Autocalibration: Finding Infinity in a Projective Reconstruction

Neil Cavan, Paul Fieguth, David A. Clausi
Vision and Image Processing Lab, Department of Systems Design Engineering
University of Waterloo
Waterloo, Ontario
{nrcavan, pfieguth, dclausi} @uwaterloo.ca

Abstract—In order to extract accurate 3D models from
uncalibrated image data it is necessary to upgrade the gen-
erated projective reconstructions to a metric space, a process
known as autocalibration. The key challenge associated with
autocalibration is the nonlinear optimization of a cost func-
tion based on extracting camera intrinsics from a potential
upgrading transform, and evaluating fitness with respect to
prior knowledge of physical cameras. The nonlinearity of the
problem leads, in general, to poor convergence and a failure
of the calibration process.

This paper presents a novel autocalibration pipeline that
seeks to develop a more robust approach to the nonlinear
optimization. After testing a variety of methods, none of which
yielded satisfactory solutions, we have developed a strategy
combining the best aspects of two methods representing the
current state of the art. The former method preconditions
the projective space by transformation to a quasi-affine re-
construction with respect to camera centers allowing a naive
initialization in the new space, and uses a fitness measure
resistant to focal length collapse. The latter method initializes
using the best results of an exhaustive search over reasonable
values of focal length. Our novel approach, presented here,
uses the exhaustive search initialization of the latter combined
with the improved fitness measure of the former, producing
results that outperform both of its predecessors.

Keywords-3D reconstruction, autocalibration, computer vi-
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I. INTRODUCTION

There is a large and growing demand for robust, automatic
3D model reconstruction from image data across many
industries. Recently, approaches such as Googles StreetView
using calibrated camera arrays and assumptions about scene
structure have met with great success. 3D Reconstruction
also plays a large role in augmented reality applications,
which embed virtual objects into video sequences, as shown
in nearly every Hollywood movie released over the past
few years. No matter the application, algorithms that can
proceed automatically without human interaction generally
require camera calibration, at the least, and often strong
assumptions about the scene, such as calibration objects or
an environment dominated by lines and planes.

The literature on 3D reconstruction from uncalibrated
image data without such assumptions is less well developed.
The ability to reconstruct from uncalibrated images is some-
times necessary, such as the motivation for this research:
2G Robotics Inc., seeks to inspect underwater assets such

Figure 1.

Six frames from the “Dinosaur” sequence, a well-conditioned
test dataset used in the 3D reconstruction literature

as oil rigs, bridge footings and municipal water systems and
compare their current state with their state years or decades
ago, in order to measure the rate of corrosion. Although
there is a wealth of archival footage, camera calibration is
impossible because the cameras used were scrapped years
ago.

The problem of uncalibrated reconstruction can be divided

into two pieces:

1) projective reconstruction, which can be accomplished
directly from image data and is largely a solved
problem, and

2) metric upgrade, which consists of solving for the
camera calibration using prior knowledge.

Our research focuses on the latter metric upgrade step, which
is an active research area and still something of a black art. A
variety of methods exist, but there is no clear “right answer”
in the literature that works robustly. The method developed
in this paper represents a step in that direction.

II. BACKGROUND AND NOTATION

This paper assumes the reader is familiar with the process
of 3D reconstruction from images, projective geometry, and
the affine and metric strata. For an excellent and thorough
treatment of the topic, the interested reader is referred to [1].
For convenience, important results from the literature which
are used in this paper are summarized below.

A. Notation

Because 3D reconstruction makes use of both projective
and metric geometry, it is important to distinguish quantities



that live in these very different spaces; in general, quantities
are assumed to be projective (€ P). Metric quantities (€ R)
will be specifically denoted with a tilde (a), and normalized
projective quantities with their homogeneous co-ordinate
scaled to unity will be denoted with a hat (4). Additionally,
the superscript n will be used to refer to structure points
in a reconstruction while the subscript m refers to camera
views of the scene; thus u], is the value of the projective

m
vector u for the nth structure point in the mth view.

