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Abstract

This paper introduces a novel iterative approach to esti-
mating local phase coherence in situations characterized by
low signal-to-noise ratios. Local phase coherence is used
for a wide range of computer vision applications such as
edge and corner detection and object description. An is-
sue faced in extracting local phase coherence is the pres-
ence of image noise. While existing approaches to deal-
ing with noise when estimating local phase coherence is
effective for low noise situations, they are inadequate for
situations contaminated by high levels of noise. In the
proposed approach, the issue of high image noise is ad-
dressed by re-estimating both the local phase coherence and
the underlying image content iteratively to improve local
phase coherence estimates. This is performed using a feed-
back loop model, where the local phase coherence estimates
are used to re-estimate the image content using a moment-
adaptive bilateral estimation scheme and information from
the re-estimated image content is used to re-estimate the
local phase coherence. Experiment results show that the
proposed approach can be used to provide improved local
phase coherence estimates.

1 Introduction

Within the past few decades, wavelets have become one
of the most widely-used tools in the field of computer vi-
sion. This wide-spread use of wavelets can be partly at-
tributed to the fact that wavelets have been shown to pro-
vide a good basic model of the human vision system [1]. In
the wavelet-based view of the human vision system, local
frequency information such as amplitude and phase is ex-
tracted and processed by the human vision system to obtain
perceptually significant information about the environment.
Given how robust the human vision system is at extracting
important features under various conditions such as scale
changes, noise, and illumination variations, researchers in

the field of computer vision are highly motivated to use
wavelets for the purpose of feature extraction and represen-
tation.

In recent years, wavelet-based computer vision research
has focused on the use of local phase characteristics. There
are several advantages to using local phase characteristics
for feature representation. Local phase provides impor-
tant information about the structural characteristics of a
scene [2, 3]. Furthermore, since only phase information is
used, local phase characteristics are largely invariant to illu-
mination and contrast conditions. One particularly effective
local phase characteristic used for the purpose of feature
representation is local phase coherence. The use of local
phase coherence is motivated by the theory that local phase
coherence corresponds to the perceptual significance of vi-
sual data. Physiological evidence has shown that the human
vision system has respond strongly to visual data with high
local phase coherence [1]. Motivated by the benefits of lo-
cal phase and its biological ties to the human vision system,
the concept of local phase coherence have been used in a
wide variety of computer vision applications such as face
recognition [5, 4], blur analysis [6], medical analysis [7, 8],
and image registration [9].

One of the biggest challenges to extracting local phase
coherence from an image for the purpose of feature repre-
sentation is dealing with the presence of image noise. Ex-
tracting local phase coherence in situations characterized by
high levels of noise can result in highly degraded features
with little useful information pertaining to the structural
characteristics of the scene. While local phase coherence
estimation methods such as that proposed by Kovesi [10]
account for image noise, these noise reduction mechanisms
are only suitable for low noise situations. Therefore, a more
robust approach to local phase coherence estimation that
can handle situations with high noise levels is desired.

The main contribution of this paper is a novel itera-
tive approach to improved local phase coherence estima-
tion. The moments of local phase coherence are estimated
and used to re-estimate the image content using a moment-
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adaptive bilateral estimation scheme. The estimated image
content is then used to re-estimate the local phase coher-
ence. This process is performed iteratively using a feed-
back loop model to refine the estimated local phase coher-
ence. An overview of local phase coherence estimation is
described in Section 2. The proposed approach is described
in detail in Section 3. Experimental results are presented
and discussed in Section 4. Finally, conclusions are drawn
in Section 5.

2 Local Phase Coherence

Prior to describing the proposed approach, it is impor-
tant to first provide an overview of how local phase coher-
ence can be estimated from an image. One of the most
widely-used local phase coherence estimation methods is
that proposed by Kovesi [10], which has been found to pro-
vide good feature localization and robustness to low levels
of noise. As such, this method will be the basis of the pro-
posed local phase coherence estimation approach. Given an
image I , the amplitude A and phase φ at a given point can
be obtained using logarithmic Gabor wavelets. The local
amplitude and phase for a given point x at wavelet scale n
can be expressed as follows:

An(x) =
√

(I(x) ∗ F en)2 + (I(x) ∗ F on)2 (1)

φn(x) = tan−1

(
(I(x) ∗ F en)
(I(x) ∗ F on)

)
(2)

where F en and F on are the even-symmetric and odd-
symmetric wavelets at scale n. The local phase coherence
at point x and orientation θ can then be estimated using the
following expression:

P (x, θ) =

∑
n
W (x, θ) bAn (x, θ) ∆Φ(x, θ)− T c∑

n
An (x, θ) + ε

(3)

∆Φ(x, θ) = cos
(
φn (x, θ)− φ̄ (x, θ)

)
−

∣∣sin (
φn (x, θ)− φ̄ (x, θ)

)∣∣
(4)

where W represents the frequency spread weighting factor
(coherence when frequency spread is high is weighted more
than coherence when frequency spread is low), φ̄ represents
the weighted mean phase, T represents the noise threshold
and ε is a small constant used to avoid division by zero.
When the wavelet components are maximally in phase, ∆Φ
goes to zero and P goes approximately to one (if the am-
plitudes are non-zero). For testing purposes, the parameters
used to determine local phase coherence are the same as that
used in [10].

