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Abstract: Veredas(palm swamps) are wetland complexes associatdd twit Brazilian
savannaderradg that often represent the only available sourcevaier for the ecosystem
during the dry months. Their extent and conditiore anainly unknown and their
cartography is an essential issue for their praieciThis research article evaluates some of
the fine resolution satellite data both in the rg@®adarsat-1) and optical domain (ASTER)
for the delineation and characterizatiorvefedas Two separate approaches are evaluated.
First, given the known potential of Radarsat-1 iesmdgor wetland inventories, the
automatic delineation oferedass tested using only Radarsat-1 data and a Mardagom
fields region-based segmentation. In this caseintoease performance, processing is
limited to a buffer zone around the river networken, characterization of their type is
attempted using traditional classification methofl ASTER optical data combined with
Radarsat-1 data. The automatic classification oflaRsat data yielded results with an
overall accuracy between 62 and 69%, that provieabte enough for delineating wide and
very humidveredas Scenes from the wet season and with a smallde afgncidence
systematically yielded better results. For the sifasmtion of the main vegetation types,
better results (overall success of 78.8%) wereindtaby using only the visible and near
infrared (VNIR) bands of the ASTER image. Radadsda did not bring any improvement
to these classification results. In fact, when gssolely the Radarsat data from two
different angle of incidence and two different datéhe classification results were low
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(50.8%) but remained powerful for delineating therrpanently moist riparian forest
portion of theveredaswith an accuracy better than 75% in most casessdesults are
considered good given the width of some types di#ea than 50 m wide compared with
the resolution of the images (12.5 - 15 m). Compuathe classification results with the
Radarsat-generated delineation allows an undeismd the relation between synthetic
aperture radar (SAR) backscattering and vegetayjmes of theveredas

Keywords. Radarsat, Unsupervised Classification, Markov Ramdeields, Wetlands,
Palm swamps, ASTER, Supervised Classification, Y& types.

1. Introduction

As wetlandsyeredas(palm swamps) bear an essential role in the enwiemt by enhancing water
quality, reducing flood damage, sequestrating carand supporting a disproportional part of the
biodiversity [1-3]. Being associated with tberrado (Brazilian savanna)eredasare also frequently
the only source of perennial water supply during diny months of the year (in tlerrado of Minas
Gerais the dry season can last for six to eightthg)rj4, 5].

Figure 1. Photographs illustrating the different types \#redas(a) as seen from the
ground and (b) from the air: A - Wooded Savanna,-BWet meadow, C -
Shrubland/Riparian forest, D — Buriti palms.

Veredaspresent varying types, ranging from wet meadowspiarian forest and are associated with
the presence of Buriti palm$l@auritia flexuosalL.f., see Figure 1). Although their aspect canyvar
significantly, typicalveredasare relatively narrow landscape features thaofold mostly intermittent
stream that can either have a diffuse or well-aefinhannel. Their width can vary from tens of ngeter
to a few hundred. Whileerrado is a mostly open wooded savanna formation adajateskmiarid
conditions, veredasare closed riparian formations characterized bgrdinorphic soils with high
organic content. From the contact witkrrado vegetation towards the lowest point of the valley,
typical veredasshow the following sequence of types: grasslaret (meadows), shrubs and trees often
dominated byauritia flexuosa
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They form under very specific hydrological and geopiological conditionsyeredasare riparian
zones of a mostly flat topography characterizedheysuperposition of a pervious rock layer over an
impervious one causing the aquifer to surface durn sufficiently long part of the year for
hydromorphic soils to form [4, 5].

The distribution of the different types are ruleg the availability of water; the central part is
usually saturated all-year-round, whereas the malgvet meadows suffer from strong fluctuations of
the water table, causing the soil to be eitherratgd or flooded from November to March or dry from
April to October [4]. As suchyeredascan be considered, in the long term, as “barorsetdr the
aquifer. For example, excessive irrigation in ngaagricultural projects on very sandy soils candow
the water table and result in the irreversible ddgtion ofveredas Conversely, the construction of
dams causing permanent flooding will have a similaffect causing the death of
theveredas

With the rapid conversion oferrado to agro-pastoral activitiegseredas(Cerrado is the most
threatened biome of Brazil with a conversion rateeeding that of the Amazon forest [6].) are
increasingly threatened. Despite being protectedhley Brazilian legislationyeredasin numerous
regions of Minas Gerais [with an area of 587.15@kMinas Gerais is the fourth largest state in Braz
and is dominated by theerrado (=60%), for whichveredasrepresent one of its most important source
of perennial water during the dry months] alrealkgvg signs of advanced degradation. However, the
actual degree of this degradation is still unkn@sns the true extent eéredasn Minas Gerais [5].

