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Abstract-A critical shortcoming of determining co-occurrence 

probability texture features using Haralick's popular grey level 
co-occurrence matrix (GLCM) is the excessive computational 
burden.  Here, a more robust algorithm (the grey level co-
occurrence integrated algorithm or GLCIA) to perform this 
task is presented.  The GLCIA is created by integrating the 
preferred aspects of two algorithms: the grey level co-
occurrence hybrid structure (GLCHS) and the grey level co-
occurrence hybrid histogram (GLCHH).  The GLCHS utilizes a 
dedicated 2-d data structure to quickly generate the 
probabilities and apply statistics to generate the features.  The 
GLCHH uses a more efficient 1-d data structure to perform the 
same tasks.  Since the GLCHH is faster than the GLCHS yet the 
GLCHH is not able to calculate features using all available 
statistics, the integration of these two methods generates a 
superior algorithm (the GLCIA).  The computational gains vary 
as a function of window size, quantization level, and statistics 
selected. The GLCIA computational time relative to that of the 
standard GLCM method ranges from 0.04% to 16%.  The 
GLCIA is a highly recommended technique for anyone wishing 
to calculate co-occurrence probability texture features, 
especially from large-scale digital imagery. 

 
Index Terms-Texture features, data structures, co-occurrence 

probabilities, remote sensing imagery, computational efficiency. 
 

 
I.   INTRODUCTION 

 
A popular method for texture feature extraction in remote 

sensing image interpretation is the use of co-occurrence 
probabilities, first introduced by Haralick et al. using the grey 
level co-occurrence matrix (GLCM) [1].  Since the GLCMs 
are usually sparse, excessive computation is required to 
generate the co-occurrence texture features.  Other methods 
have been used to improve on the computational demands of 
the GLCM approach [2][3][4][5].   

Unser [2] investigated sum and difference histograms to 
store the co-occurring data, which are efficient relative to 
using matrices.  Clausi and Jernigan [3] improved on the 
GLCM by presenting a grey level co-occurrence linked list 
(GLCLL) structure that stores the non-zero co-occurring 
probabilities in a sorted linked list.  An advancement on the 
GLCLL is illustrated by Svolos and Todd-Pokropek [4] 
where a tree data structure is used to store the co-occurring 
probabilities.  This is an improvement since the tree structure 
search has order O(log m) compared to O(m) of the GLCLL 
approach.  Another computational improvement on the 
GLCLL is the grey level co-occurrence hybrid structure 

(GLCHS) [5].  The GLCHS is more efficient than the 
GLCLL since it avoids the need for maintaining sorted linked 
lists by using a combined hash table and linked list data 
structure.   The GLCHS is also an improvement on the tree 
data structure since the search order in the GLCHS is based 
on a hash table ie. O(1). 

In this paper, Unser's sum and difference histograms are 
implemented using a GLCHS framework.  The resulting 
implementation (the grey level co-occurrence hybrid 
histogram or GLCHH) is demonstrated to improve the 
computational performance relative to the GLCHS alone.  
However, the sum and difference histograms are not able to 
act as a basis to apply all of Haralick's statistics exactly [2].  
For these statistics, the GLCHS is used.  Consequently, an 
integrated method called the grey level co-occurrence 
integrated algorithm (GLCIA) is created, which offers a 
dramatically improved solution by combining the GLCHS 
and GLCHH methods. 

Determination of co-occurrence probability texture 
features requires two steps.  First, the co-occurring 
probabilities for the given window are determined.  The 
probabilities are a function of the number of quantized grey 
levels (G), the window size, and the relative spatial pixel 
separation distance. Fig. 1 shows the creation of the co-
occuring probabilities stored in a GLCM.  Second, statistics 
are applied to these probabilities to produce the texture 
features.  Dissimilarity, contrast, entropy, uniformity, inverse 
difference moment, maximum probability, inverse difference, 
and correlation are eight statistics often used among the 
fourteen original statistics mentioned by Haralick et al. [1].    

