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Abstract

Recentlya classof multiscalestochasticmodelshasbeenintroducedin which randomprocessesnd
fields aredescribedy scale-recurse dynamictrees. A major advantageof this framewvork is thatit leads
to anextremelyefficient, statisticallyoptimalalgorithmfor least-squaresstimation.In certainapplications,
however, estimatedhasedon the typesof multiscalemodelspreviously proposedmay not be adequateas
they have tendedto exhibit a visually distractingblockiness.In this papey we eliminatethis blockinessby
discardinghestandarcdassumptionthatdistinctnodeson agivenlevel of themultiscaleprocessorrespondo
disjointportionsof theimagedomain;insteadweallow acorrespondende overlappingportionsof theimage
domain. We usetheseso-calledoverlapping-treemodelsfor both modelingand estimation. In particular
we develop an efficient multiscalealgorithmfor generatingsamplepathsof a randomfield whosesecond-
orderstatisticsmatcha prespecifieccovariancestructure to ary desireddegreeof fidelity. Furthermorewe
demonstratéhat undereasily satisfiedconditions,we can"lift” a randomfield estimationproblemto one
definedon anoverlappedree,resultingin an estimationalgorithmthatis computationallyefficient, directly
producesestimationerror covariancesand eliminatesblockinessin the reconstructedmagerywithout ary
sacrificein theresolutionof fine-scaledetail.

1 Intr oduction

Recentlyaclassof multiscalestochastienodelshasbeenintroducedn which stochastiprocesseandfieldsare
indexed by the nodesof atree[2,4]. Thesemodelsprovide a systematiavay to describeandomprocesseand
fieldsthatevolvein scale The primaryreasorthatthis frameavork is usefulis thatit leadsto extremelyefficient,
statisticallyoptimal algorithmsfor signalandimageprocessing.In particular the statisticalstructureof these
modelsleadsdirectly to scale-recursie generalization®f both the Kalmanfilter andthe Rauch-Ting-Striebel
smoothef4]. The algorithmhasdemonstrateditility in confrontingdataassimilationproblemsof dauntingly
largedimensioniwo applicationsvherethis approacthashadconsiderablsuccesacludecalculationof optical

flow [15] andsmoothingof oceanaltimetricdata[6]. In the latterwork, for example,the authorswereableto
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estimateboth oceansurfaceheightand associate@rror statisticsfor a 512 x 512 grid, all in oneminuteon a
SRARC-10.

In spite of the succesof the multiscaleapproachto estimationwith regardto computationakefficiency,
mean-squarestimationerror, andability to supplyerror covarianceinformation,the approachasdevelopedup
to this pointin time, hasa characteristithatwould appeato limit its utility in certainapplications Specifically
estimatedasedn the typesof multiscalemodelspreviously proposednay exhibit a visually distractingblocki-
nesg15]. Theauthorsn [15] arguecorrectlythatin mary applicationsthe constructiorof fine-scaleestimates
is not supportedy the quality of availabledata,andin suchcasespnly coarserscaleestimatesrestatistically
significant.In thesecasespneshouldbe suspiciouof anyfine-scaleestimateandary correspondinglockiness
hasa completdack of statisticalsignificance However, in otherapplicationssuchasthe problemof estimation
of the oceansurfaceheight[6] or the investigationof surfacereconstructiorin [8], thereis anessentiaheedfor
smoothestimatessothatsurfacegradientsandnormalscanbe calculatedneaningfully

Althoughestimateblockinesanbeeliminatedby simplepost-processinge.g.,theapplicationof alow pass
filter, or the averagingof multiple, shifted multiscale-basedstimatesasin [7] or in a mannersimilar in spirit
to the “cycle spinning” usedin [5]), the resultingincreasen smoothnesgomesat a price. In particular the
post-processinganrenderlessclearthe properinterpretationof error covarianceinformationprovided by the
estimationalgorithm,andit alsolimits the resolutionof fine-scaledetail in the post-processedstimate since
the addedsmoothnesss achieved by spatialblurring. As analternatve, thework in [12,17] hasdemonstrated
that multiscalemodelscanbe constructedhat producearbitrarily accuraterepresentationsf broadclassesof
randomfields, including thosewith considerablesmoothnessHowever, to achieve a high level of smoothness,
thesemethodsequirethe useof multiscaleprocessesf high dimension therebyleadingto a reductionin the
significantcomputationahdvantageshatthe multiscalemodelingframewvork offers.

Thusfor applicationgn whichthecomputationaéfficiengy of themultiscaleframewvork is desiredput where
blockinesds unacceptablethereis a needfor a new approacho both multiscalemodelingand estimation.In

this paperwe develop suchanapproactthat

(a) yields low-dimensionaimultiscalemodelsthat are quite faithful to prespecifiedandomfield covariance



structureto be realized,and thus admit an extremely efficient, optimal (or nearly optimal) estimation

algorithm;

(b) retainsoneof the mostimportantadwvantage®f the multiscaleestimationframeavork, namelythe efficient

computatiorof estimatiorerror covariances;
(c) resultsin randomfieldsandestimatesvithout blocky artifacts;
(d) achievestheseobjectiveswithoutlossof resolutionor fine-scaledetail.

In contrastto the original multiscaleprocessing7, 15], which achievzesobjectives(a) and(b), andto standard
multiscaleprocessingvith simple post-processinflL5], which achieresobjective (a) and partially achiezesob-
jective (c), our approacthis superiorin thatit accomplisheall four objecties.

To describeour approachwe begin with a more carefullook at the sourceof blockiness. Considerthe
standardquad-treemultiscalestructureshavn in Figure 1. Eachlevel of this tree correspondgo a particular
scalem, with larger m correspondingo finer resolution;the statez(s) on scalem(s) at ary given nodes
representanaggrgatedescriptionof the subsebf thefinest-scalgrocesghatdescendérom the givennode!
A critical propertyof multiscalemodelsis thatthey areMarkov: if z(s) is thevalueof the stateat nodes, then
conditionedon thevalueof z(s), thesetsof valuesof the statesn the subtree®f nodesextendingaway from s
areuncorrelatedThis decorrelatiodeadsbothto efficient estimatioralgorithmsandto thesourceof theproblem
with blockiness.

For example,considerthe upperleft and upperright quadrantof the imagedomaindepictedin Figure 1.
Thesetwo quadrantsreseparateat theroot nodeat thecoarsestevel of thetree,andthereforeall of thecorre-
lation betweerary two finer scalepixelsin thetwo quadrantssuchass; ands, in Figure2, mustbe completely
capturedn theircommonancestgmamelytherootnode.The pixelss; ands, maybeclosephysically but they
areseparatedonsiderablyin termsof the distancealongthe treeto their nearestommonancestonode. High

local correlationbetweersuchspatiallycloseneighborsasonemightexpectif thefield beingmodelechassome

'We will usedyadictreesandquadtreeso illustrateour methods All of theseresultsgeneralizéo ¢-th ordertreesandto treeshaving
nonhomogeneagsbranchingpatterns.



level of regularity or smoothnesgranslatesnto the stateat therootnodehaving a high dimensionjn essencéo
keeptrackof all of thecorrelationsaacrosgjuadranboundaries.