As mentioned in Section 1, one of the biggest challenges
in obtaining useful local phase coherence information from
an image is in dealing with image noise. The aformen-
tioned local phase coherence estimation approach attempts
to reduce the effects of image noise by integrating a noise
threshold into the estimation process. While this works in
situations characterized by a low level of image noise, there
are several problems when dealing with situations charac-
terized by low signal-to-noise ratios. First, the noise thresh-
old is set to a fixed value. As such, it is not suitable for han-
dling situations characterized by different or varying noise
levels. More importantly, while the noise threshold reduces
the effect of noise on the local phase estimation process,
it also prunes important local phase coherence information
that share similar characteristics as the image noise. This is
particularly problematic in situations characterized by high
noise level since local phase characteristics are often dif-
ficult to distinguish from noise. An example of this can
be seen in Fig. 1, where the local phase coherence is esti-
mated for an image contaminated by a high level of noise. It
can be seen that the estimated local phase coherence infor-
mation provides very little information about the structural
characteristics of the image content. As such, an estima-
tion approach that, in conjunction with the existing noise
threshold mechanism, can be used to obtained improved lo-
cal phase coherence information is desired.

3 Proposed Approach

To improve the quality of the estimated local phase co-
herence in situations characterized by low signal-to-noise
ratios, we propose an iterative approach that re-estimates
the local phase coherence as well as the underlying image
content using a feedback loop model. An overview of the
proposed approach is illustrated in Fig. 2.

The proposed approach can be described in detail as fol-
lows. Given an image I0, the initial local phase coherence
estimate P0 is obtained at iteration t = 0. At each itera-
tion t of the proposed estimation approach, the maximum
moment of local phase coherence $t is computed using the
following expression:

1
2

∑
θ

Pt−1(x, θ)2 + 1
2

√√√√√√√
4

(∑
θ

(
Pt−1(x, θ) sin(θ)

)(
Pt−1(x, θ) cos(θ)

))2

+(∑
θ

[(
Pt−1(x, θ) cos(θ)

)2
−

(
Pt−1(x, θ) sin(θ)

)2
])2

(5)

where Pt−1(x, θ) is the local phase coherence at iteration
t− 1 and orientation θ. What this effectively does is aggre-
gate the local phase coherence at different orientations into
a single measure of local phase coherence that accounts for
local phase coherence variations due to orientation. A high
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Figure 2. Overview of the proposed approach to local phase coherence estimation: First, an initial
estimate of local phase coherence is performed and used as the input of the feedback loop. In the
feedback loop, a new image estimate is computed based on the initial local phase coherence and
used to re-estimate the local phase coherence. The re-estimated local phase coherence is then fed
back and used to re-estimate the image. This is performed over multiple iterations to refine both the
local phase coherence estimate and the image estimate. The final local phase coherence estimate
is outputted after reaching the desired number of iterations.

value of $t at at point indicates that it possesses high struc-
tural significance within the image.

Once the maximum moment of local phase coherence
$t has been computed, a new estimate of the image It is
computed using a moment-adaptive bilateral estimation ap-
proach. In the bilateral estimation method, the estimated
value at a point x is computed as the non-linearly weighted
mean of the values at neighboring points. The non-linear
weighing function used in the bilaterial estimation approach
is defined by both the spatial relationship as well as the am-
plitudinal relationship between x and its neighboring points.
As such, the bilateral estimation method enforces both spa-
tial and amplitudinal locality. Using the Gaussian distribu-
tion as the basis for the bilateral estimation approach, the
non-linear weighing function used in the bilateral estima-
tion method can be defined as follows:

w(x, ψ) = wa(x, ψ)ws(x, ψ) (6)

where

ws(x, ψ) = e
− 1

2

(
‖x−ψ‖
σs

)2

(7)

wa(x, ψ) = e
− 1

2

(
‖I(x)−I(ψ)‖

σa

)2

(8)

and ψ denotes a neighborhood around point x. The esti-
mated value at x, denoted Î , can be computed as follows:

Î(x) =

∑
ψ

w(x, ψ)I(ψ)∑
ψ

w(x, ψ)
(9)

The main advantage of the bilateral estimation method
is that, by enforcing both spatial and amplitudinal locality
at the same time, amplitudinal variations that are consistent
with its neighboring points are preserved while inconsistent
amplitudinal variations that are characteristic of noise are
smoothed away. An important issue that must be consid-
ered when using the bilateral estimation method is the need
to choose appropriate values for the constraint parameters
σs and σa. To address this issue, the constraint parameters
used in the image content estimation process are adapted
based on the maximum moment of local phase coherence.
This moment-adaptive approach to bilateral estimation was
first proposed in [11]. In the proposed approach, we extend
the concept of moment-adaptive bilateral estimation into an
iterative approach, where local phase coherence and the un-
derlying image content are re-estimated in a feedback loop
process.

