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ABSTRACT 
The popularity of digital video storage and delivery 
systems has given rise to the need for video encryption to 
preserve secrecy and digital rights.  Conventional 
encryption techniques are not appropriate for securing 
multimedia systems given the need to encrypt a large 
amount of data in real-time.  This paper presents a 
selective video encryption algorithm that utilizes multiple 
stream ciphers and a unique multi-key mechanism to 
improve security while maintaining efficiency and format 
compliance.  Furthermore, the algorithm is well suited for 
parallel hardware implementation. Finally, experimental 
results from the encryption of various test video 
sequences demonstrate the effectiveness of the video 
encryption scheme. 
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1. Introduction 
 
Video compression is an important research topic given 
the increasing need for the efficient storage and 
distribution of videos in applications such as Video-on-
Demand (VOD), video archival, digital video 
broadcasting, and digital movie playback.  The recent 
popularity of digital video storage and delivery systems 
has given rise to a need for video encryption to manage 
digital rights.   
 
A number of methods have been proposed to provide 
security for digital video streams.  These video encryption 
methods can be classified into two categories:  

 
1. Naive encryption [1-2] 
2. Selective encryption [3-9]   

 
Conventional encryption techniques used by existing 
transmission and storage systems are not well suited for 
multimedia content for several reasons.  First of all, 
conventional encryption techniques encrypt all 
multimedia content at the bit-stream level.  Such 
techniques are often computationally expensive since they 
ensure a high level of security for all encrypted data.  

Multimedia content is typically very large in size so the 
computational cost of such techniques is high.  Also, 
many digital video applications (such as VOD) have real-
time processing requirements that are difficult to achieve 
cost effectively using conventional encryption techniques.  
This point is particularly relevant for consumer devices 
where computational complexity must be avoided to 
ensure manufacturability and system reliability.   
 
An ideal video encryption algorithm for real-time video 
applications in consumer devices must possess the 
following characteristics: 

 
1. Provide an acceptable level of security 
2. Minimize computational and storage overhead 
3. Comply with standard video compression formats 
 

To achieve these goals, it is important to exploit the 
characteristics of the video compression process itself.  
The most popular video compression schemes are based 
on block-transform coding, such as MPEG [10-11] and 
more recently H.264/AVC [12].  Such techniques are 
popular because they are computationally efficient and 
have low storage requirements, making them ideal for 
low-end consumer devices such as set-top boxes and 
media players.  In general, these compression algorithms 
utilize transforms that have high energy-compaction 
properties to group important information into a small 
amount of space.  When using these algorithms, certain 
components of the compressed data stream have greater 
influence on the decompressed video output than others.  
This fact can be used to minimize the amount of data that 
needs to be encrypted to deliver an acceptable level of 
security.  Furthermore, data elements in compressed video 
content can be divided such that they can be trivially 
encrypted in parallel using different keys, thereby 
improving the level of security while maintaining a high 
level of performance.  
 
The main contribution of this paper is an efficient, 
parallel video encryption algorithm that utilizes multiple 
stream ciphers and a unique multi-key mechanism to 
provide an acceptable level of security for consumer 
devices while maintaining efficiency.  In this paper, the 
proposed algorithm is described and explained in detail in 
Section 2.  Experimental results demonstrating the 



effectiveness of the video encryption scheme are 
presented in Section 3.  Finally, conclusions are drawn in 
Section 4. 
 

2. Proposed Video Encryption Algorithm 
 
This section introduces the proposed video encryption 
algorithm.  The theory behind partial video encryption is 
reviewed and a multi-key video encryption technique for 
parallel hardware implementation is described in detail.  
An outline of the proposed video encryption algorithm is 
provided.  The parallel architecture for the algorithm and 
a discussion of the security implications are presented. 
  