Oneway to reducedimensionalityis to identify andretainonly the principal sourcesof correlationacross
boundariest eachlevel onthetree. A procedurdor doingthis, developedin [12], allows usto build multiscale
modelsof ary desiredfidelity. However, while this procedureby itself canyield low-dimensionaimodelsof
sufficientfidelity for mary applicationsit cannotovercomeheblockinesgproblem.In particular neglectingeven
asmallamountof correlationatacoarsdevel of thetreecancausenoticeablerregularitiesacrosdoundariesand
thusanadditionalelemenis required.In this paperweintroducethis new elemenby discardingheassumption
thatdistinctnodesat a givenlevel of atreecorrespondo disjoint portionsof theimagedomainandallowing the
treenodesto correspondo overlappingregions. As a consequencef this idea,which wasfirst usedin [6, 8],
animagepixel at the finestscalemay now correspondo severaltree nodesat this finestscale. In this way we
remove thehardboundariebetweerimage-domaimpixels,asnow multiple treenodescontributeto eachof these
pixels,reducingthetreedistancebetweerthe nodescorrespondingo thesepixelsandspreadinghe correlation
thatmustbe capturecamongasetof nodes.For obviousreasonsye referto theseasoverlapped-treenodels.

We usetheseoverlapped-treenodelsfor both modelingand estimation,as depictedin Figure 3. In both
of thesecontexts, we startwith assumednowledgeof the correlationstructureP of somerandomfield z.2
Correspondingdo this randomfield z, we devise a so-calledlifted-domainversionz;, wherethis lifted-domain
field livesat thefinest-scalef an overlapped-treenultiscalerepresentationf z. The mappingfrom z to z; is
denotedby z; = G,z, whereG,, is one-to-maw: the lifted-domainfield z; hasmore pixels thanthe image-
domainfield z. To mapbackfrom z; to z, we devise an operatorH,, sothatthe field H,z; is guaranteedo
have the desiredlevel of smoothness.The correlationstructureP, = GmPGf of the overlappedfield z; is
approximatelyrealizedusingthe methoddevelopedin [12,13]. Finally, we devise an operatorG,,, analogous
to G, thatlifts the actualobsenationsy to yield lifted-domainobsenationsy; of therandomfield z;. These
obsenationsarethenprocessedy the efficient multiscaletreealgorithmto produceanestimatez; whichis then

projectedusing H,, to yield &, thedesiredestimateof therandomfield.

2For simplicity of notationwe stacktherandomfield suchthatz: is avectorand P a covariancematrix.



In Section2, we review the basicmultiscaleframeavork of [2,4]. In Section3 we introduceall of the
component®f our approachto modelingand estimation,and we characterizehe optimality propertiesof the
estimationproceduredepictedin Figure3. In Section4 we describean efficientimplicit schemédor describing
the projectionoperatordo andfrom the overlappeddomain,while in Section5 we illustratethe effectiveness
of our new approactto modelingandestimationby meansof four examples,demonstratingiot only that our
methodavoidsblocky artifacts,but in fact doesthis without spatialblurring or compromisinghe advantage of

multiscalemodels.

2 Intr oduction to the Multiscale Framework

2.1 Multiscale Models and Estimation

For a ¢th ordertree(i.e., onein which eachnodehasq offspring),we definebotha fine-to-coarsehift operator
7 suchthat s¥ is the parentof nodes, anda setof coarse-to-fineshift operatorsy;, ¢ = 1,2, ..., ¢ suchthat
the ¢ offspring of nodes are given by soy, sas..., sa,. Figurel depictsthe relative locationsof s, sy, and

say, sag, sag, say for aquadtreeThe scale-recursie dynamicsof interestaregivenby
z(s) = A(s)z(s7) + B(s)w(s). (1)

wherez(s) is avectorvaluedproces®nthetreeandw(s) represents/hite driving noisewith identity covariance,
independenof theinitial conditionz(0) at therootnode0. We modelz(0) asa zero-meamandomvectorwith
covarianceP(0). If weinterpreteachlevel in thetreeasarepresentationf onescaleof the processthenwe see
that(1) describeshe evolution of aprocesdrom coarsdo fine scales.

In this paperwe make use of the estimationalgorithm [4, 15] which computesthe linear least-squares

estimaté 2(s) = E[z(s) | y(o), o0 € M], basecn noisyobsenations
y(s) = Cls)e(s) + v(s), 2)

whereC'(s) is a matrix specifyingthe natureof the procesobsenations,asa function of spatiallocationand

®If all of therandomvariablesarejointly Gaussianthenz(s) is the conditionalmeanof =(s) given{y(s); o € M}.



scale,andv(s) representadditive white measuremenmntoise. The algorithmalsocomputeghe associatee@rror
covarianceP(s). This algorithmtakesexplicit advantageof the Markovian structureof z(s) on thetreeandin-

corporateshemeasurementiato theestimatewia two recursve sweepswith eachsweegollowing thestructure
of thetree. Althoughthe framevork we describeappliesto the generalcase we focushereexclusively on the

caseof estimatingascalarandonfield (e.g.,animage) givennoisy(andpossiblysparsepointmeasurementsf

thefield. Specifically we assumall attentionfocuseson thefinestscale,sothatobsenationsareonly available
at that scaleand only the fine-scaleestimatesare of interest. Furthermorewe assumehat at this finestscale,
boththe stateandthe measuremenw@rescalarvalued.

To obtaininsightinto theefficienciesofferedby multiscalemodelsandthechallengesve mustmeet,consider
the compleity of the simulationandestimationof a multiscaleprocesse(s). Therearethreemultiscalemodel
parameter®f interestin this discussion:(i) the numberK of pixelsin theimagedomain,(ii) the numberN
of finest-scalenodesin the multiscalemodel,and (iii) the maximaldimensionn of ary statevectorz(s) in the
multiscalemodel.In previousapplications N hasbeenidenticalto K; in theapproactio be developedhere the
overlappingnatureof our treesleadsto largervaluesof N, sothat K = rN, where0 < r < 1 is ameasuref
thedegreeof overlap,with smallerr correspondingo moreoverlapandgreatersmoothness.