Given the maximum moment of local phase coherence
$t, an estimate of the image It can be computed as follows:

It(x) =

∑
ψ

w(x, ψ,$t(x))It−1(ψ)∑
ψ

w(x, ψ,$t(x))
(10)

where

w(x, ψ,$t(x)) = wa(x, ψ,$t(x))ws(x, ψ,$t(x)) (11)

ws(x, ψ,$t(x)) = e
− 1

2

(
‖x−ψ‖

σs($t(x))

)2

(12)
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Figure 1. Effect of high image noise on local
phase coherence: a) Noisy image (σ = 81,
PSNR=10.35 dB), b) Maximum moment of lo-
cal phase coherence

wa(x, ψ,$t(x)) = e
− 1

2

(
‖I(x)−I(ψ)‖
σa($t(x))

)2

(13)

and the moment-adaptive constraint parameters σs($t(x))
and σa($t(x)) are defined as:

σs($t(x)) = σs,min + (1−$t(x))2 (σs,max − σs,min) ,
σs,min ≤ σs ≤ σs,max

σa($t(x)) = σa,min + (1−$t(x))2 (σa,max − σa,min) ,
σa,min ≤ σa ≤ σa,max

(14)
Finally, based on the re-estimated image content It, the

local amplitude and phase At and φt is computed and the
local phase coherence φt is re-estimated as follows:

Pt(x, θ) =

∑
n
W (x, θ) bAn,t (x, θ) ∆Φ(x, θ)− T c∑

n
An,t (x, θ) + ε

(15)

∆Φ(x, θ) = cos
(
φn,t (x, θ)− φ̄t (x, θ)

)
−

∣∣sin (
φn,t (x, θ)− φ̄t (x, θ)

)∣∣
(16)

whereAn,t and φn,t are the amplitude and phase for wavelet
scale n at iteration t respectively, W represents the fre-
quency spread weighting factor, φ̄t represents the weighted
mean phase at iteration t, T represents the noise threshold
and ε is a small constant used to avoid division by zero.
Once the new estimate of local phase coherence is obtained,
the process is repeated until the desired number of iterations
is achieved. During testing, it was found that four iterations
was sufficient for providing good local phase coherence es-
timates in the presence of high image noise levels.

4 Experimental Results

To test the effectiveness of the proposed approach in im-
proving the quality of local phase coherence estimates, a
test set of five images were used. Each test image is first
contaminated with high levels of white Gaussian noise and
then process through the proposed method for four itera-
tions. The initial estimate of local phase coherence, as it
would appear if current approaches to local phase coher-
ence estimation was used, is provided for comparison pur-
poses. The local phase coherence estimates at various it-
erations are shown in Figure 3, Figure 4, Figure 5, Fig-
ure 6, and Figure 7. It is important to note that the local
phase coherence estimates are visualized using the maxi-
mum moment of local phase coherence given the fact that
local phase coherence is computed for multiple orientations.
It can be observed that the proposed method produces local
phase coherence estimates that provide noticeably improved
structural information compared to the initial estimate, de-
spite the high level of image noise. This is very important
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for computer vision applications that rely on structural in-
formation, such as structure-based segmentation and clas-
sification. It can also be observed that the quality of the
local phase estimates improved as the number of iterations
increased. This demonstrates that the proposed iterative ap-
proach to local phase coherence estimation can be used ef-
fectively to provide improved local phase coherence esti-
mates.

Figure 3. TEST1: a) Noisy image (σ = 57,
PSNR=13.66 dB), and Maximum moment of
local phase coherence after b) 0 iterations, c)
2 iterations, and d) 4 iterations

5 Conclusions

This paper introduces a novel iterative approach to es-
timating local phase coherence in images contaminated by
high noise levels. By re-estimating the local phase coher-
ence as well as the underlying image content iteratively us-
ing a feedback loop model, it was demonstrated that no-
ticeably improved local phase coherence estimates can be
obtained in situations characterized by low signal-to-noise
ratios. Future work includes the investigation of different
weighing functions for the image re-estimation process, as
well as an adaptive approach for setting the termination cri-
teria for the feedback loop process.

Figure 4. TEST2: a) Noisy image (σ = 81,
PSNR=11.37 dB), Maximum moment of local
phase coherence after b) 0 iterations, c) 2 it-
erations, and d) 4 iterations

Figure 5. TEST3: a) Noisy image (σ = 81,
PSNR=11.42 dB), Maximum moment of local
phase coherence after b) 0 iterations, c) 2 it-
erations, and d) 4 iterations
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Figure 6. TEST4: a) Noisy image (σ = 99,
PSNR=10.99 dB), and Maximum moment of
local phase coherence after b) 0 iterations, c)
2 iterations, and d) 4 iterations

Figure 7. TEST5: a) Noisy image (σ = 81,
PSNR=10.83 dB), and Maximum moment of
local phase coherence after b) 0 iterations, c)
2 iterations, and d) 4 iterations
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