
AN EFFICIENT, PARALLEL MULTI-KEY ENCRYPTION OF COMPRESSED
VIDEO STREAMS

Alexander Wong and William Bishop

Department of Electrical and Computer Engineering, University of Waterloo
Waterloo, Ontario, Canada

a28wong@engmail.uwaterloo.ca, wdbishop@uwaterloo.ca

ABSTRACT
The popularity of digital video storage and delivery
systems has given rise to the need for video encryption to
preserve secrecy and digital rights. Conventional
encryption techniques are not appropriate for securing
multimedia systems given the need to encrypt a large
amount of data in real-time. This paper presents a
selective video encryption algorithm that utilizes multiple
stream ciphers and a unique multi-key mechanism to
improve security while maintaining efficiency and format
compliance. Furthermore, the algorithm is well suited for
parallel hardware implementation. Finally, experimental
results from the encryption of various test video
sequences demonstrate the effectiveness of the video
encryption scheme.

KEY WORDS
multi-key encryption, video compression, parallel
processing

1. Introduction

Video compression is an important research topic given
the increasing need for the efficient storage and
distribution of videos in applications such as Video-on-
Demand (VOD), video archival, digital video
broadcasting, and digital movie playback. The recent
popularity of digital video storage and delivery systems
has given rise to a need for video encryption to manage
digital rights.

A number of methods have been proposed to provide
security for digital video streams. These video encryption
methods can be classified into two categories:

1. Naive encryption [1-2]
2. Selective encryption [3-9]

Conventional encryption techniques used by existing
transmission and storage systems are not well suited for
multimedia content for several reasons. First of all,
conventional encryption techniques encrypt all
multimedia content at the bit-stream level. Such
techniques are often computationally expensive since they
ensure a high level of security for all encrypted data.

Multimedia content is typically very large in size so the
computational cost of such techniques is high. Also,
many digital video applications (such as VOD) have real-
time processing requirements that are difficult to achieve
cost effectively using conventional encryption techniques.
This point is particularly relevant for consumer devices
where computational complexity must be avoided to
ensure manufacturability and system reliability.

An ideal video encryption algorithm for real-time video
applications in consumer devices must possess the
following characteristics:

1. Provide an acceptable level of security
2. Minimize computational and storage overhead
3. Comply with standard video compression formats

To achieve these goals, it is important to exploit the
characteristics of the video compression process itself.
The most popular video compression schemes are based
on block-transform coding, such as MPEG [10-11] and
more recently H.264/AVC [12]. Such techniques are
popular because they are computationally efficient and
have low storage requirements, making them ideal for
low-end consumer devices such as set-top boxes and
media players. In general, these compression algorithms
utilize transforms that have high energy-compaction
properties to group important information into a small
amount of space. When using these algorithms, certain
components of the compressed data stream have greater
influence on the decompressed video output than others.
This fact can be used to minimize the amount of data that
needs to be encrypted to deliver an acceptable level of
security. Furthermore, data elements in compressed video
content can be divided such that they can be trivially
encrypted in parallel using different keys, thereby
improving the level of security while maintaining a high
level of performance.

The main contribution of this paper is an efficient,
parallel video encryption algorithm that utilizes multiple
stream ciphers and a unique multi-key mechanism to
provide an acceptable level of security for consumer
devices while maintaining efficiency. In this paper, the
proposed algorithm is described and explained in detail in
Section 2. Experimental results demonstrating the

effectiveness of the video encryption scheme are
presented in Section 3. Finally, conclusions are drawn in
Section 4.

2. Proposed Video Encryption Algorithm

This section introduces the proposed video encryption
algorithm. The theory behind partial video encryption is
reviewed and a multi-key video encryption technique for
parallel hardware implementation is described in detail.
An outline of the proposed video encryption algorithm is
provided. The parallel architecture for the algorithm and
a discussion of the security implications are presented.

2.1 Partial Video Encryption

Video compression algorithms attempt to pack
information into as little space as possible. Certain data
elements have a greater influence on the decompressed
video output than others. This characteristic can be
exploited to reduce the amount of video data that needs to
be encrypted while maintaining an acceptable level of
security. For this reason, it is important to discuss the
different data components that are common to modern
block-transform based video compression algorithms. It
is crucial to find a balance between computational
performance and security.