1.1. The use of remote sensing for wetland mapping

The three primary methods of wetlands inventory @mesite field work, photo-interpretation of
aerial photography and digital image processingsafellite imagery. The first two have the
disadvantage of a relatively long time lag betwdata acquisition and map production [7]. Assuming
a timely processing and interpretation, sateli@ote sensing is considered the only practical oaeth
for mapping and monitoring wetlands [8]. It hastieeported [9] that research is needed in the béld
remote sensing to assess total wetland resourdéatsalletect changes at large spatial scales and
produce standardized approaches to inventory aiodmation dissemination. For example, [10, 11]
found that Landsat TM data showed a good capacitgstimate the extent of wetlands in various
regions of the globe. Others have found that thesgmce of a dense canopy makes it difficult to
separate wetlands from other forest types [12khin specific case oferedas [13] have found that
they often cannot be separated from other ripddanation not classified as wetlands. Bakeal. [7]
have attained high classification success (> 85%ihgu Landsat ETM+ in combination with
topographic and soil data.

Optical data have the additional limitation of petrmitting the acquisition of imagery under cloudy
conditions or at night. In that perspective, sytithaperture radar (SAR) offers a promising appingac
since it is unaffected by clouds or illuminatiomddions. SAR also has the ability (conditionedthg
frequency used) to penetrate the canopy and yiétaimation about the ground. The frequencies used
by radar systems, ranging roughly from 300 MHz @oGHz (or wavelengths of respectively 1 m to 1
cm), interact with different parts of the vegetati®Vhile with longer wavelengths (P- and L-band)
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scattering and attenuation result mainly from &atéon with trunks and large branches, shorter
wavelengths from the K and X bands interact pripavith leaves. Mid-range wavelengths like the C
and S bands interact with a combination of leavestaanches [14].

1.2. Interaction between radar backscatter and avetlvegetation

Reflection of radar pulses is generated by a digmoity in the dielectric constant of the surfatieg
larger the difference, the larger the reflectiorheTroughness at the wavelength scale (a few
centimeters)peing a function of the frequency, and orientatidrthe surface govern the amount of
energy scattereldack to the side-looking antenna. A water surfaae dnhigh dielectric constant, but if
it has a smootlisurface, it will reflect all the energy away frotretantenna. Conversely, dry soil and
dry bark of treeshave a relatively low dielectric constant and mafsthe energy is transmitted or
absorbed leaving backscatter of relatively low magnitude [15]. Refiess, since energy is scattered
in all directions, asignificant portion is still returned towards th&tenna. For soil and vegetation, it is
primarily the moisturecontent that increases the dielectric constant @nodide high radar pulse
reflection [16]. Combinedwith a rough surface having many vertical strudurkigh dielectric
constant of humid surfaces proviseong signal return to the radar antenna whiafstedes into bright
features on the radar image.

The fact that radar backscattering is very serssitor moisture is a very useful characteristic for
wetland mapping. With some exceptions like mudsflaimid or saturated soil of wetlands are usually
well vegetated and have a relatively rough surthaewill strongly scatter the microwave pulsesiin
directions yielding a relatively high signal retufh7]. A third SAR phenomenon is frequently
observed in wetland environments when a vegetaiddce is flooded; the pulses are first reflected
away by the smooth flooded ground then back tatitenna by the perpendicular vegetation structure.
The combination of the two perpendicular surfac#saa a corner reflector that causes the radaeguls
to bounce back at the antenna, a phenomenon ailgdale bounce [8, 18]. This is especially true for
longer wavelengths (L- and P-bands). In the cashofter wavelength like C-band (5,3 GH2wer5,6
cm) the increase of backscattering appears toib@ply due to increased moisture combined with a
rough canopy structure. Conversely, in wetlandshwib woody plants, the increase in specular
scattering caused by standing water tends to deemaar backscattering [14]. This situation islitk
to happen in the grassland that marginweeedasduring the high wet season when they are flooded.
These mechanisms are illustrated and explainedyuré-2.

SAR data has proven its utility for mapping wetlanl flooded forests extents [19], but its ability
to discriminate between vegetation type and fornm@nly dependent on the use of multi-date,
multifrequency or multi-polarization radar data arcombination of these multiple data sets [14].
Studies have shown that using Radarsat-1 in coribmavith optical Landsat data can significantly
improve land cover classification [20-22]. Howewiershould be mentioned that these studies were
aimed at improving land-cover mapping from Land$ata with a 30 m resolution cell and that radar
derivative (mostly texture features) were used.&eaity speaking, unless one would want to separate
very different features (wetland vs. forest vs.am)y optical remote sensing is still preferablsitale-
date/frequency/polarization radar data for sucHiegions as classification of vegetation types,and
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only when integrated with optical data has a sifgfR image been found to bring a significant
improvement to the classification of vegetation][23

Figure 2. The main mechanisms governing the interaction batv&@AR C-band signal and
avereda Legend: 1) wooded savanna, 2) intermittentlyghgsses, 3) shrub, 4) trees with
a predominance of auritia flexuosaL.f. and 6) permanently wet grasses, i) dry sandy
soil , i) hydromorphic, almost permanently moisils, iii) the aquifer is permanently close
to the surface. In A) the dry wooded savanna aydsdils have a low dielectric constant
but a high scattering potential. In B) the grasssage a relatively high scattering power and
can have a high dielectric constant when wet omathe soil is saturated. In C) and E) the
shrub and trees growing on hydromorpic soils agxatterers and are moist with a high
dielectric constant. In D) the riparian forest isgaod scatterer with a high dielectric
constant and can act as a corner reflector onatgim Finally, in F) flooded grasses cause
most of the signal to be reflected away from thé&RStenna.