Thetwo-sweepstructureof our estimatioralgorithmimpliesthateachnodeof thetreeis visitedexactlytwice,
wherethe computationsat eachnodeinvolve a numberof floating point operationgroportionalto the cubeof
the statedimension. Thus, applicationof the estimationalgorithmrequiresa total of O(n3N) floating point
operations.Similarly, the simulationof the coarse-to-fineecursionin (1) requiresa total of O(n?N) floating
point operationst. Thesecompleity figuresimply that a serialimplementatiorrequiresa total computational
time perimagepixel of O(n®/r) for estimationand (O(n?/r)) for simulation. The point hereis thatwe can
achieve dramaticcomputationabenefitaslong asthe maximaldimensionn of the statemodelandthe amount
of overlap(asmeasuredby 1/r) arenottoolarge. As we will illustrate,theprocedureve describehereallows us

to meetthesecriteria.

*Thefactthatestimatioris O(»?*) while simulationis only O(»?) arisesbecausgheformerinvolvesmatrix productswhile thelatter
involvesonly matrix-vectorproducts.



2.2 Realization of Multiscale Models

Ourapproacho building overlappednodelsmakeauseof atechniquedescribedn [12,13] for takinga specified
covariancestructurefor a randomfield and constructinga multiscalemodel so that the set of valuesat the
finest-scalenodeshave statisticsthat approximatelymatchthe specifiedcovariancestructure. The problemof
constructingsuchamodelis themultiscalegeneralizatiorof the problemof stochasticealizationfor time series,
andthetechniquedevelopedin [13], is basedn thestatisticalconcepof canonicakorrelationausedin building
time-seriesnodels[1]. Asdiscussedh [1,13], thekey to constructingarecursve modelfor atime seriesz(t) is
the specificatiorof the statez(t) ateachtimet. If z,(¢) denoteghe pastof the processattime ¢t andz¢(t) the
futurethenthe componentsf z(t) represent setof linearfunctionalsof the past,sothatconditionedon z(t),
zp(t) andz¢(t) areuncorrelated Of course the dimensionof the neededstateis closelytied to the correlation
structureof the process,and for mary applications,one can expectthat an exact realizationof the specified
R..(1) will requireanundulyhigh statedimension.Thus,in additionto a methodfor findingandcharacterizing
thestatein anexactrealization thereis alsoa needfor away in whichto measurgherelativeimportanceof the
component®f the state sothata decisioncanbe madeaboutwhich componentso discardin a reduced-order
realization.

For time seriescanonicakorrelationsappliedto the covarianceP, of z = (zp(t)T zf(t)T)T dealssimulta-

neouslywith both of theseissues.Specifically throughboth a normalizationandan orthogonaltransformation,

(57)

wherel is theidentity matrixand D = diag(p1, ps, - - -, p») iS thediagonalmatrix of canonicalkorrelations.In

P, is transformedo theform

this form, which canbe determinednoredirectly from an SVD of a normalizedversionof the cross-correlation
betweenz,(t) andzs(t) [13], we canidentify the mosthighly correlatedcomponentf the pastand future

(correspondindo thelargestp;). By retainingall the linear combinationof the pastcorrespondingo nonzero
pi, or only the largestof the p;, we canconstructthe exact statez(¢) or an approximatestateof ary desired

dimension.



Ourmultiscalecontext requiresasignificantgeneralizatiorof theseideas.For example the stateat the node
s in the figure mustdecorrelatenot just two setsof randomvariables,but 5 setsof the processsalues,onefor
eachof thesetsof nodesconnectedo s throughits childrenandonesetcorrespondingo thenodesconnectedo
s throughits parent.This generalizations developedin [13], in whichit is alsoshovn how, oncez(s) hasbeen

definedat eachnode the parametersf themodelin (1), i.e., A(s), B(s) andP(0) canbe computed.

3 Modeling and Estimation with Overlapping Trees

In this sectionwe identify the operatorgequiredin our approachto multiscalemodelingand estimationwith
overlappingtrees,andin particulardescribetheir propertiesandinterrelationshipsWe will alsoprove thatany
suboptimalityin our approacho estimationcan be completelytracedto our useof an approximatemodelto
realizethecorrelationstructureof theoverlappedield z;. Thatis, if anexactrealizationis usedn theoverlapped

domain theoverall proceduredepictedn thebottomhalf of Figure3 yieldsthe optimalestimates.

3.1 Modeling of Random Fieldswith Overlapped TreeProcesses

Considerthe problemof simulatinga zero-meamandomfield z with covarianceP. Froma computationapoint
of view, this simulationproblemposesontrivial challengesndhasbeenthefocusof considerableesearchOne
notablecasein which efficient techniqueslo exist is for the simulationof stationaryrandomfields definedon
regularly sampledoroidallattices,sincein this casethe2-D FFT canbe used.However, for mostothertypesof
fields,simulationcanbe quite complex. For example,anapproactbasedn computingz = P!/2w, where P1/2
is the squareroot of the covarianceandw is arandomvectorhaving identity covariancerequirescomputingthe
matrix squareroot P1/2, which hascompleity O(K?3) for arandomfield of K points.In contrastasdiscussed
in Section2.1,thesimulationof arandomfield havzing amultiscalemodelis extremelyfast.

Our constructiorof asimulationprocedurénvolvestwo distinctsteps.In thefirst step,we specifythe matrix

G, whichsenesto lift therandontfield z into anotherandomfield z; via

z; = Gge. 3



which actsasa redundantepresentationf z, having more pixels thanthe original field. The matrix G, has
a considerablemountof sparsestructure,aswe discussin Section4; GG, alsohasa left inverseH, satisfying
certainsmoothnesgropertiego be discussedhortly. In the secondstep,we usethe methodin [13] to build a
low-dimensionamultiscalemodelwhosefinest-scalestatisticsarean accurateapproximatiorto the statisticsof

z;. From(3), we seethatthe covarianceof z; is

P, = G,PGT. (4)

The covariancey; of &, therandomfield living at the finestscaleof the multiscalemodelthatwe constructjs
approximatelyequalto P;, thedegreeof approximatiorcontrolledby theproceduren [13]. Finally, to generate
sampldunctionof arandontfield ¢ having approximatelythe samestatisticaasz andwith thedesiredsmoothness
built into H,,, we generate; usingthe efficient simulationprocedurdor processesn treesandthenapply the

operatorH,,:

The problemthenis to specifyG, and H,, sothat (i) they aresparseandlocal, (i) H, achie/esthe desired
smoothnessvithout spatialblurring, (iii) the resultingmultiscalemodelis of sufficiently low dimensionthat
simulationcanbe doneefficiently, and(iv) the statisticalapproximatioris sufficiently accurateso asto leadto
samplefunctionswith thedesiredcharacteristics.
To illustrate theseideas,considera very simple 1-D exampleof a randomprocessof length3. Let 2”7 =
[21, 2q, 23]T, With
1 05 0