While each block-transform based video compression
technique varies in terms of design and implementation
details, they are all based on the same fundamental
concepts. The encoded video data produced by all
techniques share common data components that are
present in nearly all such compression standards ranging
from MPEG-1 to H.264/AVC. The common data
components are the following:

1. Motion vectors
2. DC coefficients
3. AC coefficients

Motion vectors represent the movement of blocks of
pixels from one frame to the next and they are used for
motion estimation and motion compensation. The DC
coefficients represent the average energy of the image.
The AC coefficients represent the details of the image.
The DC coefficients have a more significant impact on
the overall reconstruction of the image than the AC
coefficients. This is an important point as the AC
coefficients make up the majority of the encoded video
data. Computational overhead can be reduced
substantially by only encrypting the DC coefficients.
Encryption of the DC coefficients yields an acceptable
level of security for some applications. It has been shown
that it is impossible to derive the DC coefficients given
the AC coefficients for a DCT of size 8x8 DCT [13].
Furthermore, research has shown that the encryption of

motion vectors is more significant than the encryption of
DCT coefficients in B and P frames [14]. Therefore, it is
clear that the encryption of important structural
information such as DC coefficients and motion vectors is
most important.

Partial video encryption can be utilized to deliver
different levels of security for each of the common data
components. Applications requiring a low level of
security need not encrypt all data components. For
example, a digital TV service may not require the best
possible encryption of its content to achieve its goal of
making the video stream unusable. In such a situation, it
is desirable to favor low computational complexity over
high security. The proposed encryption algorithm targets
consumer devices such as commodity set-top boxes and
multimedia playback devices. In this context, it is more
important to exploit the way information is encoded to
deliver real-time performance while providing an
acceptable level of security. Therefore, only the sign bits
of the DC coefficients and the sign bits of the AC
coefficients at the three lowest frequencies are encrypted
in the proposed algorithm.

2.2 Parallel Multi-Key Video Encryption

The proposed video encryption algorithm extends the
Video Encryption Algorithm (VEA) proposed in [7] by
utilizing multi-key encryption and multiple stream ciphers
in parallel to provide fast, real-time encryption/decryption
performance at a level of security that is sufficient for
some consumer digital video applications. Multi-key
techniques can be used to significantly improve the
security of VEA while maintaining encryption efficiency.
In VEA, a single key-stream is used to encrypt the
selected video components. Factors such as transmission
errors (which can lead to lost video data) and multimedia
playback functionality (such as rewind and fast forward)
require the ability to resume the decryption and playback
process at a specified point in time in a video stream.
There must be no dependencies on content prior to the
specified point in time. This is accomplished in VEA by
the use of resynchronization points, where the secret key
is reused from the first bit for encryption at each
resynchronization point. The user can start the video
stream at any resynchronization point. The main
drawback of resynchronization is that it makes VEA
vulnerable to plain-text attacks, since the key-stream can
be easily determined if an original image and its
corresponding encrypted image are known. Since only
one key-stream is used, knowledge of the key-stream
allows for the decryption of the entire video stream. VEA
is also vulnerable to a reused key attack. While Shi and
Bhargava [7] suggest that this type of attack can be
prevented by requesting new keys periodically, this
approach wastes bandwidth and computing cycles. Block
ciphers such as DES and AES can also been used to avoid
security attacks of this nature, as done in the RVEA

algorithm [6] but the added complexity of block ciphers
makes them undesirable for use in some low-cost
consumer devices, particularly if a parallel
implementation is desired.

The proposed multi-key encryption scheme utilizes
multiple encryption keys in such a way that it is less
vulnerable to attack. The algorithm only uses the number
of keys required to deliver an acceptable level of security.
Keys have a longer lifespan in this context but they are
used in such a way that security is maintained at an
acceptable level. Thus, the proposed multi-key
encryption scheme is suitable for parallel implementation
as it supports cost-effective, real-time video encryption
and decryption.

Prior to explaining the theory, several terms must be
introduced. A resynchronization group is defined as a
group of frames starting from one resynchronization point
to the frame immediately prior to the next
resynchronization point, as shown in Figure 1. A
common-key group is a sequence of resynchronization
groups that make use of the same multi-key set.

The data components that need to be encrypted in a video
frame can be divided into n partitions. Using n
encryption keys of length m, each partition can be
encrypted by a stream cipher using a different key. These
keys are referred to as partition encryption keys. The
mapping between a partition and its encryption key is
determined using a permutation key of length klog2(n!)
where k is the number of resynchronization groups per
common-key group. This is illustrated in Figure 2 for a
case where n = 4 and k = 2.