2.1 Partial Video Encryption 
 
Video compression algorithms attempt to pack 
information into as little space as possible.  Certain data 
elements have a greater influence on the decompressed 
video output than others.  This characteristic can be 
exploited to reduce the amount of video data that needs to 
be encrypted while maintaining an acceptable level of 
security.  For this reason, it is important to discuss the 
different data components that are common to modern 
block-transform based video compression algorithms.  It 
is crucial to find a balance between computational 
performance and security. 
   
While each block-transform based video compression 
technique varies in terms of design and implementation 
details, they are all based on the same fundamental 
concepts.  The encoded video data produced by all 
techniques share common data components that are 
present in nearly all such compression standards ranging 
from MPEG-1 to H.264/AVC.  The common data 
components are the following: 

 
1. Motion vectors  
2. DC coefficients 
3. AC coefficients 

 
Motion vectors represent the movement of blocks of 
pixels from one frame to the next and they are used for 
motion estimation and motion compensation.  The DC 
coefficients represent the average energy of the image.  
The AC coefficients represent the details of the image.  
The DC coefficients have a more significant impact on 
the overall reconstruction of the image than the AC 
coefficients.  This is an important point as the AC 
coefficients make up the majority of the encoded video 
data.  Computational overhead can be reduced 
substantially by only encrypting the DC coefficients.  
Encryption of the DC coefficients yields an acceptable 
level of security for some applications.  It has been shown 
that it is impossible to derive the DC coefficients given 
the AC coefficients for a DCT of size 8x8 DCT [13].  
Furthermore, research has shown that the encryption of 

motion vectors is more significant than the encryption of 
DCT coefficients in B and P frames [14].  Therefore, it is 
clear that the encryption of important structural 
information such as DC coefficients and motion vectors is 
most important.   
 
Partial video encryption can be utilized to deliver 
different levels of security for each of the common data 
components.  Applications requiring a low level of 
security need not encrypt all data components.  For 
example, a digital TV service may not require the best 
possible encryption of its content to achieve its goal of 
making the video stream unusable.  In such a situation, it 
is desirable to favor low computational complexity over 
high security.  The proposed encryption algorithm targets 
consumer devices such as commodity set-top boxes and 
multimedia playback devices.  In this context, it is more 
important to exploit the way information is encoded to 
deliver real-time performance while providing an 
acceptable level of security.  Therefore, only the sign bits 
of the DC coefficients and the sign bits of the AC 
coefficients at the three lowest frequencies are encrypted 
in the proposed algorithm. 
 
2.2 Parallel Multi-Key Video Encryption 
 
The proposed video encryption algorithm extends the 
Video Encryption Algorithm (VEA) proposed in [7] by 
utilizing multi-key encryption and multiple stream ciphers 
in parallel to provide fast, real-time encryption/decryption 
performance at a level of security that is sufficient for 
some consumer digital video applications.  Multi-key 
techniques can be used to significantly improve the 
security of VEA while maintaining encryption efficiency.  
In VEA, a single key-stream is used to encrypt the 
selected video components.  Factors such as transmission 
errors (which can lead to lost video data) and multimedia 
playback functionality (such as rewind and fast forward) 
require the ability to resume the decryption and playback 
process at a specified point in time in a video stream.  
There must be no dependencies on content prior to the 
specified point in time.  This is accomplished in VEA by 
the use of resynchronization points, where the secret key 
is reused from the first bit for encryption at each 
resynchronization point.  The user can start the video 
stream at any resynchronization point.  The main 
drawback of resynchronization is that it makes VEA 
vulnerable to plain-text attacks, since the key-stream can 
be easily determined if an original image and its 
corresponding encrypted image are known.  Since only 
one key-stream is used, knowledge of the key-stream 
allows for the decryption of the entire video stream.  VEA 
is also vulnerable to a reused key attack.  While Shi and 
Bhargava [7] suggest that this type of attack can be 
prevented by requesting new keys periodically, this 
approach wastes bandwidth and computing cycles.  Block 
ciphers such as DES and AES can also been used to avoid 
security attacks of this nature, as done in the RVEA 



algorithm [6] but the added complexity of block ciphers 
makes them undesirable for use in some low-cost 
consumer devices, particularly if a parallel 
implementation is desired.   
 