E[mT}:PE 05 1 05 (6)
0 05 1

Supposedhatwe wish to develop an overlappedmodelfor z, indexed on a dyadictree having four finest-scale
nodes.On theright of Figure4 we depictsuchatreewith anindicationof the subset®f real, physicalpoints
(i.e.,subset®f {1, 2, 3}) to whicheachnodecorrespondsThus,thetop nodecorrespondso all threepoints(i.e.,
{1, 2, 3}) andthetwo nodesatthe secondevel correspondo {1, 2} and{2, 3} respectiely. At thebottomlevel

thereis a singlenodecorrespondingo signalpoint 1 andanotheffor 3, but therearetwonodescorrespondingo



2. Thatis, in thelifted domainonthetree,signalpoint 2 is lifted to two finest-scaléreenodes.Thusif we order
thefour fine-scalenodesfrom left to right, andwe view our lifting processassimply copyingthe valueof signal

point 2 to bothof thetreenodesto whichit correspondsye areled to define

G, = , (7)

S = = O
= o O O

oo O =

Thisexampleillustratesheconstraintshatwe placeonary lifting matrixG,: it consistentirelyof zerosand
onesgeachcolumnhasatleastonenonzeroentry, andeachrow hasexactly onenonzeroentry Theseconditions
ensurethat every pixel in the original domaincorrespondso at leastone finest-scalenodein the overlapped
domain,andthateveryfinest-scaleodein theoverlappediomaincorrespondso exactly onepixelin theoriginal
domain.Thislifting procesanbe associateaaturallywith the overlappingstructureasillustratedin Figure4.
Dependingon how one choosesan overlappingstructure,a differentlifting operatorwill generallyresult. In
Sectiord we presenanimplicit methodfor the specificatiorof G, givenadesiredoverlappingstructure.

Thefactthat H,G, = I andourimposedconstrainton G, leadto animportantconstrainion thestructure
of H,,, namelythatthe valueat ary given pointin the original-domainis equalto a corvex combinationof the
valuesof thefinest-scalenodescorrespondingo thatpoint. For example,with G, asin (7), thepossiblechoices

for H,, areof theform

H, = 8)

o O =
o O
o o O
= o o

wherea + b = 1. Herea andb areweightsplacedon thevaluesat thetwo nodescorrespondindo signalpoint 2
in orderto specifyz,. For example,equalweightinge = # = 1/2 wouldintuitively leadto themostsmoothness
in the correlationstructurefrom z; throughzs. It isimportantto emphasizeéhatthe averagingimplied by (8) is
not at all the sameasspatialaveraging,sincewe averageonly thosetreepointscorrespondingo the samepoint
in realspace.In Section4 we will alsodescribehow H, canbe constructedlirectly from a specifiedoverlap

structure.
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3.2 Estimation of Random Fields with Overlapped TreeProcesses

Supposehatwe wish to estimatea zero-meamandomfield z with covarianceP basecbn

wherethe component®f the measurementoisevectorv areuncorrelatedsothatits covariancer is diagonal,
andeachcomponenbf y representa measuremerdf anindividual pixel sothateachrow of C' hasexactly one
nonzercentry. Withoutlossof generalitywe alsoassumehatary pixel hasat mostonemeasuremergssociated
with it.> This is equivalentto assuminghat eachcolumnof C' hasat mostone nonzeroentry, sothatC is a
so-calledweighted)selectiormatrix andhasfull row rank.

Frombasicresultsin estimationtheorywe know thatif z is zero-meamwith covarianceP, then

&= PCT (CPC" +R) " =Ly (10)

andtheresultingerrorvarianceis givenby

~ T T -1
P=P-pPCT(CPCT+R) CP=P-LCP (11)

For a K-pixel field, the explicit calculationof either L or P is generallyO(K?) and the calculationof # is
O(K M) whereM is thenumberof measurementd/irtually theonly casein whichthis computationaload can
bereducedo a practicallevel is whenthefield z is stationaryandwe have densefegularly sampledneasure-
mentsof identicalquality (implying thatC' and R are both multiplesof the identity); in this specialcaseFFT
methodseducetheloadto O(KlogK). Howeverin othercasesthe O(K?) computationaloadfor the explicit
calculationof L cannotbe reducedandthe usualapproachs to turn to iterative methodsfor the computation
of Z. While iterative methodscansignificantlyreducethe computationaload of calculatingz, the calculation
of error covarianceinformationis computationallyprohibitive. In contrastthe multiscaleestimationalgorithm
describedn Section2.1hasa computationaload of O( K ) to computeboth andthe diagonalelementsof P.°

In additionto specifyingG, and H,, andamultiscalemodelfor &;, theapproachllustratedin thebottomhalf

®|f therearerepeatedneasurementsf a singlepixel we canreplacethemby a singleaggreatemeasuremerdbtainedby takinga
weightedaverageof thedata.
8 Otherelementf P maybe computedisingtheresultsof [16].

11



of Figure3 requiresa lifting operatorG,, for themeasurements:

= Gy?/ (12)

andalifted measurememhodel

y = Crz; + v (13)

Moreover, for the multiscaleestimationalgorithmto be applicableto estimatingz; basedon y;, (13) mustrep-
resentuncorrelatedbsenationsof individual fine-scaletreenodes.Thatis, eachrow of C; musthave only one
non-zeroentryandthe covarianceR; of v; mustbediagonal.

Since(G,, associatesachpixel with a setof fine-scalenodesa naturalchoicefor C; is specifiedoy requiring
thatif a realmeasurement madeat a particularpixel, thenlifted measurementshouldbe specifiedat each
of the fine-scaletree nodescorrespondingdo that pixel. For example,for the three-pointprocessllustratedin

Figure4, supposehatwe have measurementsf z; andz,, namely

_|wn _|100 _13 0
Then,in ourlifted domainwe shouldhave threemeasurementgnecorrespondingo the singlenodeassociated

with z;, andtwo correspondingo the nodesassociateavith z,. Thatis,”

C = (15)

oo O =
(e BN e B I an)
o N OO
o o o o

An olvious questionat this pointis how to createthreemeasurementalueson the treewhenonly two real
measurementgreavailable. The answerereis thatwe simply copythe actualmeasurementalueat ary pixel

to all fine-scalenodesassociatedvith thatpixel. In ourexample,

1 0 Y1
01 y
0 0 0

"We shallfind thathaving a measuremerat every finest-scalenodewill makethe precisedescriptionof operatorG, muchsimpler
notationally Consequentlfhe measuremermatrix C; is paddedwith zero-ravs (i.e., dummymeasurementsp makeit diagonal. It
mustbestressedhatthisis purelya notationalmatterandhasno consequencn thetheoryor practicalimplementatiorof overlapping
treealgorithms.