B. Projective Reconstruction

Projective reconstructions consist of a set of image ob-
servations, camera matrices, and structure points: {ul, €
P2, P,, € R34 X" ¢ P3}. They can be built using only
image data from uncalibrated cameras, such as that shown
in Figure 1, and the basis of this process is the projective
camera model:

u,, ~P,X" 1)
where ~ denotes equality up to scale. There are many algo-
rithms for generating projective reconstructions, which are
not discussed here in the interest of brevity. This paper uses
a robust MSAC algorithm which has a six-point solution for
the trifocal tensor 7 as its engine [2], [3]. The only salient
feature of this method is that the resulting reconstruction
does not have image data u”, transformed to a basis of P2,
nor transformed anisotropically. This is not true in many
reconstruction methods [4], [5]. Some form of normalization
is required for numerical stability, and in this work {P,,}
are normalized using the image viewport:
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where w and h are the width and height of the image,
respectively. This has the effect of scaling image values
between —1 and 1, and places the mean of image values
at approximately 0 assuming the true principal point is near
the image center. The unit of the resulting image space is
the diagonal dimension of the CCD, a physical dimension
which is on the order of focal length for most cameras. The
lack of anisotropic scaling means this normalization does not
invalidate the assumption of unit pixel aspect ratio during
autocalibration.

Projective reconstructions are not unique, and can be al-
tered by a 4x4 projective transformation H without affecting
reprojection error:

— > &

u,, = (PmHil) (Hx") 3)

This implies that convenient projective frames can be freely
chosen. A useful choice is to map a reference camera

(usually the first) to canonical form:

Prechan = [IlO]

_ | Pres
Hcan - l: C(Pref)T :l (4)
where c(), the projective camera center, is computed as
follows:

c(P) = (c1,¢2,c3,¢4)" with ¢; = (71)%16,5(13(2')) (5)

with P() defined as the 3x3 matrix obtained by removing
the ith column of P.

The choice of final row for H.,, is somewhat arbitrary,
and is often chosen to be [0 0 0 1] if the location of the
plane at infinity 1., must not be changed; using c(P,. P
ensures that this row is linearly independent from the rest
at the cost of moving Ieo.

C. Autocalibration

The goal of autocalibration is to find the projective trans-
formation (H*)~! that puts the reconstruction in a metric
space. This is equivalent to finding the plane at infinity

loo = [l1, l2, I3, 1] as well as the intrinsics for all cameras,
{K,,}, with

_ fu 8 Du
K= 0 fy Do
0 0 1

Finding the plane at infinity in an arbitrary projective re-
construction is a tricky problem, and many approaches exist
based on the Kruppa equations [6], the absolute quadric
constraint [7], [8], and nonlinear optimization of K-based
cost functions [9]-[11].

No matter the method, constraints for solving the auto-
calibration problem derive from prior knowledge that K
represents a physical camera. This requirement for modern
CCD cameras can be summarized in three prior conditions:

square pixels (zero skew) s=0
unit pixel aspect ratio fu=fo (6)
principal point at image center | p, =p, =0

Focal length has a much greater impact on projective
distortion than the other parameters of K, so an appropriate
parameterization of (H*)~! is:

. 1/f 0 0 0
_ K Lo 0 1/f 0 0
* 1: ref —
(H) [ i, ] o 0o 10| @D
Ll I3 1

This parameterization assumes one of the cameras has been
canonified by (4), and that K for that camera follows (6)
exactly.

In metric space, camera matrices can be decomposed into
intrinsics and extrinsics using RQ decomposition:

P = KR | —Rg) (8)



(a) Image from the
“Dinosaur” sequence

(b) Top view of
reconstructed points
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The “Dinosaur” sequence, reconstructed using Method (III)
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Figure 2.

Require: {P,,} normalized by (2), with P; < [I]0] by (4)
Require: (H*)~! in (7)
fitness <= 0
for i =0tom do
P*,, < P, (H*)"!
obtain K*,,, from (8)
fitness + = C({K,,}) for some fitness measure
end for

Figure 3.  The procedure for evaluating a proposed metric upgrade
transform H™* based on the intrinsics of the resulting cameras. This
generalized cost function is used by all three methods with varying fitness
measures C({Km }).

III. METHODOLOGY

Finding the plane at infinity in an arbitrary projective
reconstruction can be formulated as a nonlinear optimization
problem, and the choice of cost function is of utmost
importance. Given the four parameters of (H*)~!, (7), and
a prior for K, (6), the most direct way to evaluate the fitness
of the resulting reconstruction is given in Figure 3.