The proposed multi-key encryption scheme utilizes 
multiple encryption keys in such a way that it is less 
vulnerable to attack.  The algorithm only uses the number 
of keys required to deliver an acceptable level of security.  
Keys have a longer lifespan in this context but they are 
used in such a way that security is maintained at an 
acceptable level.  Thus, the proposed multi-key 
encryption scheme is suitable for parallel implementation 
as it supports cost-effective, real-time video encryption 
and decryption.  
   
Prior to explaining the theory, several terms must be 
introduced.  A resynchronization group is defined as a 
group of frames starting from one resynchronization point 
to the frame immediately prior to the next 
resynchronization point, as shown in Figure 1.  A 
common-key group is a sequence of resynchronization 
groups that make use of the same multi-key set.   

 
The data components that need to be encrypted in a video 
frame can be divided into n partitions.  Using n 
encryption keys of length m, each partition can be 
encrypted by a stream cipher using a different key.  These 
keys are referred to as partition encryption keys.  The 
mapping between a partition and its encryption key is 
determined using a permutation key of length klog2(n!) 
where k is the number of resynchronization groups per 
common-key group.  This is illustrated in Figure 2 for a 
case where n = 4 and k = 2.   
 

Consider a scenario where a set of four 256-bit partition 
keys and a 64-bit permutation key are used for each 
common-key group.  Each video frame in a 
resynchronization group is divided into four partitions 
and encrypted using one of the available stream ciphers 
with one of the four partition encryption keys.  The 
mapping between the partitions and the keys is encoded 
in 5 bits since there can be a total of 24 permutations of 
key mappings.  Since the permutation key is 64 bits in 
length, there can be a maximum of 12 resynchronization 
groups for each common-key group to avoid reusing the 
permutation key.  If each resynchronization group is 1 
second long, this algorithm provides acceptable security 
for 12 seconds of video. 
 
The approach introduced so far can reduce the number of 
keys needed but it does not solve the real problem.  Video 
streams typically last much longer than 12 seconds.  A 
practical work-around for this problem using the multi-
key concept is proposed in the following manner.  Let us 
define a video stream as a sequence of j common-key 
groups.  For each video stream, a set of n encryption keys 
and nonces is used to generate n x j encryption keys using 
a stream cipher as a pseudo-random number generator, as 
each common-key group requires a set of n encryption 
keys.  These generated keys can then be stored in memory 
and retrieved depending on the frame that needs to be 
decrypted.  In the case of pre-recorded video, the set of 
initial keys and nonces can be stored in encrypted form 
on the physical media.  In the case of real-time streaming 
broadcasts and VOD services, they can be sent in 
encrypted form through the network.  An example of this 
approach can be illustrated using High Definition DVD 
(HD-DVD) playback devices.  When a disc is inserted 
into the player, a set of four 256-bit keys and nonces are 
decrypted and used to generate encryption keys for 
decrypting the video content.  Assuming 10,800 seconds 
(three hours) of video is held on the disc and each 
common-key group is 12 seconds long, a total of 900 x 4 
= 3,600 256-bit encryption keys are generated and stored 
in memory.  These encryption keys can be easily 
generated using a modern stream cipher that has a period 
significantly greater than what is required for this 
approach.  For example, the average period of a key-
stream generated by the HC-256 stream cipher is 
estimated to be 265546 [15].  The 3,600 256-bit keys 
require less than 115 kB of memory to store.  A player 
can retrieve the appropriate keys to decrypt a video frame 
based on the common-key group to which it belongs. 
 
While this workaround approach is by no means 
equivalent to using randomly generated keys, it 
nevertheless provides the level of security required by 
some consumer devices.  Therefore, the described parallel 
multi-key extensions to VEA serve as the basis for the 
proposed encryption algorithm. 
 