12



At first glance this procedureappeargo createa problem:for the multiscaleestimationalgorithmto work, the
measurementst distinctnodesmusthave uncorrelatecerrors. With y; andC; definedasin (16) and(15) this
certainlydoesnot hold, sincetwo of the “measurementséareidentical. Neverthelesswe simply modelthese
two measurementgsbeingdistinct,eachof the stateatthe correspondingiode,with uncorrelatedneasurement
errors. However, this appeardo createanothemifficulty. Specifically by modelingy; in this way we appeato
be sayingthatwe hase moreinformationthanwe actuallydo; in our examplewe now have two measurements
of the nodescorrespondindo z». To compensatéor this, we needto ensurghatthetotal informationin these
two measurementis the sameasin the singlereal measurementWe accomplishthis simply by doublingthe
correspondingneasuremerrioisevariancesn our modelfor eachof the replicatedmeasurementspecifically

givenR in (14) we define

1-3 0 0 0
_ 0 24 0 0
R = 0 0 2.4 0 (17)
0 0 0 *

(wherex correspond$o thedummymeasuremerdf (15); thevalueof « is irrelevant).
Thegeneraktaseproceed®xactly asin thisexample.For eachreal pixel measuremente have ananalogous
measuremerfor ead of thetreenodescorrespondingo thatrealpixel. Thusif the jth componenbf y isy; =
a;z; 4+ noise(wherez;, is acomponentf z) theny; will have measurementsf theform (y;),, = o; (;),, +noise
for eachn suchthatfinest-scalenode(z;),, correspondso thereal pixel z;. Furthermorefor corveniencefor
ary realpixelsz; thatarenotmeasuredye includedummymeasurementer eachnode(z;),, correspondingo
z;, but with a; = 0. SinceC' is a weightedselectionmatrix, sois C;. To provide a formulafor G, notethat
thereareapparentlytwo distinctwaysin which z affectsy;: (i) throughz; = H,z andy; = C,z; + v;, and(ii)
throughy = Cz +v andy; = G,y. A logicalrequirementhenis thatbotheffectsof z ony; shouldbethesame,

ie., thatC;G, = G,C. SinceC hasfull row rank; it follows that

G, = G CT(ccT)™L (18)

While this expressionfor G,, is correct,its simple structureis obscured. However, noting that (CCT)~1! is

diagonalandthatthe weightsin C; arethe sameasthosein C, it followsthatG,, is alifting matrix, andin fact

13



consistsof the subsetof the columnsof G, correspondindo pixels at which we have measurementsThis is
consistentvith our example: we assignvaluesto thelifted measurementsimply by replicatingthe appropriate
original-domaimmeasurementalues.

To specify R;, let g(;) denotenumberof onesin the jth columnof G,; i.e., thenumberof timesthatthe jth
original-domairmeasuremeris replicatedn the overlappediomain.We thendefine R; to be adiagonalmatrix

whoseith diagonalentryis givenby
Ri(5,4) = g()R(,7),

wherej is the uniqueindex for which G,(%,j) = 1, (i.e., fine scalenode: correspondgo pixel j). This
choicefor R;, which is exactly what was donein our simple example, provides the obsenration covariance
amplificationrequiredn thelifted domainto offsettheapparenincreasen informationcausedy thereplication

of measurementhisis statedmorepreciselyin thefollowing identity:

GIR'G, = R (19)

Proposition1 Letz bearandomfield with covarianceP andlety = C'z + v bea setof measuementwith C
a weightedselectionmatrix and R, the covarianceof v, diagonal. Supposeve thenchooseG,,, H,, G,, C; and
R; asjustdescribed.Thenthe optimalestimatez of z basedon y caneither be computediirectlyor by lifting,

performingoptimalestimationin thelifted domain,andthenprojecting Thatis, if & = Ly, and#; = L;y;, then

PCT (CPCT+R)" = L = H.LG, = H.ACT (GRCT +R)™ G, (20)

whee P, is definedin (4). Moreoverif P denoteshe estimationerror covariancein estimatingz basedon y,

and P, theestimatiorerror covariancen estimatinge; basedony;, then

P=H,pHT (21)

Theproofis givenin AppendixA. This propositionstateghatif we performoptimalestimationin thelifted
domainusingthe correctcovariancepP; for z;, thenthe overall proceduredepictedn the lower half of Figure3
yieldstheoptimalestimateor z basedny. Thus,ary suboptimalityin our actualimplementations completely

traceabldo approximationsn building alow-ordermodelfor z;.
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4 Specificationof the Overlapping Framework

Thekey quantitiesn building anoverlappingramevork areGG,, andH,: oncethesearedetermined?; isfixed,so
thatarealizationmay be constructedandC;, G,,, and R; canbecomputedaswe have describedIn this section
we describea flexible, implicit and efficient methodfor specifyingG, and H,. For simplicity in exposition
andnotation,we focuson a basiccasethat cornveys the main ideas,namelythe representationf 1-D random
processewith dyadicoverlappingtreemodelshaving a spatiallyuniform overlapstructure Thatis, for arny two
nodess; ands, onthe samescaleof thetree,the manneiin which their descendantsverlapmustbethe same.
For amodelhaving this structureandalsohaving M + 1 scales(z,, and H,, canbespecifiedcompletelyin terms
of only M parameters.

Recallthateachnodeon the multiscaletreeis associatedvith a connectednterval of pointsin the original
domain.We denotethewidth of thisinterval, for anodeatscalem, by w,,,. Thisis illustratedin Figure5 which
alsodepictsthe geometryof the overlapof theintervalsassociateavith the two childrenof ary givennode.We
denoteheamountof this overlapbetweersiblingnodesatscalem by o,,, > 0, andwe requirethatsiblingnodes

do notcompletelyoverlap:

0<op < Wi, m=1,2,..., M. (22)

FromFigure5 we seethatw,,, ando,, arerelatedby thefollowing recursion:

Wy—1 = 2W,y; — Oy - (23)

The M overlapparameter®) = {oy, 04, ..., opr} provide a completecharacterizationf the overlapstructure
of thetree. However the valuesof M and© arenotunconstrainedClearly, thelength K of the 1-D sequence

beingrepresenteinposegheconstrainthat

M 2 [log, K1, (24)

where[z] is thesmallesintegergreatetthanor equalto z. For ary fixed M satisfying(24), theoverlapparame-
tersO areimplicitly constrainedby two boundaryconditionson therecursion(23). First, eachnodeon thefinest

level of thetreemustcorrespondo a singlepixel:
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wy = 1. (25)

Secondtheroot nodeof themultiscaletreemustbe associatedvith the entirerandomfield:

The constraintg22)—(26)still leave somedegreesof freedomin specifyingO. In our examplesin Section5,
we eliminatetheseby additionally constrainingthe so-calledfractional overlap, o, /w,, to be approximately
constantasa functionof scale®

With regardto selectinga valuefor M, notethatasthevalue M is increasedfor a fixed valueof K, the
amountof overlap at eachscalemustalsoincreasejn orderto fulfill the boundaryconditions(25) and (26).
Sinceagreateramountof overlapleadsto greatersmoothnesdncreasingM leadsto smootherealizationof a
givenfield. However, as M increasesthe compleity of carryingout simulationandestimationalsoincreases.
Thus, thereis tradeof involvedin choosinga valuefor M thatis typically bestresolhed by a combinationof
engineeringudgmentandnumericalexperimentation.