Consider a scenario where a set of four 256-bit partition
keys and a 64-bit permutation key are used for each
common-key group. Each video frame in a
resynchronization group is divided into four partitions
and encrypted using one of the available stream ciphers
with one of the four partition encryption keys. The
mapping between the partitions and the keys is encoded
in 5 bits since there can be a total of 24 permutations of
key mappings. Since the permutation key is 64 bits in
length, there can be a maximum of 12 resynchronization
groups for each common-key group to avoid reusing the
permutation key. If each resynchronization group is 1
second long, this algorithm provides acceptable security
for 12 seconds of video.

The approach introduced so far can reduce the number of
keys needed but it does not solve the real problem. Video
streams typically last much longer than 12 seconds. A
practical work-around for this problem using the multi-
key concept is proposed in the following manner. Let us
define a video stream as a sequence of j common-key
groups. For each video stream, a set of n encryption keys
and nonces is used to generate n x j encryption keys using
a stream cipher as a pseudo-random number generator, as
each common-key group requires a set of n encryption
keys. These generated keys can then be stored in memory
and retrieved depending on the frame that needs to be
decrypted. In the case of pre-recorded video, the set of
initial keys and nonces can be stored in encrypted form
on the physical media. In the case of real-time streaming
broadcasts and VOD services, they can be sent in
encrypted form through the network. An example of this
approach can be illustrated using High Definition DVD
(HD-DVD) playback devices. When a disc is inserted
into the player, a set of four 256-bit keys and nonces are
decrypted and used to generate encryption keys for
decrypting the video content. Assuming 10,800 seconds
(three hours) of video is held on the disc and each
common-key group is 12 seconds long, a total of 900 x 4
= 3,600 256-bit encryption keys are generated and stored
in memory. These encryption keys can be easily
generated using a modern stream cipher that has a period
significantly greater than what is required for this
approach. For example, the average period of a key-
stream generated by the HC-256 stream cipher is
estimated to be 265546 [15]. The 3,600 256-bit keys
require less than 115 kB of memory to store. A player
can retrieve the appropriate keys to decrypt a video frame
based on the common-key group to which it belongs.

While this workaround approach is by no means
equivalent to using randomly generated keys, it
nevertheless provides the level of security required by
some consumer devices. Therefore, the described parallel
multi-key extensions to VEA serve as the basis for the
proposed encryption algorithm.

Figure 1. Example of a resynchronization group

Figure 2. Parallel multi-key video encryption using a
permutation key

2.3 Proposed Encryption Algorithm

Based on the theory presented, the proposed encryption
algorithm can be outlined as follows (where n is the
number of partitions):

1. Obtain n+1 initial keys and generate n+1
corresponding nonces.

2. Encrypt the initial keys and nonces, along with the
total number of common-key groups, and store
them if the video content is distributed in
prerecorded media. Otherwise, send the encrypted
data over the network.

3. Combine the initial keys and nonces from Step 1 to
create n+1 initial seeds for n+1 cryptographically
secure pseudo-random number generators
(CSPRNGs).

4. At the start of each common-key group, generate n
encryption keys and one permutation key in
parallel using the CSPRNGs.

5. At the start of each resynchronization group, the n
encryption keys are used to initialize n stream
ciphers.

6. For each frame in the resynchronization group, the
data elements that need to be encrypted are
selected and are divided into n partitions (first byte
in the 1st partition, second byte in the 2nd partition,
and etc.). Each partition is encrypted using the
stream cipher specified by the permutation key.
The partitions are encrypted in parallel. The data
elements to be encrypted are:
a. Sign bits of all DC coefficients
b. Sign bits of AC coefficients at the three lowest

frequencies
7. Repeat Step 6 until the entire video stream has

been encrypted.

The decryption process is as follows:

1. Retrieve and decrypt n+1 random keys and n+1
nonces along with the total number of common-
key groups.

2. Use the decrypted information to generate the
encryption and permutation keys for all common-
key groups and store them into memory.

3. At the start of each common-key group, retrieve its
associated encryption keys and permutation key
from memory.

4. At the start of each resynchronization group, the n
partition encryption keys are used to initialize n
stream ciphers.

5. For each frame in the resynchronization group, the
data elements that need to be decrypted are
selected and are divided into n partitions. Each
partition is decrypted using the stream cipher
specified by the permutation key. The partitions
are decrypted in parallel.

6. Repeat Step 5 until the entire video stream has

been decrypted.

