIF only defines 6 features, whereas FAC defines 11
features. These results indicate that asymmetry is a very
important characteristic when analysing skin lesions, and
HLIFs that describe a lesion’s asymmetry captures a lot of
the underlying data in an intuitive manner. This shows the
power of HLIFs as a means of quantitatively describing data.

B. Classification Using All ABCD Features

As expected, classification using the smaller set FCM per-
forms comparably to its superset FC in terms of sensitivity,
specificity, accuracy, and LOO CV error. We therefore use
this reduced feature set as the benchmark in the analysis
below.

Although the classification of FCM attains high sensitivity
and specificity measures on the data set, it must be noted that
the data is projected into 48 dimensions. It is usually easy to
find many hyperplanes that perfectly separate data in some
high dimensional space, where the number of dimensions
is close to the number of data points [20]. The presence of
a high LOO CV error (17.96%) shows that this is indeed
the case with this data set; that is, the feature space does
not generalize well to new data. In their paper, Cavalcanti



(a) Lentigo Maligna Melanoma (b) Nodular Melanoma (c) Superficial Spreading Melanoma

(d) Blue Nevus (e) Dysplastic Nevus (f) Dysplastic Nevus

Figure 4. Sample data from the data set. The manually segmented lesion border has been superimposed on the image for visualization purposes.

et al. attempt to circumvent this problem by using the
Smoothed Bootstrap Resampling method to generate new
data. However, this method simply introduces some zero-
mean noise to the original data set, and is thus not a good
representation of skin lesion images, as each patient case
can be very different from another.

Another noteworthy observation is the fact that FT attains
very high success metrics (91.60% sensitivity, 80.46% speci-
ficity, and 86.89% accuracy, with a 13.11% LOO CV error).
The low cross-validation error is important since overfitting
is very possible with such a high dimensional feature space
(i.e., 54 dimensions). This combined feature set attains
almost 30% less cross-validation error than FCM (17.96%
and 13.11% respectively), indicating that the addition of
the HLIFs to FCM results in a much more descriptive and
interpretive model.

C. Sources of Error

Examples of where the classification using FT performed
well and where it performed poorly are given in Fig. 5. There
is a high saturation of white pixels in the first image due to
the flash of the camera. This drastically skewed the results
of the histogram comparison, fA1 , as well as the Cavalcanti
et al.’s gradient measures. The other false negative cases
have very irregular borders, indicating that there is a need
for HLIFs describing border irregularity.

Most of the false positive cases exhibit a very distinct

colour variation, thus resembling a malignant melanoma. In
particular, it can be noted that there is a high concentration
of dark cells in 3 of the 4 presented images. Further
investigation should try to distinguish the difference between
these pigmented concentrations in benign versus malignant
case to separate this kind of data.

IV. CONCLUSION

In this paper we have proposed a set of HLIFs for
describing the amount of asymmetry of a skin lesion image
obtained from a standard camera to help diagnose it as
melanoma or not melanoma. Designing HLIFs allows the
system to represent its diagnosis in terms of objective, under-
standable steps both quantitatively (i.e., raw feature score)
and qualitatively (i.e., description of the feature score).
Furthermore, it simplifies the feature selection process, as
each HLIF is designed according to human interpretation
of the data. Experimental results indicate that the small
proposed HLIF set of asymmetry features alone attains
better sensitivity, specificity, and accuracy as Cavalcanti et
al.’s large low-level asymmetry feature set, while exhibit-
ing a lower cross-validation error using a simple linear
SVM model. Furthermore, adding the proposed HLIF set
to a slightly modified version of Cavalcanti et al.’s entire
feature set gives drastically improved success metrics over
their original set. Future work involves designing HLIFs to
describe a lesion’s border irregularity and colour variation.



(a) False Negatives

(b) False Positives

Figure 5. Examples of images that were misclassified. The manually segmented lesion border has been superimposed on the image for visualization
purposes.

Also, a more thorough analysis of the HLIF set’s feature
space and the resulting data clusters will be conducted with
a larger data set.
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