 
 

Figure 1. Example of a resynchronization group 

 
 

Figure 2. Parallel multi-key video encryption using a 
permutation key 



2.3 Proposed Encryption Algorithm 
 
Based on the theory presented, the proposed encryption 
algorithm can be outlined as follows (where n is the 
number of partitions): 
 

1. Obtain n+1 initial keys and generate n+1 
corresponding nonces. 

2. Encrypt the initial keys and nonces, along with the 
total number of common-key groups, and store 
them if the video content is distributed in 
prerecorded media.  Otherwise, send the encrypted 
data over the network. 

3. Combine the initial keys and nonces from Step 1 to 
create n+1 initial seeds for n+1 cryptographically 
secure pseudo-random number generators 
(CSPRNGs). 

4. At the start of each common-key group, generate n 
encryption keys and one permutation key in 
parallel using the CSPRNGs.   

5. At the start of each resynchronization group, the n 
encryption keys are used to initialize n stream 
ciphers. 

6. For each frame in the resynchronization group, the 
data elements that need to be encrypted are 
selected and are divided into n partitions (first byte 
in the 1st partition, second byte in the 2nd partition, 
and etc.). Each partition is encrypted using the 
stream cipher specified by the permutation key.  
The partitions are encrypted in parallel.  The data 
elements to be encrypted are: 
a. Sign bits of all DC coefficients 
b. Sign bits of AC coefficients at the three lowest 

frequencies 
7. Repeat Step 6 until the entire video stream has 

been encrypted. 
 

The decryption process is as follows: 
 

1. Retrieve and decrypt n+1 random keys and n+1 
nonces along with the total number of common-
key groups. 

2. Use the decrypted information to generate the 
encryption and permutation keys for all common-
key groups and store them into memory.   

3. At the start of each common-key group, retrieve its 
associated encryption keys and permutation key 
from memory. 

4. At the start of each resynchronization group, the n 
partition encryption keys are used to initialize n 
stream ciphers. 

5. For each frame in the resynchronization group, the 
data elements that need to be decrypted are 
selected and are divided into n partitions.  Each 
partition is decrypted using the stream cipher 
specified by the permutation key.  The partitions 
are decrypted in parallel.   

6. Repeat Step 5 until the entire video stream has 

been decrypted. 
 
2.4 Security Implications 
 
The advantage of this scheme in reducing the 
effectiveness of a plaintext attack can be shown in the 
following manner.  Like VEA implementations, if an 
attacker knows the plain-text video frame and the 
corresponding cipher-text video frame, the overall key-
stream for the video frame can easily be determined.  
However, unlike the basic implementation of VEA, the 
key-stream in the proposed algorithm is composed of 
multiple unique key-streams.  If the key-stream found is 
used directly to decrypt frames from the next 
resynchronization group, there is only a probability of 
1/(n!) that the decrypted frames are correct due to the 
permutation of key mappings.  To determine if a 
decrypted frame is correct, the attacker must verify the 
output manually.  Therefore, a video frame from that 
resynchronization group must be decrypted a maximum 
of n! times even when the key-streams are known, which 
is computationally expensive given the added cost of 
video decompression.  This can increase the cost of 
extracting the original video stream to a point where it is 
cheaper to acquire the media through legal means.  
Another way the attacker can use the compromised key-
streams of a previous resynchronization group in the same 
common-key group is to try each key with each partition 
individually and see if the output video is improved.  
However, given the fact that DC coefficients are 
differentially coded for intra-blocks in most modern 
block-transform video compression formats, it is very 
hard to determine whether the output video is improved 
as the effects of encryption on one block is propagated to 
related blocks and therefore make this type of attack 
intractable. 
 
It has been shown in Section 2.2 that the proposed 
algorithm is resistant to plaintext attacks compared to the 
original VEA, while still allowing for the use of stream 
ciphers that are less computationally complex than block 
ciphers.  Given the fact that a new set of keys are used for 
each common-key group and that each key is 256-bit in 
length, ciphertext-only attacks such as brute force 
exhausting key searches are not practical for the proposed 
algorithm.  This is especially true given the typically large 
amount of video data to be processed. 