The matrix G, follows uniquely oncevaluesfor M and O have beenchosen. Specifically thanksto the
constrainton G,,, we know thatits k-th row will have asinglenon-zercentryhaving avalueof one.If welet s,
denotethe k-th nodeat the finestscaleof our overlappingtree,thenthis nodewill correspondo someindex Iy,
in the 1-D procesdeingrepresentedandso

1=y
Go(k,1) = {0 otherwise

Theindex [, canbedeterminedlirectly from M and . Clearly, thereis a uniquepathfrom theroot node0 to

thenodes;,, wherethis pathcanbedescribedisa sequencef M downward-shiftoperations:

sp = 0oy, 5, ... 5y, Jm € {1,2}. (27)
Here,oca; andoas representheleft andright children,respectiely, of nodes, and

M
Eo= ) (m— 12" (28)

m=1

8Thefractionaloverlapcannotgenerallybe madeexactly constantsincethe parameterss,, ando,, musttakeonintegervalues.
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Finally, from our earlierdiscussiorof overlapgeometrya directcalculationshonsthat

M
b = D (fm—1)(wm — on). (29)
m=1

Applying thesameprocedureao eachrow of thematrix G, yieldsthe entirematrix.

The constructionof H,, while constrainedy the choicefor M, © andthefactthat H,G, = I, still has
degreef freedomto bespecified.To enforceourrestrictionthat H,, performno spatialaveragingwe requirethat
nodesatthefinestscaleof thetreebe mappednly to the pixelsto which they correspondThusif G..(Z, j) = 0,
thenwe requirethat H,(7,¢) = 0. Oneway to meetthis constraints to let H, be the Moore-Penroseseudo-
inverseof G,. However, it is possibleto devisea matrix H,, thatactuallydoesa betterjob of smoothing.

To describethe H, thatwe use,considerthe two child nodesshownn in Figure 6(b) and a pixel that lies
within the overlappingregions of thesetwo nodes(e.g.,the pixel markedx in the figure). We needto specify
the contributionsof thetwo child nodeqandtheirdescendantsh determininghe valueof pixel x; for example,
asindicatedin thefigure, theleft child is givena weight of % andtheright child a weight of % Thustheright
child (andits descendanta)ill have a contribution threetimesthat of theleft child to the valueat x. In order
to maintaina total contribution of unity at eachpixel, we will normalizethe contributionsat eachpixel to sum
to one;thesenormalizedvalueswill be referredto asrelative contributions. We achieve smoothnesin H,, by
taperingthe relative contributionsof a nodetowardszeroasoneapproachesn overlappedendof the interval
associateavith thenode;onesuchtaperingis sketchedn Figure6(a).

Supposehatthe procedureoutlinedin the precedingparagrapthasbeenappliedto all nodeson all scales.
To illustratehow H, is determinedrom thesecontributions,considera nodes;, onthefinestscaleanddefinek
andl;, asin (28),(29).The participationof nodes;, onthefinestscaleis determinedasthe productof all relative
contributionsassociateavith all ancestor®f s;. This constructioris illustratedin Figure7 for anoverlapping
treerepresentationf a 1-D processhaving four points: (q, b, ¢, d). Considerfinestscalenodes = (b (second
from theleft endof thetree). The participationof s in determiningthe valueat point & is given by the product
of the numericalvaluesabove each®) in Figure7. Thusthe participationof s isequalto1 -1 - 2.1 = %; SO

theweightin H, associatedvith s is % Theweightsin H, correspondingo eachof thefinest-scaleodesare
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shavnin Figure?.

For all butthesmallesestimatiorproblemsadensaepresentationf theG,, and H, matricess impractical.
In fact, for large multidimensionaproblemsevena sparseepresentatiorysingthefactthateachrow of G, and
columnof H, containonly onenonzeroentry, maybetoo large. However, the M parameterén the parameteri-
zation{ M, O} form animplicit representatioof G, andH,. We have foundtheon-lineconstructiorof G, and
H, from O to besorapidthatwe have exclusively usedthis latterrepresentatioim our software.

Therearetwo possibleextensionsof this overlapspecificationwhich allow greaterflexibility in representing
1-D processedFirst, ratherthanusingdyadictreeswe canalsouseg-adictrees.As describedn [9] theimplicit
procedurefor specifyingG,, and H, from M and O canbe directly extendedto this case. In addition, it is
possibleto considemonuniformoverlapstructuresi.e., structuresn which someregionshave moreoverlapthan
others. In this casethe specificationof the structurerequiresmorethana single,commonoverlapo,, at each
scale,andasa resultthe specificatiorof G,, and H,,, while possible,is morecomplex. We have not foundthis
addedcompleity warrantedn ary application.

Finally, thereis the extensionto the representatiof 2-D randomfields. By consideringeachof the di-
mensionsseparatelythe procedurave have describedcanbe directly extended.Specifically insteadof usinga
dyadictree,we usea quadtreewith a splitting of regionsoccurringin eachof two dimensionsln this caseit is
certainlypossibleto usea separateetof M overlapparameter®! and©? for eachdimension.Howeverin all
applicationsve have consideredve have foundthe useof a singlesetof overlapparameterfor bothdimensions
to beadequateln this casea straightforwardextension[9] to the bookkeepinglescribedor the 1-D caseallows
usto specifyG, and H,, implicitly, andit is this implicit specificationthatis usedexclusively for the results

presentechext.