1.3. Objectives and organization of the article

The objective of this research was to evaluatepthiential of Radarsat-1 (SAR) amlvanced
Spacebone Thermal Emission an Reflection RadiomateASTER (optical) satellite data for
delineating and characterizinggredasat the 10x10 - 30x30 m scale (A range of resatutells,
generally considered as “fine” [8] but not “high”.Radarsat-1 was the SAR of choice for its
recognized potential for mapping wetlands and fembdbrests [14, 19, 24-27]. ASTER optical data
from the Terra satellite were selected as an imgmogubstitute to Landsat [28] in terms of
spatial resolution.

Unless strongly filtered or when texture derivasivage used, traditional pixel-based classification
algorithms do not perform well with single-datedfuency/polarization SAR data [20, 29]. MRF-based
(Markov random field) classification algorithms leayielded good results in other SAR image
classification applications [30, 31]. The algoritld@veloped by [31] has successfully been applied by
the authors in a sea ice classification applicaf@®?] and has yielded promising results for palm
swamp delineation [33]. The same algorithm is beegied here for the unsupervised delineation of
veredasusing the hydrographic network as a starting p@etauseeredasare always associated with
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the hydrographic network, this knowledge has besduo limit processing to a buffer zone on either
side of the streams. It is hypothesized that themsare contributes to reduce class confusion and to
increase classification success rate.

Conversely, classical pixel-based classificatiagoathms usually work well with optical data or
combinations of optical and SAR data (or deriva)ven the selected range of spatial resolution.
Different combinations of ASTER bands and Radatsattages were evaluated for the supervised
classification of the different types encounteredh itypical veredas as a means
of characterization.

Finally, the results from the SAR and optical data compared by spatially intersecting their rasult
to assess the potential of Radarsat data and theparvised MRF-based classification approach for
delineatingveredas This approach helped understand what types wettally captured by the SAR
data and the MRF-based unsupervised classificaliba.use of two different angles of incidence at
two different phenological times brings furtherigig on the optimal SAR C-band image parameters.

2. Materialsand M ethods
2.1. Study Area

The study area is situated along the course dPémaacu river in Northern Minas Gerais - Brazil, in
a region called Chapadao das Gerais. The area heserre for being one of the rare well preserved
regions of the Brazilian savanna having ideal emmmental conditions for the research (being a
protected area) and having some of the longestdasareas of the country (Figure 3). The study area
covers about 540 kirand about 50 linear km okredas It also completely encloses theredasdo
Peruacu State Park @1 km?2). The Peruacu river is a tributary of théo $-rancisco river, the third
largest watershed of Brazil. The region’s bedrackamposed of a layer of sandstone (usually highly
weathered) over carbonates from the superior Rrodés. The topography is mostly flat and slopes are
very smooth. The climate is semiarid, with an ageremperature of over 25°C. Precipitation averages
124 mm per month between October and April andtlems 2 mm between May and September [34].

2.2. Imagery

Four Radarsat-1 images were acquired for the prasety from a “Data for Research Use” (DRU)
project promoted by the Canadian Space Agency (& Clgtp://www. space/gc/ca). The images were
acquired in the “standard beam” mode for two dttiperiods corresponding to the two main
phenological seasons; April or the end of the veatsen when the soil is saturated and September or
the end of the dry season when the hydrologicara is at its lowest. For each period, two imajes
different incidence angles (the angle of incideiscthe angle between the line of sight from thearad
to the ground and the vertical direction) were aegli S2 with 24° to 31° for the near and far range
respectively and S6 (41° to 46°). The image pixalge a spatial resolution of 12.5x12.5 m and a
radiometric depth of 16 bits. SAR images with thelsaracteristics were ordered in an effort to asses
the best period/incident angle for delineating Wieeedas It was expected that S6 scenes would be
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more affected by volume scattering and vegetatiomcsire consequently [35, 36] and that the S2
scenes would respond more to direct scatteringsaihdnoisture.

Figure 3. Location of the study area.
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One ASTER image from the Terra/EOS AM-1 satelliit//terra.nasa.gov) of the study area was
acquired on 21 August 2006. The ASTER instrumerbimposed of three subsystems: VNIR (visual
and near infrared) with three bands (green 0.58-Qr@, red 0.63-0.69 um and infrared 0.76-0.86 pum)
and 15 m ground resolution, SWIR (shortwave inflar@nging from 1.6 pum to 2.43 um) and 30 m
ground resolution and TIR (thermal infrared) witlhesolution of 90 m. To take full advantage of the
fine ground resolution of the VNIR and SWIR subsys$, bands from the TIR were not used in this
study. Even though TIR could prove useful sinmredasare expected to be cooler than the
surrounding savanna, the 90 m resolution was cereidtoo broad for the application at hand. Some
of the SWIR bands (2, 3 and 5) were included intaadto the three VNIR bands.