This procedure can be used as a cost function for op-
timization using local perturbation methods, however the
transform-decompose process is highly nonlinear. No matter
the fitness measure, optimization is unlikely to converge to
the correct solution unless the initial guess is sufficiently
close. Three methods for autocalibration are compared in
this paper, each following this general process but using
different measures of fitness and initialization strategies.
Optimization is performed using the Levenberg-Marquadt
method [12]. All results were produced using our own
implementations; code for the methods introduced by other
researchers was requested, but unavailable at the time of
submission.
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(a) Image from the
“Model House” sequence

(b) Top view of
reconstructed points
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(c) Front view

(d) Side view

Figure 4. The “Model House” sequence, reconstructed using Method (III)

A. Method (I)

Method (I) [13] attempts to solve the initialization prob-
lem by preconditioning the projective reconstruction to en-
sure that is it quasi-affine (QUARC) with respect to the
camera centers. This means that ioo does not lie between
any two cameras after conditioning. The decomposition of
(8) is applicable only to finite cameras, and should local
perturbation attempt to move 1., across a camera center any
cost function will behave erratically as the decomposition
fails. The method defines a twist test for two cameras to
determine if ioo lies between them, and uses this to define a
signature for 1.: (oo, P1..m ). The signature is a vector of
length m whose entries are either 1 or —1 depending on the
results of the twist test. To obtain a QUARC, it is sufficient
to map to infinity a plane 1* that has the same signature as
loo, and is as far as possible away from all camera centres.
This can be expressed as a linear program:

max 1*%((100,P1,_m)m —6>0 vm
i=1.4

s.t. -1 <17 <1,
where ((lo, P1. m)m is the mth element of the signature,
and the bounds on 17 guarantee a unique solution. Trans-
forming the projective reconstruction to QUARC is then
accomplished by mapping 1* to infinity using (3), with

Hquarc = [ Il*O } 9

A theoretical framework has been laid showing that trans-
forming the projective space to QUARC is equivalent to
placing the naive initialization of (7), [f, 1, la, l3] =
[1, 0, 0, 0] in the correct basin of the cost function, using
the fitness measure

pN2 2 2 2

m



P, < P; =[1]0]
for f = 0.3 to 3.0 with logarithmic spacing do
for i =2tom do
form K, and I~(5 from f
solve for 1%
P*m ~ Pm(H*)il
obtain K*,,, from (8)
fitness = C;;({Kn.})
end for
end for

Figure 6. The algorithm used byt Method (I) and (III) to perform an
exhaustive search for the plane at infinity over reasonable values of focal
length.

The penalization for deviation from (6) is evident. Division
by the factor (f, + f,)?, which is proportional to focal
length, has a normalizing effect; a given deviation of aspect
ratio or principle point is more plausible at long focal
lengths than short ones. It also penalizes the cost function
should f approach 0, where the decomposition of P is
undefined. Method (I) can be summarized as QUARC
preconditioning followed by nonlinear optimization of focal
length and 1., location. For further details, the reader is
directed to [13].

B. Method (II)
Method (II) [10] uses the fitness measure:

Cri({Km}) = Z [ws|s] + war|fu = fol + wp(Ipul + Pol) ]
N an

where w, = 20, wgr = 2, and w, = 1 are appropriate
weights for the terms based on prior expectations - modern
CCDS have very nearly zero skew, while unit aspect ratio is
less certain and principal point location much less so [14].
Initialization of (H*)~! is accomplished using an exhaustive
search over reasonable focal lengths. A closed-form solution
is given for the location of the plane at infinity given any
two cameras P, = [I|0], Ps = [Qg|qg] and their intrinsics,
I~{a, K 3. Given that the cameras are normalized by (2), focal
length will be on the order of 1 - less for wide-angle lenses
and more for telephoto lenses. For most consumer cameras,
a sample space of f = [0.3...3] is reasonable. Making use
of (6), all parameters of K except focal length can be safely
ignored during the initialization phase. Method (II) samples
the space of focal lengths using the algorithm in Figure III-B.
The values of [f, l1, la, I3] that resulted in the best fitness
are used to initialize nonlinear optimization.

C. Method (1)

Method (III) is a combination of the initialization strategy
of Method (II) with the fitness measure from Method (I). The
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Figure 7. Value of Crrr({Km}) plotted against its parameters, in the
solution neighbourhood for the “Dinosaur” sequence. The white circle
shows the initialization found by exhaustive search, and the red cross shows
the optimized result.

hybrid fitness measure is

wskSQ + war(fu — fv)2 + wpupi + wl)vp%

Crir({Km}) ; Fat fo)?
(12)
The addition of the weights from (11) to the general form of
(10) is intended to increase the use of prior knowledge while
maintaining the theoretical rigor of (10) and its resistance to

focal length collapse.