5 Experimental Results

In this sectionwe demonstratéour applicationsof our overlappingtree framevork. The basisfor all of these
exampless aparticularMarkov randomfield (MRF) modelchoserbecausés stronganisotropypresent& most

severechallengein overcomingblockiness.The statisticsof the MRF z(%, j) of interestareimplicitly governed
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k= -2 -1 0 1 2
2 -0.0085| 0.0139| -0.0058
1| -0.0008| -0.1164| 0.2498| -0.1405| 0.0091
=0 | -0.0517| 0.5508 0.5508| -0.0517
-1 | 0.0091| -0.1405| 0.2498| -0.1164| -0.0008
-2 -0.0058| 0.0139| -0.0085

Tablel: Coeficients{hy, ;} of theMarkov randonmfield “wood” model[14].

by thefollowing autorgressve model:

z(i,5) = Y hraz(i — k,j — 1) +v(3, 7). (30)
kleD

In thisequationp (4, 7) is aGaussiamoiseproceshaving thefollowing correlationstructure:

o? E=1=0

Ep(e,y)v(e+k,y+1)] = —crzth (k,))eD (31)
0 (k)¢ D
o? E=1=0

Eloe,y)z(e+ky+1)] = { ookl (32

wherethefield z is normalizedo have unity variance andwhereD denoteghesetof offsetsof the neighborof
ary givenfield point (¢, j). Thespecificchoiceof coeficients{h,;} to beusedin our examplesarethoseof the
“wood” texture[14], takulatedin Table1l.

In Figure 8(a), we displaya 64 by 64 pixel samplefunction basedon the “wood” texture coeficientsand
assuminghatthe MRF lies on a toroidallattice sothat FFT techniquecanbe employed.Theimagepossesses
anohviousgrain— thatis, a muchstrongercorrelationin the vertical directionthanin the horizontal. The long
vertical correlationlengthis of particularinterest:it is suchcorrelationswhich non-overlappednultiscaletrees
find difficult to presere, evenusingrelatively high ordermodels[17].

The overlapping-treeconstructioroutlinedin the previous sectiongequiresthreequantitiesto be specified.
First, we mustspecify the order ¢, of the tree (herewe usea quadtreeg = 4). Secondly we must specify
the numberof scalesM in the tree. For a 64 by 64 pixel field, non-overlappedireeshave M = 7 scales.
In our exampleswith overlappedtreeswe will setM = 8 scalesand usean overlap parameterizatio® =
{10,5,3,2,1,0,0}, which is consistenwith (25) and (26), and rendersapproximatelyconstantthe fractional
overlapo,, /w.,. Finally, we mustspecifytheorderk of themultiscalemodelto be constructedisingthe method

of [13].
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5.1 Modeling Example

While we expectthatthe principaluseof our multiscalemodelswill bein estimationandstatisticalanalysiswe
begin with anexampleof simulatingrandomfields, illustrating theimprovementusingoverlappedmodels.We
have constructedapproximatemultiscalemodelsfor the wood texture MRF usingtwo differentchoicesfor the
pair (M, k), suchthatthe computationakfforts requiredto simulatethe two fields in Figures8(b),(c) arethe
same. Thefirst of thesehasM = 7 andk = 64; the resultingblockinessn Figure8(b) is clear The second
realization,in Figure8(c), is basedon M = 8 andk = 16; this modelis overlapping,andwe canseethatthere

areno blocky artifacts.

5.2 Estimation: DenselySampledField, Homogeneousvodel

Considerthe casein which we have denseyegularly sampledequalquality measurementsn a toroidal lattice
sothatthe exact optimal estimatecanbe calculatedusing FFTs. The original texture shavn in Figure8(a)was
corruptedo 0dB SNR by white Gaussiamoise, andestimatedn threedifferentways: (i) usinganoptimal FFT
technique(Figure9(a)), (ii) usinga non-overlappedmultiscaletree (M = 7) with a multiscalemodelof order
k = 40 (Figure9(b)), and (iii) usingan overlappedtree (M = 8) anda multiscalemodelof orderk = 16
(Figure9(c)). Themodelordersof thetwo multiscaletechniquesverechosersothatthe computationaburden
for estimationis the samefor both. One measureof estimatorperformances the degreeto which the MSE is
reducedrom the original noisyimagerelative to thereductionprovidedby the optimalleast-squaresstimator
Thenon-overlappedestimatoandthe overlappedestimatorespectiely reducehe MSE by 98.6%and98.0%of
the optimal MSE reduction.On the otherhand,a visualcomparisorbetweerFigures9(b) and(c) shavs clearly
the presencef blocky artifactsfor thenon-overlappecdtasebut no suchartifactsfor theoverlappednodel. Thus
theoverlappedmodelis decidedlysuperiorif the eliminationof suchartifactsis animportantconcern.
Althoughthe FFT techniqueis both efficient and optimalin termsof MSE, it suffersfrom a limited appli-
cability to specialcircumstancesin particular the examplesare presentedn the following two subsections,
irregularly sampledmeasurementsnda spatiallyvarying prior model,precludethe useof the FFT but maybe

solvedusingour multiscalemethod.
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5.3 DenselySampledField, HeterogeneousModel

A samplefunction of anonstationaryrior modelis shovn in Figure10(a). The 64x64 pixelsweredividedinto
groupsg; andgs: g; containghe pixelsin theupperleft andlowerright of theimage,andg, containghe pixels
in the diagonalbandrunningthroughthe centerof the image. The prior modelfor g, is the “wood” modelof
Table1; the prior modelfor g, usesthe samecoeficientsin Table 1, but with thetablerotatedby 90 degrees.
The crosscorrelationbetweengroupsg; andg. is zero. The choiceof sucha nonstationaryprior, asopposed
to the simpleprior in the previous example justimpliesa changen the prior statisticson the finestscaleof the
multiscaletree;the multiscalemodeldevelopmentandestimationprocedurgproceedunafected.

Figure 10(b) shaws a noisy versionof the original imagecorruptedby white Gaussiamoiseto 0dB; Fig-
ure 10(c) shaws the correspondingnultiscalereconstructiorbasedon an overlappingmodelwith A/ = 8 and
k = 32. As we have stressedthe operatorH, removesblockinesswvithout performingspatialblurring; thusthe

edgebetweerthetwo regionsg; andg, is well-presered.

5.4 Locally SampledField, Homogeneousviodel

We considertwo final estimationproblemsnvolving a stationaryprior model,but with measurementavailable
at only non-rectangulasubsetf the pixels. Figure11(a)shows a subsetof the pixels of the “wood” texture
from Figure8(a);this elliptical setof pixelsrepresentthosepixelsto beusedasmeasurementsnplying atrivial
changen themeasuremergrojectionoperatoiG,, andin themultiscalemeasurememhatricesonthefinestscale
of thetree. It is significantto note,however, thatwhile the multiscaleframework is readily adaptedo irregular
measurements,changegrom densdo irregularsamplingmakes=FT-basedapproachesapplicable.