All four SAR images and the ASTER image were geoicedty corrected usingn situ ground
control points collected with a navigation GPS andge-to-image based on a geo-referenced Landsat
ETM+ panchromatic band with a ground resolution 1& m. Since the relief is mostly flat,
displacement effects caused by the incidence angle almost negligible and all five images had
mean square errors below 20 m. Speckle noise wafteced from the SAR images because speckle
noise algorithms tend to erode class boundariesiwhsupervised segmentation is applied, reducing
the quality of the classification [31]. A standaedliometric correction was applied to the three RINI
bands of the ASTER image [37].

2.3. Field Work and Ground Truth Data

Veredasare by nature difficult to access by land. Exdepthe usual fringe of grass on both sides,
the center is either flooded or saturated and dgetation is very dense. Our field campaign coadist
of a series of 24 transects made at intervals bmingples of 500 meters approximately. The lengjth
the transects ranges from 142 m to 598 m with amame of 299 m. Each transect was started and
ended with 40 to 50 m in the savanna type. Végredawas crossed by foot and every change of type in
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the vegetation was recorded and positioned usingagation global positioning system (GPS).
Despite the imprecision of the navigation GPS ettt at about 10 m, all transect were geometrically
consistent, in terms of alignment, and a good Visugch was obtained with both SAR and optical
imagery. These transects were plotted and increedemith vegetation artwork as showed in Figure 4.
The transects were rasterized to match the sitieeofesolution cells of both image types (Radatsat-
at 12.5 m and ASTER at 15 m). Other more traditi¢gsmall areas) training/validation sites were also
collected in locations of easier access such #sisavanna and sandy areas.

Figure 4. Example of graphically enhanced transect acrossraw stretch ofereda Note
the buriti palms in the center, bordered by shrub, grassed amwoded
savanna successively.

Transect 21

0m 150 m

Two sets of reference data were created from ttrassects. In the first one, the different types
were reclassified in two classes: 1) vereda andd)-vereda to assess the success rate of the
classification of the Radarsat images in delingatime extent of theeredas An alternate set was
created where the meadow (grass) type was remawed the vereda class and added to the non-
vereda class since it was not clear, from visu@rpretation of the Radarsat images, in which diass
would fall. For the second set, the original refieeevertices were converted into reference pixelbo
meters for the classification of the ASTER imag#oithe different types (see Table 1 for their
description). In both cases, pixels located atsitaon points (between different types for ASTER or
between vereda and non-vereda for Radarsat) wenenated to keep only the pixel unequivocally
containing a single vegetation class. Half of thederence pixels were randomly selected for trani
while the other half was reserved to validate tlasssfication results. The different classes reedrd
are described in Table 1.

Botanical material was also collected for idenéifion and samples of soil were hermetically
bagged for soil moisture to be measured in laboyafthe soil moisture data was not collected at the
same time as the image acquisition but at the beginof the dry season and at least two weeks after
the last precipitation event. Although not coincitden time, these data are still helpful to undamsit
the difference between the different vegetatioresyand their respective soil.

2.4. Hydrography-based buffering
Knowing that veredas are always found along streams (most authors dengiat veredas

necessarily follow the natural hydrographic netwptke hydrographic network was used to create a
buffer zone to limit the regions used for procegsireredasare rarely wider than about 500 meters so
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a 2,000 meter-wide corridor can easily accountalbrimprecisions in the hydrographic network of
1:100,000 topographic maps and include the widésteceda Medium scale topographic maps are
available in digital form for most of Brazil anditadugh most of them are outdated (> 25 years old),
dislocation errors are likely to fall well withité 1,000 m on both side of the streams. Such oces
was done using the buffering tool of a standardygggahic information system (GIS) to create a mask
that was later applied to all Radarsat image data.

Table 1. Class name and description of vegetation type tleé veredas and
surrounding areas.

Class name Description

Grassland A relatively narrow (<50m) band of grassially inserted
between the savanna and the shrubland or theatpforest;

Shrub A narrow band of shrub that may or may noptesent between
the meadow and the trees;

Riparian forest A relatively dense canopy of treeth emergingburiti palms

and having a width that can vary from less thaty fiieters to a
few hundreds of meters;
Sparse wooded savann& sparse community of small trees (<5m) and shruth w
frequent patches of bare soil;
Dense wooded savanna A dense community of smadk tfg7m) and shrub with |a
continuous canopy;

Bare soil (sand) Areas of very little vegetatiarsyally grasses and some shrub)
characterized by loose sand;
Open water Class almost exclusively representednhgll lakes but might

include some open water areas withintbeedas

2.5. Delineating the veredas using the Radarsagksa

Classification of the Radarsat images was performédo steps: 1) unsupervised classification and
2) labeling. The unsupervised classification wasedoising the MAMSEG (Modified Adaptative
Markov random fields SEGmentation) algorithm, depeld by [31] and based on Markov random
fields (MRF). The advantage of MRF models lieshrit inherent ability to describe simultaneously
the local spatial context (the relationship betweeighboring pixels) and the feature charactesstic
each segment (from the distribution of spectralealfor example). This is most appropriate since
pixels of a satellite image cannot be considerdeépendent processes but are spatially correlatesl. T
MAMSEG algorithm has proven to be a powerful clasation tool for both artificially textured
images and SAR sea ice images [31, 32].