 
2.5 Computational Costs and Parallel Implications 
 
The proposed algorithm is based on VEA.  Since only the 
sign bits of DC coefficients and selected AC coefficients 
are encrypted and they make up a small portion of the 
total video stream, it is significantly more efficient than 
encrypting the entire video stream.  Secondly, modern 
stream ciphers, in general, require significantly fewer 
computations than block ciphers.  Therefore, the use of 



stream ciphers in the proposed algorithm allows for great 
reduction in computational overhead compared to 
techniques that use modern block ciphers.  Moreover, the 
use of simple stream ciphers lends itself well to a parallel 
implementation in hardware.   
 
It is also important to discuss the proposed algorithm in 
the context of parallel computing.  As the proposed 
algorithm is designed to make use of multiple 
independent stream ciphers to encrypt approximately 
equal lengths of information, it is ideal for 
implementation using parallel hardware.  The video 
stream may be partitioned trivially for the purpose of 
encryption and decryption.  The amount of overhead 
associated with parallelizing this algorithm is very small 
so the speedup associated with parallelization is linear.  
For example, if a content stream is encrypted into n 
different partitions that are encrypted in parallel, the ideal 
speedup is n times that of encrypting the video stream 
serially.  While it is true that the hardware cost of 
parallelization also increases linearly, it should be noted 
that the stream cipher is relatively simple to build and 
therefore can be easily replicated. 
 

3. Experimental Results 
 
To evaluate the video scrambling capabilities of the 
proposed algorithm, the video encryption system was 
implemented using the popular RC4 stream cipher, using 
a set of four 256-bit encryption keys and a 64-bit 
permutation key for each common-key group.  The actual 
security of the stream cipher used for video scrambling 
evaluation is unimportant, as any good stream cipher 
should generate what appear to be random binary 
sequences and so is sufficient for testing purposes.  The 
actual stream cipher to be used for the proposed algorithm 
can vary depending on the specific application.  Three 
different MPEG-1 compressed video clips were used as 
test streams.  Aside from the ideal scenario where all the 
selected data is encrypted, a number of scenarios were 
also tested to evaluate the output when the video stream is 
compromised to different extents.  Therefore, the 
following scenarios were tested: 
 

1. No partitions have been compromised 
2. ¼ of the partitions have been compromised 
3. ½ of the partitions have been compromised 
4. ¾ of the partitions have been compromised 

 
The average PSNR for each encrypted video stream is 
shown in Table 1.  A decoded frame under the different 
scenarios is shown in Figure 3.  It can be observed that 
the output is incomprehensible when all the selected data 
is encrypted.  It can also be observed from the 
compromised output frames that the decoded video 
stream remains mostly incomprehensible until ¾ of the 
video content is compromised.  However, the decoded 
output video stream is still degraded enough under this 

scenario to be considered unwatchable.  In terms of 
efficiency, the average computational overhead of the 
proposed algorithm over 10 test trials is found to be 
2.16% of the total computational time required to decrypt 
a video stream.  Therefore, it is clear that the proposed 
algorithm is suitable for securing video content in low-
cost consumer devices. 
 

4. Conclusions 
 
This paper presents an efficient parallel video encryption 
algorithm suitable for consumer devices.  Partial video 
encryption techniques are used to significantly reduce the 
computational overhead associated with encryption while 
achieving an acceptable level of security.  Multi-key 
encryption and parallel stream ciphers are used to 
improve both security and computational performance.  
Experimental results from the encryption of various test 
video sequences demonstrate the effectiveness of the 
video encryption scheme.  It is our belief that this method 
can be successfully implemented in low-cost consumer 
devices such as set-top boxes and digital movie disc 
players.  Future work includes the design and 
implementation of a parallel video stream encryption 
processor based on the proposed algorithm.   
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Figure 3. A frame from the TENNIS video clip 

 