This paper will first briefly discuss Unser’s sum and 
difference histograms.  A description of a GLCHH 
implementation of the histogram method follows.  From this, 
the design and implementation of the GLCIA is presented.  
Computational speed testing completes the paper. 
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Fig. 1.  a. 5 x 5 image window with four grey levels values
(0-3) 

             b. Corresponding GLCM given δ =1 pixel and θ =
0° and 180°. Only lower triangle matrix required.

0-7803-7536-X/$17.00 (C) 2002 IEEE 2453



 
II.  SUM AND DIFFERENCE HISTOGRAMS 

 
Unser developed a means of using vectors in the form of 

sum and difference histograms for the purpose of generating 
co-occurrence texture features [2].  The normalized sum and 
difference histograms can be used to determine co-occurrence 
texture features.  The computational advantage is that 
summations over vectors of length 2G – 1 are used as 
opposed to summations over matrices of size GxG in the 
GLCM approach. 

The drawback of the sum and difference histograms is that 
they cannot be used to determine all of Haralick's statistics 
exactly [2].  For example, the statistics uniformity, entropy, 
and maximum probability cannot be determined exactly using 
sum and difference histograms (although estimates of two of 
these terms, namely uniformity and entropy, are provided by 
Unser).    Another shortcoming is that, with increasing G 
and/or decreasing window size, the histograms become 
sparse, which reduces the computational effectiveness of the 
method. 

 
III.  ALGORITHM DEVELOPMENT 

 
  Given the computational shortcoming of the sum and 

difference histogram method, implementation of this method 
using the GLCHS data structure was performed.  The 
GLCHS provides a more efficient means of storing the sum 
and difference histograms and determining the texture 
features.  Fig. 2 displays the basic structure.  A hash table is 
used to instantly access an existing, unique grey level.  Non-
null hash table pointers point to a linked list which provides a 
fast means of applying the various statistics. 

 
A. GLCHH 

 
Given the computational shortcoming of the sum and 

difference histogram approach, these vectors may be 
implemented using the hybrid data structure used by the 
GLCHS.  These pointer-based data structures will run faster 
than standard vectors.  This implementation is referred to as 
the grey level co-occurrence hybrid histogram (GLCHH).  

The normalized sum and difference histograms must each be 
represented using a hybrid data structure.  These are referred 
to as the grey level co-occurrence hybrid sum histogram 
(GLCHSH) and the grey level co-occurrence hybrid 
difference histogram (GLCHDH). 

This concept is illustrated in Fig. 3.  Fig. 3A represents the 
sum histogram using a hash table with pointers pointing to 
nodes on a linked list and Fig. 3B represents the comparable 
implementation for a difference histogram.  Since a 
histogram is represented, only a one-dimensional hash table 
is created which is accessed by a single key (either the sum or 
the difference).  To accommodate the lower triangle GLCM 
(ie. i ≥ j) for the GLCHDH (Fig. 5B) and maintain 
consistency across the earlier algorithms, the hash table only 
needs to contain G elements.  
 
B. GLCIA  

 
Since only sums and differences need to be determined 

using the GLCHH implementation, it represents a faster 
algorithm to calculate co-occurrence texture features 
compared to the GLCHS, which requires a two-dimensional 
hash table with longer linked lists.  However, not all the 
statistics commonly used can be calculated using sum and 
difference histograms.  As a result, the GLCHH method and 
the GLCHS method can be integrated to produce a preferred 
method for determining co-occurrence probability texture 
features.  This method is called the grey level co-occurrence 
integrated algorithm (GLCIA) [6].  Note that the methods 
compared here calculate identical texture feature values. 

Decisions concerning which data structures to create are 
made based on which statistics have been selected.  
Algorithm efficiencies (both speed and memory) are 
introduced by limiting, when necessary, the co-occurring 
information collected from the window.  Not all GLCHH 
statistics require both sum and difference histograms.  For 
any of dissimilarity, contrast, inverse difference moment, and 
inverse moment, the GLCHDH data structure is required.  
For correlation, both the GLCHDH and GLCHSH are 
required.  The GLCHS is used for any of the statistics 
uniformity, entropy, and maximum probability. 