The MRF model [38] assumes that the conditionabgbility of a pixel given its neighbors is equal
to the conditional probability of that pixel giveghe rest of the image. This makes it possible to
consider every pixel within its neighborhood asimshependent process facilitating its mathematical
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modeling [39]. Within a Bayes rule framework, thenditional probability of a pixel belonging to a
given class (or segment in the unsupervised cass)equal to:
x|Y,)P(v,)
P(Y, | x)= ol
MECHARA (1)

P wherep(x |Y,) is the conditional distribution of vectamgiven class/segmeit and P(Y,)is the
prior probability of theY; class. Suppose that the energy associated torittreppobability is & and
that § represents the energy of the spatial conm(xt|Yi), then the general energy formula is given
by [40]:

E =E, +ak; 2)

where Eis the energy form of feature vectdnaving k dimensions. Assuming a Gaussian distobut

E: can be modeled as:
E = Y {Z{%Llog(m )}} 3)

sm=Y | k=1
where |, and o, are the mean and standard deviationmtth class in thekth feature vector. E
represents the energy of the labels (classesgindgighborhood of the pixel being analyzed based on
system of clique (generally pairs or triplets ohttguous pixels):

= Z[/J’Z (Y., . )} @)

s tON,

whereys andy; are the respective class of pixelandt inside theclique anda(ys; y;) = -1 if ys =y; and
d(ys; Vi) = 1 ifys#yi. B is a constant. In the absence of training santpleetermine the labels of the
pixels of theclique, these are initially randomly determined and gedigistabilize by iteration.

In equation 25 is a parameter that sets the proportions of ttaive contribution ofE, and E;
within E. The adaptation of [31] makedteratively change the weighting between the spéfglobal)
and spatial (local) components; early iterationfahe spectral component and increased iterations
gradually increase the weight on the spatial coraptin

Three parameters need to be specified for the fitg®n to take place: 1) the number of classes,
2) the number of iterations and 3) a mask to lithé classification (this can ultimately be the véhol
image). In our case, the classification was binédweredd and “nonveredd) and the number of
iterations varied between 50 and 120 with incresieften. The mask consisted of a buffer of 1000 m
on both side of the hydrographic network to incladieheveredaswvhich are no larger than about 500
m in the region. Eighty iterations were sufficiemtr fthe result to converge and this number of
iterations was used in all tests.

2.6. Classification of the veredas type

An image dataset was created by joining the thr8@ER VNIR bands, three of the six SWIR
bands (bands 2, 3 and 5 had the least visuallgeattie noise) and the four Radarsat-1 scenes that
were previously filtered using a 3x3 median fitlereduce speckle noise. The set was given a sthndar
resolution cell of 15x15. Pixels of the SWIR bamdse simply duplicated while the Radarsat-1 scenes
were resampled by bilinear interpolation. In mamageas we observed in the field that the different
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vegetation types were almost systematically arrdmgegarallel strips along the hydrographic network
but that their width was often smaller than 20 m®etdo overcome the mismatch between image
resolution (15 m) and target width, some classehl similar characteristics had to be merged. The
resulting classes were: 1) dense wooded savanis@agde wooded savanna, 3) grass (or meadow), 4)
shrub, 5) riparian forest, 6) sandy soil with éttlegetation and 7) open water.

Classification algorithms can be grouped into paam and non-parametric. The latter have the
advantage of not assuming a distribution functierg.(Gaussian or Gibbs) and are less restrictive
regarding the number and location of samples fatissical training. Both the Fisher criteria ane th
Mahanalobis distance were tested. The Fisher licri@ria classifier uses the training data to tuts
a linear function that combines all the featuresh@nds) to maximize the variance between classes
and minimize the variance within class [41].The Mliadlobis distance [42] is used to measure the
distance between a single observaticend a class distribution (). Although it uses the mean and
covariance matrix, unlike the maximum likelihoodides not assume a Gaussian distribution.