IV. RESULTS

The three methods have been compared for two image
sequences that have appeared elsewhere in the 3D recon-
struction literature [15]: the “Dinosaur” sequence, illustrated
in Figure 2, and the “Model House” sequence, illustrated in
Figure 4. Both sequences were taken using a stationary cam-
era and the subject on a turntable, with approximately 10 °
spacing between images. Method (III) clearly outperforms
the other two, as shown in Figures 5 and 8, producing results
with very little projective distortion that would serve well as
an intialization to metric bundle adjustment. To understand
the failure of the other two methods it is helpful to look at the
behaviour of the cost function in the solution neighbourhood,
which have been plotted in Figures 7, 9 and 10. In these
plots, it may sometimes appear that the optimized result
is worse than the initialization. This is because for each
pane two parameters are held constant at the initialization
value - the optimized solution is plotted in the initialization
space, not its own. Plots of the solution space, omitted here,
show that the optimization is indeed converging to a local
minimum.

As shown in 7, the optimization of Method (III)’s cost
function is initialized within an unambiguous basin. The
only other basin is in the 4o direction, and has a higher
cost function value. The optimization step is fairly large in



Side view of the reconstructed dinosaur

A
Fagnem L mm R
@ ar {11)
Top view of the reconstructed dinosaur
. . - 25 <7
R llll' . ‘\ N
H i . F { N
; y i
. B l. ‘ 4
w h A ;
% L
A v
“ . L
R .-
@ ar d11)

Figure 5.

A comparison of the three metric reconstruction methods for the “Dinosaur” sequence. The plane at infinity still intersects the reconstruction

after applying Method (I). The extreme proximity of the cameras to the scene in the side view of Method (II) indicates focal length collapse. The proposed

Method (I) produces high-quality results with virtually no projective distortion.
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Figure 9.  Value of C;({K,,}) plotted against its parameters, in the
solution neighbourhood for the “Dinosaur” sequence. The white circle
shows the naive initialization in the QUARC frame, and the red cross shows
the optimized result. Note the other prominent basin in the cost function
in the —I2 direction. This contains the true solution for 1.

the +f direction due to the true solution lying above of
the f = [0.3...3] Althought the convergence from f = 3
is acceptable, an extended sample space of f = [0.3...10]
will be used in future implementations. The mild increase
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Figure 10. Value of Cry({K}) plotted against its parameters, in the
solution neighbourhood for the “Dinosaur” sequence. The white circle
shows initialization found by exhaustive search, and the red cross shows the
optimized result. Note the large values compared to the other two methods.
This basin is a numerical artifact generated by focal length collapse.

in computational cost during the exhaustive search will be
more than offset by faster convergence during the nonlinear
optimization.

Method (I) fails due to being initialized in the wrong basin,




Side view of the reconstructed model house
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Top view of the reconstructed model house
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Figure 8. A comparison of the three metric reconstruction methods for the “Model House” sequence. Methods (II) and (III) exhibit severe projective
distortion, but the separate planes of the floor, wall, and roof of the house can be identified with some difficulty. By contrast, the proposed Method (I)
produces a result with only slight projective distortion, illustrated by the slightly less than 90 ° angle between the floor and the wall.

as shown in Figure 9. There is another strong basin in the  literature and consultation with the author mark QUARC
—lo direction, and when the optimization is initialized with preconditioning as a tricky business, best avoided.

[f, 11, l2, I3] = [1, 0, =2, O] instead of [1, 0, O, 0], the ~ Method (II) fails due to focal length collapse. The exhaustive
result is identical to that of Method (I). Very convincing search picks f = 0.3, which has a cost similar to but slightly
results were reported for this method using many image  lower than those in the neghbourhood of f = 3. The cost
sequences [13], which we have been unable to reproduce. function makes no distinction between these cases, though a
It is possible that our QUARC preconditioning is not being physical camera with a short focal length is expected to have
carried out in precisely the same way, or that some detail much smaller deviations from unit aspect ratio and principal
of normalization has been missed. Even if this is the case, point location than one with a long focal length. Because
the failure to implement it after careful review of the  the cost function has no mechanism to penalize extremely



low focal lengths, the optimization takes it into the f = 0
region, where the decomposition of P is ill-defined and cost
function values cannot be trusted.

V. CONCLUSION

The research of this paper has been motivated by a
lack of robust convergence for published autocalibration
methods. In a variety of experimental tests, convergence was
highly initialization dependent, even for noise-free synthetic
data. This paper presents a substantial effort to deliver
reliable performance on synthetic and real data sets, a novel
autocalibration method combining the best aspects of two
recent state-of-the-art methods. Experimental results show
that a far more robust autocalibration is achieved.
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