2.4 Security Implications

The advantage of this scheme in reducing the
effectiveness of a plaintext attack can be shown in the
following manner. Like VEA implementations, if an
attacker knows the plain-text video frame and the
corresponding cipher-text video frame, the overall key-
stream for the video frame can easily be determined.
However, unlike the basic implementation of VEA, the
key-stream in the proposed algorithm is composed of
multiple unique key-streams. If the key-stream found is
used directly to decrypt frames from the next
resynchronization group, there is only a probability of
1/(n!) that the decrypted frames are correct due to the
permutation of key mappings. To determine if a
decrypted frame is correct, the attacker must verify the
output manually. Therefore, a video frame from that
resynchronization group must be decrypted a maximum
of n! times even when the key-streams are known, which
is computationally expensive given the added cost of
video decompression. This can increase the cost of
extracting the original video stream to a point where it is
cheaper to acquire the media through legal means.
Another way the attacker can use the compromised key-
streams of a previous resynchronization group in the same
common-key group is to try each key with each partition
individually and see if the output video is improved.
However, given the fact that DC coefficients are
differentially coded for intra-blocks in most modern
block-transform video compression formats, it is very
hard to determine whether the output video is improved
as the effects of encryption on one block is propagated to
related blocks and therefore make this type of attack
intractable.

It has been shown in Section 2.2 that the proposed
algorithm is resistant to plaintext attacks compared to the
original VEA, while still allowing for the use of stream
ciphers that are less computationally complex than block
ciphers. Given the fact that a new set of keys are used for
each common-key group and that each key is 256-bit in
length, ciphertext-only attacks such as brute force
exhausting key searches are not practical for the proposed
algorithm. This is especially true given the typically large
amount of video data to be processed.

2.5 Computational Costs and Parallel Implications

The proposed algorithm is based on VEA. Since only the
sign bits of DC coefficients and selected AC coefficients
are encrypted and they make up a small portion of the
total video stream, it is significantly more efficient than
encrypting the entire video stream. Secondly, modern
stream ciphers, in general, require significantly fewer
computations than block ciphers. Therefore, the use of

stream ciphers in the proposed algorithm allows for great
reduction in computational overhead compared to
techniques that use modern block ciphers. Moreover, the
use of simple stream ciphers lends itself well to a parallel
implementation in hardware.

It is also important to discuss the proposed algorithm in
the context of parallel computing. As the proposed
algorithm is designed to make use of multiple
independent stream ciphers to encrypt approximately
equal lengths of information, it is ideal for
implementation using parallel hardware. The video
stream may be partitioned trivially for the purpose of
encryption and decryption. The amount of overhead
associated with parallelizing this algorithm is very small
so the speedup associated with parallelization is linear.
For example, if a content stream is encrypted into n
different partitions that are encrypted in parallel, the ideal
speedup is n times that of encrypting the video stream
serially. While it is true that the hardware cost of
parallelization also increases linearly, it should be noted
that the stream cipher is relatively simple to build and
therefore can be easily replicated.

3. Experimental Results

To evaluate the video scrambling capabilities of the
proposed algorithm, the video encryption system was
implemented using the popular RC4 stream cipher, using
a set of four 256-bit encryption keys and a 64-bit
permutation key for each common-key group. The actual
security of the stream cipher used for video scrambling
evaluation is unimportant, as any good stream cipher
should generate what appear to be random binary
sequences and so is sufficient for testing purposes. The
actual stream cipher to be used for the proposed algorithm
can vary depending on the specific application. Three
different MPEG-1 compressed video clips were used as
test streams. Aside from the ideal scenario where all the
selected data is encrypted, a number of scenarios were
also tested to evaluate the output when the video stream is
compromised to different extents. Therefore, the
following scenarios were tested:

1. No partitions have been compromised
2. ¼ of the partitions have been compromised
3. ½ of the partitions have been compromised
4. ¾ of the partitions have been compromised

The average PSNR for each encrypted video stream is
shown in Table 1. A decoded frame under the different
scenarios is shown in Figure 3. It can be observed that
the output is incomprehensible when all the selected data
is encrypted. It can also be observed from the
compromised output frames that the decoded video
stream remains mostly incomprehensible until ¾ of the
video content is compromised. However, the decoded
output video stream is still degraded enough under this

scenario to be considered unwatchable. In terms of
efficiency, the average computational overhead of the
proposed algorithm over 10 test trials is found to be
2.16% of the total computational time required to decrypt
a video stream. Therefore, it is clear that the proposed
algorithm is suitable for securing video content in low-
cost consumer devices.