Both the Fisher criteria and the Mahanalobis distanere tested with and without first applying a
segmentation routine; an approach called ECHO #€tbn and Classification of Homogeneous
Objects) [43]. The classification tests presentea hvere produced with the Purdue/NASA MultiSpec
software package. The MultiSpec classification solean classify any combination of the training
areas, testing areas and/or the entire image gdtsethe results with a wide range of statistjidS]
give a complete description of the MultiSpec paekalyseparate set of ground truth data that was not
used for training the algorithm, was randomly selédo test the accuracy of the classificationltesu

2.7.Statistical inference

Because the Kappa statistic has been known to stueede the degree of chance agreement [44]
and has generated a fair amount of controversyas not used for comparing the results. Insteas, th
McNemar test was used to compare the results #ireceame samples were used for all classification
tests and were not therefore independent as wealgine a Kappa difference test [45]. The McNemar
test computes 2 statistic from a two by two matrix based on catlgeand incorrectly classified pixels

in both classifications as follows:
f12—-f21

z=_11e" 12l
Jf1i2+f21 ()

wherefl2 represent the pixels that are correctly classifn the first classification and incorrectly
classified in the second classification d2d represents the opposite situatidrvalues of 1.96 and
2.58 were considered for the 95% and 99% levetoofidence respectively.

3. Resultsand Discussion

3.1. Delineating veredas

The four Radarsat-1 images were successfully segaeand labeled. Because of its higher
dielectric constant and high scattering capacityer@datend to be brighter than its surrounding. The
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soil moisture is considered a significant componesgponsible for the increase in the dielectric
constant. Table 2 shows the gravimetric moisturasueed in the soil of the main vegetation types

during the dry season.

Table 2. Summary of gravimetric soil moisture data colldatethe study area.

Vegetation type Number of samples | Gravimetric moisture
Wooded savanna 4 4.41%
Grassland/wet meadows 9 8.91%
Riparian forest 9 59.54%

The moisture gradient is quite neatly expressedaally for the riparian forest (soil samples from
the shrub type were excluded because only two vsdichples were processed and results were
inconclusive). For this reason, the class with thghest backscattering average was labeled as
“veredd leaving the remaining class as “nwaredd. Only the segments directly connected to the
hydrographic network were kept using a “contamordtiprocess; the pixels belonging to both the
veredasegments and the stream were marked and therioal)( connected pixels to these also
received an approval mark. The remaining pixelsewadtributed the noweredaclass. This process
made sure that other regions such as swampy paas mot wrongly classified asereda Figure 5
shows the classification results for the four Radafl images. The first observation is that despite
relatively low visual contrast and a significanegence of noise, the MAMSEG algorithm did extract
strips of higher backscattering, perhaps even btign the naked eye could have done. Eliminating
the non-connected segments further improve thealrgsults. Before considering ground truth and the
contingency table, a number of visual observatamesinferred below.

* Eliminating unconnected pixels from the resultsngsithe hydrographic network and the
“contamination” approach is a necessary step.

* The April (end of the rain season) images offetdvatisual contrast and visually more consistent
results.

* The lower incidence angle (S2), prioritizing dirbeickscattering (as opposed to volumetric) tends
to produce more consistent results in terms ofioaity (less gaps) and width of theredas
Becauseveredasvary in width and many sections are quite narrtve, volumetric backscatter
does not always produce a significant contrast thighsurrounding savanna vegetation.

* Veredasnear the headwaters are more difficult to deteabably because of their narrower width
and less saturated soils. Soils in the headweaerdaswere found to be generally dryer therefore
the dielectric constant should be lower.

« Combining higher incidence angle (S6) and dry segdSeptember) produce the worse visual
results. This observation supports the second laind statement anderedasare much harder to
detect (even visually) in the September S6 image.

The difference in moisture suggests that, in tevfrsil, grassland is more likely to be associdted
the savanna than it is to the riparian forest.th@ reason, two versions of the confusion matretav
built (Tables 3 and 4).
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Figure 5. SAR images (left), classification results obtaindth the MAMSEG algorithm
for the two periods and the two incidence anglesxqus80 iterations (center) and
classification results after they have been “obeBinusing the stream network and the
contamination algorithm (right).

(d) September S6

In Table 3, the wet meadow (grasses) type has kegnas part of theeredaclass since, strictly
speaking, this strata is part of theredacomplex. However, because it was not clear ifgressland
would be captured as being part of the strip witihér backscatter response, a second version of the
contingency matrix was made excluding it from tlegedaclass and incorporating it as neereda
(Table 4). The wet meadow type usually occupiegrtdngsition zone between the (dry) savanna and the
(wet) palm swamp so that its state changes frooratatd to dry during the year. Since April représen
the end of the wet season, the soil is not comlglstgurated and its dielectric constant is prop#ss
than at high rain season.

Table 3 confirms the observation made above tlettdmbination of “wet” season image and the
low incidence angle shows better potential for ridting theveredacomplex but the difference of
1.95% to the second best (September S2) is margiikal for Table 3, Table 4 confirms that the April
S2 image yields the best results for delineatmegedas Comparing Tables 3 and 4 leads to the
consistent observation that excluding the grasdieaudts to better results in all cases.
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Table 3. Confusion matrices and overall success for thssification of the four Radarsat-
1 images intovereda(including grassland) and naereda

Vereda pixels Non-vereda pixels Total
(489) (589) (1078)
April S2 Overall: 64.1%
vereda 236 134 370
non-vereda 253 455 708
April S6 Overall: 61.5%
vereda 271 197 468
non-vereda 218 392 610
Sept. S2 Overall: 62.2%
vereda 280 199 479
non-vereda 209 390 599
Sept. S6 Overall: 62.0%
vereda 178 99 277
non-vereda 311 490 801