Figure 11(b) shavs the multiscalereconstructiorbasedon the setof measurementgivenin Figure11(a).
The estimatecapturethe coarsefeaturesof the original texture of Figure 8(a) outsideof the measuredegion,
including certainaspect®f theverticalbandsto the left andright of the measuredegion. Also, onceagain the
estimatedextureevolvessmoothly withoutblocky artifacts.

Figure 12 provides one additionalillustration of irregular sampling: obsenationsdistributedaccordingto

a 2-D Poissonprocess.Figures12(b),(c)display estimatedasedon a non-overlappingmodelof order40 and

21



an overlappingmodel of order 16, both having the samecomputationaload. The estimatessomputedby the

overlappingmodelaremorevisually pleasingandalsohave alower MSE.

6 Conclusions

We have presentec new approachto modelingand estimationusinga recentlyintroducedclassof multiscale
stochastigprocesses.Our work has beenmotivatedby the obsenation that estimatesbasedon the typesof
multiscalemodelspreviously proposedanexhibit avisually distractingblockinessTo eliminatethis blockiness,
we have discardedhe standardassumptiorthat distinct nodeson a given level of the multiscaleprocesamust
correspondo disjoint portionsof the imagedomain. Instead,we allow distinct tree nodesto correspondo
overlappingportionsof theimagedomain.Thisis donein away thateliminatesblocky artifactswithoutspatial
averagingsothatif afield doeshave sharpdiscontinuites,thesecanbe capturedwithoutblurring. By coupling
this overlappingframevork with a multiscalestochastiaealizationtechniquebasedon canonicalcorrelations,
we have developeda powerful estimationand modelingtool which allows oneto managehe tradeof among
estimatesmoothnessstatisticalfidelity, andcomputationag&ffort.

Theflexibility of themultiscaleframeavork allows usto confrontproblemdor which FFT techniquesrenot
applicable;in particular in problemsinvolving nonstationarystatisticsor irregularly sampleddata. In fact, the
flexibility of ourframework is greatetthanthatimplied by examplesconsideredhere;in particular themodeling

andestimationof processem higherdimensionss alsopossible.

A Proof of Proposition 1

Using(19) and(4) we canderive

(cpCT + R)[GI(CiPCT + R)™'G,] = [(RGIR;'G,)CPCT + R)[GI(CIRCT + R) ™G]
[RGIR'CiPCI + RGII(CIPCT + R) ™Gy
= RGIR'(C/PCT + R)(CPCT + R)™'Gy = I.

We now verify (20). Usingthe abore derivationwith (4) and(10) leadsto thefollowing identities:
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—1
L = PCT(CPCT+R)™ = PCTGY (CIRCT + R) G,y
= PGICT (aACT + R G,

-1
= H,RCT (CRCT +R) Gy = H,LiG,

To verify (21),we use(11), (20),and(4) in thefollowing sequencef identities:

P = P-LCP=H,RHf - H,L,G,CP
= H,PH! - H,L,C,G,P
= H,(P,- LCP)HF =H,PHT.
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Figurel: lllustrationof thefirst threelevels of a
quad-tree.
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Figure 2: Two nodes,s; and ss, neighborsin
physical space, but distantly separatedn tree
space.
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Figure3: An abstractiew of our overlappedapproactto multiscale-basechodelingandleast-squaresstima-
tion. Fastmultiscaleestimationand sample-patlgeneratiorare accomplishedn the overlappeddomain. G,
projectsthe statisticsof z into the overlappeddomain;&,, projectsmeasurementg into the domain;and H,,
which possessesertainsmoothnespropertiesprojectsthe estimates; backout of the overlappeddomain.
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Mapping of Physical Space
onto the Finest Tree Scale

Coarse Scale
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Indices into Physical Space

Aggregate Representations of
Tree Nodes in Physical Space
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Figure4: lllustrationof an overlapping-treeepresentationf a procesf lengththree,shaving boththedyadic
tree(left) onwhichtherepresentatiors basedanddepiction(right) of therepresentatioof eachtreenode.The
bart associateavith eachtreenoderepresentshe subsebf thepoints{1, 2, 3} associateavith thatnode.

‘l
|

Scale (m-1)

Right Child
i Scale m

Left Child

- W
m

om|<_

Figure 5: Basic overlapping-treenotation: o,,
representshe degreeof overlap betweenthe re-
gionsrepresentethy sibling multiscalenodeson
scalem; w,, representshe width of the region
representelly eachnodeon scalem.
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Figure6: Two overlappingnodes:the setof relative
contributionsto eachfinest-scaleixel mustsumto
one. The contritutionsaretaperedinearly over the
region of overlap.Figure(a) shavsthistaperingpic-
torially; Figure (b) provides a specificexamplefor
two nodeswhich overlapby threepixels.
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Figure7: An exampleof the constructionof H,. A four-level treeis usedto represent processhaving four
points (a, b, ¢,d). The processpoints associatedvith a multiscalenode are indicatedbelon the node. The
relative contritutionsof eachnodeto its associateghrocesgointsareindicatedabose eachnode. Productsof
theserelative contributionsdetermingheelementof H,.

Order64 Order16
Non-Ovwerlapped Overlapped
(a) (b) (©)

Figure8: Threesimulated'wood” textures,64 x 64 samplesbasedon anexactFFT approactin (a), andbased
onregular, multiscaletreesin (b),(c).
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Order40 Order16
Non-Ovwerlapped Overlapped
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Figure9: Threeestimatedextures,eachbasedon noisymeasurementsf Figure8 (a). Estimate(a) is basedon
optimal FFT techniques(b) is basedon a non-overlappingtree of order40, and(c) is basedon anoverlapping
tree of order16. The computationakffort of the latter two estimateds the same,however note the artifacts
visible acrosghequadranboundariesn (b) which arecompletelyremoredin (c).

Original Field Noisy Measurements MultiscaleEstimates

(@) (b) (©)

Figure10: (a) shavs a samplepathof aninhomogeneoudarkov randomfield, whereeachpixel belongsto
a horizontally or vertically correlatedtexture. (b) shawvs the randomfield corruptedby 0dB white, Gaussian,
noise. (c) shaws the texture estimatedusing an inhomogeneousverlappedmultiscalemodel, basedon the
measurementsf (b) andgiventhecorrectprior texture modelat eachpixel.
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ObseredValues EstimatedTexture

(a) (b)

Figurell: Thetexture (b) wasestimatedisinganoverlappednultiscalemodel,basedn the measurement&)
of a smallsubsebf the woodtexture. Despitethe useof a multiscaleestimatoy the estimatesevolve smoothly
from theregionin which measuremenrepresento the surroundingareawithout measurements.
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Figure12: Estimategproducedoy (b) a non-overlappingand(c) anoverlappingtree,given measurementsf a
randomsubsebf the pixelsof Figure8(a): onemeasuremeris madeat eachblackpixelin (a).
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