4. Conclusions

This paper presents an efficient parallel video encryption
algorithm suitable for consumer devices. Partial video
encryption techniques are used to significantly reduce the
computational overhead associated with encryption while
achieving an acceptable level of security. Multi-key
encryption and parallel stream ciphers are used to
improve both security and computational performance.
Experimental results from the encryption of various test
video sequences demonstrate the effectiveness of the
video encryption scheme. It is our belief that this method
can be successfully implemented in low-cost consumer
devices such as set-top boxes and digital movie disc
players. Future work includes the design and
implementation of a parallel video stream encryption
processor based on the proposed algorithm.

Acknowledgements

This research has been sponsored in part by Epson
Canada and the Natural Sciences and Engineering
Research Council of Canada.

References

[1] I. Agi and L. Gong, An Empirical Study of Secure
MPEG Video Transmissions, Proceedings of the 1996
Symposium on Networks and Distributed System Security,
San Diego, California, 1996, 137–144.
[2] L. Tang, Methods for Encrypting and Decrypting
MPEG Video Data Efficiently, Proceedings of the 4th
ACM International Conference on Multimedia, Boston,
Massachussetts, 1996, 219-229.
[3] S. Lian, J. Sun, Z. Wang, and Y. Dai, A Fast Video
Encryption Scheme Based on Chaos, Proceedings of the
8th International Conference on Automation, Robotics,
and Vision, Kunming, China, 2004, 126-131.

TABLE 1
AVERAGE PSNR OF ENCRYPTED VIDEO STREAMS

Average PSNR1 (dB) Level of Security
Compromise TENNIS CARTOON BIKE

Uncompromised 6.8103 7.1938 6.5662
¼ of partitions 6.0696 5.1229 6.7165
½ of partitions 6.5017 6.9985 6.0235
¾ of partitions 7.1498 7.7693 7.4561

 1 The average PSNR was calculated over a sequence of 10 frames for each
 video stream. The PSNR for each frame is calculated between the
 compressed video frame and the encrypted video frame.

[4] S. Lian, Z. Wang, and J. Sun, A Fast Video
Encryption Scheme Suitable for Network Applications,
Proceedings of the International Conference on
Communications, Circuits, and Systems, Chengdu, China,
2004, 566-570.
[5] L. Qiao and K. Nahrstedt, A New Algorithm for
MPEG Video Encryption, Proceedings of the First
International Conference on Imaging Science, Systems,
and Technology, Las Vegas, Nevada, 1997, 21-29.
[6] C. Shi, S. Wang, and B. Bhargava, “MPEG Video
Encryption in Real-Time Using Secret Key
Cryptography,” Proceedings of Parallel and Distributed
Processing Techniques and Applications, Las Vegas,
Nevada, 1999.
[7] C. Shi and B. Bhargava, A Fast MPEG Video
Encryption Algorithm, Proceedings of 6th ACM
International Conference on Multimedia, Bristol,
England, 1998, 81-88.
[8] C. Shi and B. Bhargava, An Efficient MPEG Video
Encryption Algorithm, Proceedings of the 17th
Symposium on Reliable Distributed Systems, West
Lafayette, Indiana, 1998, 381-386.

[9] T. B. Maples and G. A. Spanos, Performance Study of
a Selective Encryption Scheme for the Security of
Networked, Real-time Video, Proceedings of the 4th
International Conference on Computer Communications
and Networks, Las Vegas, Nevada, 1995.
[10] ISO/IEC 11172, Coding of Moving Pictures and
Associated Audio for Digital Storage Media Up to About
1.5 Mbits/s – Part 2: Video, 1993.
[11] ISO/IEC 13818-2, Generic Coding of Moving
Pictures and Associated Audio Information – Part 2:
Video, 1994.
[12] Joint Video Team of ITU-T and ISO/IEC JTC 1,
Draft ITU-T Recommendation and Final Draft
International Standard of Joint Video Specification (ITU-
T Rec. H.264 | ISO/IEC 14496-10 AVC), 2003.
[13] S. Li and B. Bhargava, A Note on “MPEG Video
Encryption Algorithms”, available at
http://www.hooklee.com/MMTA2004_note.pdf, 2004.
[14] B. Bhargava, C. Shi, and Y. Wang, MPEG Video
Encryption Algorithms, Multimedia Tools and
Applications, 24(1), 2004, 57-79.
[15] H. Wu, A New Stream Cipher HC-256, Cryptology
ePrint Archive, 2004, available at
http://eprint.iacr.org/2004/.

 (a) Original (b) Uncompromised (c) ¼ of partitions compromised

 (d) ½ of partitions compromised (e) ¾ of partitions compromised

Figure 3. A frame from the TENNIS video clip