Table 4. Confusion matrices and overall success for thssification of the four Radarsat-
1 images intovereda(excluding grassland) and neereda

Vereda pixels Non-vereda pixels (672) Total
(405) (1077)
April S2 Overall: 69.2%
vereda 222 149 371
non-vereda 183 523 706
April S6 Overall: 64.7%
vereda 248 223 471
non-vereda 157 449 606
Sept. S2 Overall: 65.3%
vereda 255 224 479
non-vereda 209 390 599
Sept. S6 Overall: 66.1%
vereda 159 119 278
non-vereda 246 553 799

Table 5 shows the Z statistic computed to complhtberesults of Tables 3 and 4. At a 95% level
of confidence, none of the differences betweenltesucluding grassland type in tveredacomplex
was found to be significant. However, if the grassdl type is excluded, than the results from thal Apr
S2 image are significantly better than the redubis all other images.

The same McNemar test was applied to assess @ thex significant difference between including
grassland (Table 3) and excluding them (Table 4gtafistics of 6.110, 3.976, 3.710 and 4.939 were
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obtained for April S2, April S6, September S2 amgt®mber S6 respectively which are all significant
at 99% (Z = 2.58).

Table 5. The McNemar test: Z statistics and significant®adarsat image classification
differences for the reference set including (leftd excluding (right) the grassland type
(values in bold are significant at 95%, Z=1.96).

Grassland included Grassland excluded
April S6  Sept. S2 Sept. S6 April S6 Sept. S2 Sefpt.
April S2 | 1.1826 0.8705 1.5416 | 2.3570 2.3438 2.2156
April S6 - 0.4048 0.2941 - 0.2882 0.2349
Sept. S2 - - 0.7047 - - 0.0586

3.2. Classifying the different types

The combination of the Mahanalobis distance classiand the ECHO routine produced
systematically higher classification success, dandesthe choice of classifier is outside the scope
this article, only these results are presented. hererder to evaluate the contribution of the eliéint
ASTER bands and Radarsat scenes, a “knock-out”’oapprwas used as a preliminary feature
selection scheme [46]. The “knock-out” approachststs in progressively eliminating the least useful
features by successive classifications until omlg & left. Since finding the best subset of fezgus a
combinational problem (10 features represent 10#8reint combinations), the “knock-out” approach
is a very effective suboptimal method for rankihg features in the image set (only 55 or [10(1(®41)/
combinations need to be tested).

The result of the “knock-out” method of feature kisug is presented in Table 6. The fact that the
three SWIR bands are the least useful was parfhg@rd since its ground resolution is the coarsest
and at least three of the classes are expecteamvdnarrow configuration. The two April Radarkat-
scenes (S2 and S6) come in third and fourth plhoweathe two September scenes suggesting that
April (the end of the wet season with moist vegetaind soils) is more appropriate for separatimgg t
different types. The fact that the red band (VNIR<2ranked lower than the two SAR (April) scenes
was rather surprising but it should be noted thatdifference in performance with these three featu
is very small (see Kappa results in Table 6).

Based on these ranking results, different clagdibos were tested using different subset of featur
from the image set and are presented in decreasileg of performance (based on the Kappa results of
the validation set) in Table 7. The VNIR achievetligher score with an overall success of 78,8%
followed closely by the subset integrating the VNIRd the two Radarsat-1 scenes from April. The
Radarsat-1 scenes do not bring any improvementrencesults remain not significantly different. The
inclusion of a SWIR band (3 which ranked best) ardntributes to decrease the overall accuracy. As
for the attempt of classifying the types with ottlg four Radarsat scenes, the overall successniys o
50,8% which supports the statement made earlidr dimgle phase/frequency SAR is usually not
sufficient to discriminate between vegetation types
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Table 6. Feature ranking results obtained from the “knocK-approach.

Rank Feature Kappa (12) Feature used (by rank)
1 (most useful) | VNIR 1 (green) 61,1% 1
2 VNIR 3 (near infrared) 68,9% 12
3 SAR April S2 71,0% 123
4 SAR April S6 72,2% 1234
5 VNIR 2 (red) 71,8% 12345
6 SAR September S6 67,4% 123456
7 SAR September S2 61,9% 1234567
8 SWIR 3 59,5% 12345678
9 SWIR 2 59,1% 123456789
10 (least useful) SWIR 5 56,6% 12345691®

The results of VNIR-only classification are shownHRigure 6 and in Table 7. This classification
corresponds to all the classes described earliéable 1. The overall performance of 78.8% is good
considering the marginal spatial resolution andrtheow nature of three of the classes. Most of the
confusion between these classes are concentrategdye shrub and grassland, shrub and riparian
forest, sparse and dense savanna. These classifieators can be mostly attributed to training and
test pixels with mixed vegetation cover which w#igm unavoidable because of the narrow nature of
these vegetation types. In other words, resolutelis in the order of five to ten meters would have
been preferable but might also have caused otlaigims such as increase data variance and texture
related problems.