 
 

IV.  TESTING AND RESULTS 
 
A. Methodology 

 
Testing is performed on a Sun Sparc Ultra 1 200E (200 

MHz, 128 Mbytes RAM, 322 SPECint, 462 SPECfp) 
workstation using a four-class 128 x 128 Brodatz [7] test 
image (Fig. 7).  Six window sizes (5x5, 10x10, 15x15, 20x20, 
25x25, and 30x30) and five quantization levels (128, 64, 32, 
16, and 8) are used as parameters.  The interpixel 
displacements (δx, δy) are selected as {(1, 0), (1, 1), (0, 1), (-
1, 1)}.  

 

Fig. 2. GLCHS structure for determining image texture features.  
Nodes created in linked list and hash table based on sample 
image in Fig. 1A. 
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B. Comparing GLCIA and GLCHS Completion Times 

     
Timed testing is performed for the GLCIA using three 

scenarios: 
i) using all eight indicated statistics which requires both 

the GLCHS and the GLCHH; 
ii)  using the five statistics that require the GLCHH data 

structure ie. both the GLCHDH and GLCHSH; and 
iii) using the four statistics that require only the GLCHDH 

data structure. 

Table 1 indicates the percentage ratio of the GLCHS 
versus the GLCIA completion times for each test.  For all 
cases, GLCIA shows a demonstrated improvement over 
GLCHS.  In the case of calculating all eight statistics, the 
relative performance ranges from 27.0% to 53.9%.  For the 
cases of four and five statistics, the relative performance 
ranges are even lower (4.1% to 36.9% and 5.1% to 41.4%), as 
a result of not having to use the hybrid structure.  If one 
wanted to determine texture features using only the statistic 
CON, n = 25, and G = 64, then approximately 5% of the 
GLCHS computing time would be required.  If using a 
GLCM for the same purpose, this would amount to 9.1% * 
5% ~ 0.46% of the time required (using Table 4 in [3]). 

 
V.  CONCLUSIONS 

 
This paper describes a rapid means of calculating co-
occurrence probability texture features.  One reason that the 
co-occurrence approach has not been suitable for operational 
use was due to the exceptional computation required.  By 
applying the GLCIA, completion times are dramatically 
reduced compared to traditional and other recent methods to 
perform the same task.  The GLCIA is a highly recommended 
technique for anyone wishing to calculate co-occurrence 
probability texture features, especially from large-scale 
remote sensing images.  Generally, the total computation time 
is reduced from hours to minutes for such imagery. 
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Window  Size (n x n) Comparison 
[%] 

Grey 
Levels 

(G) 5 x 5 10 x 10 15 x 1520 x 20 25 x 25 30 x 30
128 53.4 37.9 32.9 29.3 28.8 27.0 
64 50.5 36.1 31.4 29.8 28.2 27.0 
32 48.8 34.7 32.8 30.8 30.2 29.8 
16 47.2 37.0 36.0 36.3 35.4 36.6 

i) Percentage of 
computational time 

for GLCIA 
compared to 
GLCHS (8 
statistics) 8 53.6 45.9 47.1 48.4 51.0 53.9 

128 41.4 19.8 12.2     9.0 6.3 5.1 
64 34.2 15.4 9.5 6.9 5.3 4.6 
32 32.2   14.4 10.1 8.6 7.9 8.2 
16 32.5 18.3 16.8 16.3 17.6 18.1 

ii) Percentage of 
computational time 

for GLCIA 
compared to 
GLCHS (5 
statistics) 8 39.3 29.8 31.6 32.9 34.6 38.4 

128 36.9 16.6 9.7 7.3 5.1 4.1 
64 34.1 13.6 8.3 6.3 5.0 4.6 
32 30.1 13.1 9.7 8.3 8.0 8.2 
16 30.6 18.4 16.3 16.9 17.5 18.2 

iii) Percentage of 
computational time 

for GLCIA 
compared to 
GLCHS (4 
statistics) 8 35.5 29.2 31.0 30.6 32.6 34.6 

TABLE  I 
PERCENTAGE RATIOS BASED ON RESULTS FOR GLCIA VS. GLCHS 

Fig. 3.  GLCHH algorithm to determine image texture features.  Nodes 
created in the linked lists and hash tables are based on sample 
image in Fig. 1A 

A. GLCHSH structure for determining image texture features.   
B. GLCHDH structure for determining image texture features.   
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