3.3. Comparing the Results

In order to assess the effectiveness of the ungigpelr classification of the Radarsat-1 scenes using
the MRF-based segmentation, the results were cadpaith the ASTER VNIR supervised
classification (types). The comparison was donenkgrsecting both classification in the following
manner:

if SARas: = veredaghenASTER s else null (6)

The results of these crossing operations were ¢berpared with the classification of the different
types given that the same 2,000 m buffer was appbethe classified image. Table 8 reveals that
although a large proportion of theeredaswere captured by the approach using the MAMSEG
algorithm, it also captured large areas of savdhatido not belong to theeredaclass, especially in
the two September images. It is our understandiag these “artifacts” were created by the lack of
clear contrast between threredasand the other vegetation covers. A strong corned@oce between
the riparian forest type and what was classifiedeasdain the SAR image is clearly shown for all
four SAR results with an average percentage of%4a2 the riparian forest being captured by the
approach. Even when considering the accuracy ofiplagian forest class is around 84%, these results
can be regarded as reasonable. A visual compabsveen any of the SAR results (Figure 5 and the
ASTER classification in Figure 6) reveals that fleadwater sections were not well recognized and are
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characterized by numerous gaps attributed to theowaess of thereredasin these regions. These
areas ofveredasare also drier in comparison with downstream wigleras. The grassland was only
partially captured confirming our initial obsenati that these regions might not be well captured at
least in their dry portion.

Table 7. Classification accuracy obtained from the différenbset of features for the
classification of vegetation types of tweredasand surroundings (P% represents the
producer’s accuracy and U% the user’s).

VNIR and VNIR and

Samples VNIR SWIRE) SAR (April) SAR (all 4)
Class (n) P% U | P% U% P% U% P% U%
Grassland 48| 771 649 688 579 688 623 625 .9 30
Shrubland 60| 217 565 233 609 150 692 67 5.8

Riparian forest 176 84.1 84.1 84.1 69.5 83.5 87.84.7 87.1
Savanna (sparse) 50 78.0 68.4 28.0 41.2 96.0 69.6.0 5 32.9
Savanna (dense) 180 87.8 81.9 67.2 77.1 88.9 3339.4 54.2
Bare soil (sand) 42 90.5 76.0 90.5 52.8 92.9 574.8 4 9.1

Open water 23 100.0 1000 100.0 100.0 69.6 100.0.5 56100.0
Overall success 78.8 67.5 78.1 50.8
Kappa () 75.2 58.2 71.8 42.8

Table 8. Percentage of the vegetation cover captured by thmsupervised
classification/labeling process of each of the fRadarsat-1 images (based on the ASTER
VNIR classification and the 2,000 m buffer).

Vegetation April September

S2% S6% S2% S6%
Grassland 38.2 30.8 31.6 17.7
Shrub 28.6 37.4 30.3 31.8
Riparian forest 76.4 77.7 78.0 64.7
Sparse savanna 11.3 11.4 9.8 9.2
Dense savanna 13.6 104 20.5 28.0
Bare soil 14.9 7.5 8.0 4.8
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Figure 6. Results obtained from the classification of theetation types a) with the
ASTER image (VNIR only) and b) with the four Rad#r& scenes combined.
(a)
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4. Conclusions

An experimental evaluation of synthetic apertu@ara(Radarsat-1) and optical (ASTER) data for
delineating and characterizingredashas been concluded in this paper and the resudigest that
both data types show good potential providing #pgdropriate classification tools are used. An aagi
unsupervised algorithm based on Markov random i¢gMAMSEG) proved better than conventional
pixel-based classification for delineatingredasusing SAR data if the processing is restrictec to
buffer zone following the hydrographic network.

For the SAR-based delineation, the results sugpgasimages acquired during or at the end of the
rain season with a low incidence angle tend todyieétter results. The advantage of using the
hydrographic network buffering and the MAMSEG altiun is that no ground truth data is required
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prior to the classification. The study also gives iasight on the mechanisms ruling the relation
between theeredagypes and SAR backscattering response.

The classification of the vegetation types reve#had the SAR-based delineation of trexedadeft
important gaps, but that the riparian forest portiwas generally captured unless it lies near the
headwaters (dryer soil) or has a very narrow widtie VNIR instrument of the ASTER image has a
marginal ground resolution for capturing the difier vegetation types of theeredasthat are
sometimes narrower than a single pixel but provigsgsonable accurac}z €75%) for mapping the
main vegetation forms.

Veredasare very important wetland complexes for tesrado biome and various government
agencies have already outlined the need for mapthieg extent and state. We believe that the
automatic classification of SAR images (Radarsaitber C-band SAR imagery) is an efficient means
of providing a rough evaluation of their extentéiresolution optical data like ASTER could then be
used to characterize their type. More precise ®wiatwould almost unavoidably involve high-
resolution data (e.g. Ikonos, Quickbird) at a mhigiher cost.
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